角膜淋巴管生成在干眼中的研究进展
Advances in Corneal Lymphangiogenesis in Dry Eyes
DOI: 10.12677/hjo.2025.144018, PDF, HTML, XML,   
作者: 文 午, 颜 敏:成都中医药大学眼科学院,四川 成都
关键词: 干眼角膜淋巴管抗淋巴管生成Dry Eye Corneal Lymphatics Antilymphangiogenesis
摘要: 干眼(Dry Eye Disease, DED)是一种常见的多因素眼表疾病,其核心机制涉及泪膜不稳定、眼表炎症和高渗透压。近年来,研究揭示角膜淋巴管生成(Corneal Lymphangiogenesis)在DED中发挥关键作用,促进免疫细胞迁移和炎症放大,角膜淋巴管生成由多种内外部因素引发,被视为慢性炎症性疾病,涉及适应性免疫和固有免疫的激活,进而导致角膜上皮和泪腺功能障碍,形成恶性循环。正常情况下,角膜无血管且具备血管生成和淋巴管生成的免疫赦免特性,但在干眼模型中,已发现区域淋巴结中角膜抗原呈递细胞被激活,提示可能有新的角膜淋巴管形成。随着可靠的淋巴管细胞表面标志物(如LYVE-1、CCL21、FOXC2、VEGFR-3等)的出现,角膜淋巴管生成的研究得以深入开展。众多研究表明,角膜淋巴管生成在干眼发病机制中起着重要作用,这使得抗淋巴管生成治疗策略有望成为治疗干眼的可行方案,且已有少量临床试验对干眼的抗淋巴管生成方式进行了验证。
Abstract: Dry Eye Disease (DED) is a common multifactorial ocular surface disorder, whose core mechanisms involve tear film instability, ocular surface inflammation, and hyperosmolarity. In recent years, studies have revealed that corneal lymphangiogenesis plays a crucial role in DED, promoting immune cell migration and inflammation amplification. Corneal lymphangiogenesis is triggered by a variety of internal and external factors and is regarded as a chronic inflammatory condition. It involves the activation of both adaptive and innate immunity, which in turn leads to corneal epithelial and lacrimal gland dysfunction, forming a vicious cycle. Under normal circumstances, the cornea is avascular and possesses the immune privilege characteristic of resisting angiogenesis and lymphangiogenesis. However, in dry eye models, the activation of corneal antigen-presenting cells in regional lymph nodes has been observed, suggesting the potential formation of new corneal lymphatic vessels. With the identification of reliable lymphatic vessel cell surface markers (such as LYVE-1, CCL21, FOXC2, VEGFR-3, etc.), in-depth research on corneal lymphangiogenesis has been enabled. Numerous studies have demonstrated that corneal lymphangiogenesis plays a significant role in the pathogenesis of dry eye disease, making anti-lymphangiogenic therapeutic strategies a promising viable option for DED treatment. Additionally, a small number of clinical trials have been conducted to validate anti-lymphangiogenic approaches for dry eye disease.
文章引用:文午, 颜敏. 角膜淋巴管生成在干眼中的研究进展[J]. 眼科学, 2025, 14(4): 131-136. https://doi.org/10.12677/hjo.2025.144018

1. 引言

干眼是由于泪液异常引起的眼表损害或(和)泪膜不稳定,从而导致视功能障碍和眼不适症状的一类炎症性疾病[1]。主要表现为眼睛发红、瘙痒、畏光、烧灼感和异物感[2]。据美国一项研究报道,确诊为干眼症的患者在美国成年人中占比约为6.8%,且女性患病率高于男性[3]。干眼症的发病因素较多,近期的研究指出干眼发病的主要机制之一是炎症和免疫反应[4]。正常角膜无血管和淋巴管,然而,最新的研究表明在干眼中发现了角膜新生淋巴管的生成[5] [6],这或许是干眼治疗的一个新的靶点,具有重大的意义。本文将系统回顾相关文献,阐述角膜淋巴管生成的机制,探讨其在干眼中的具体作用,并对针对角膜淋巴管生成的潜在治疗策略进行分析和展望,为干眼的治疗提供新的思路和理论依据。

2. 角膜淋巴管的生成与调节

传统上,健康角膜被认为是透明的,没有淋巴管和血管,称为“角膜血管淋巴管生成特权”[7]。然而,在1966年,Collin [8]在通过向兔子角膜中注入墨汁发现了角膜能够增生新生血管,同时也能产生新生淋巴管。随着淋巴管鉴定的特异性标志物的发现,如:LYVE-1、CCL21、FOXC2、VEGFR-3等,对角膜淋巴管的研究有很大的推进作用,尤其是炎症刺激会引起角膜淋巴管生成已被广泛证实。当角膜发生干眼症、角膜移植排斥反应、炎症性疾病、接触镜相关的缺氧、感染性角膜炎、化学性烧伤、神经营养性溃疡、无虹膜和角膜缘干细胞缺乏等病理改变时会引起角膜淋巴管的生成和发育[5] [9] [10]。淋巴瓣膜的作用是引导角膜外淋巴引流,在角膜炎性淋巴管生成发病后一个月具有管腔瓣膜的淋巴管的生长达到峰值,淋巴管是一个单向的淋巴瓣膜向角膜缘血管的通道,当角膜受到病理刺激后,这些瓣膜引导淋巴液远离角膜中央,有利于淋巴液排出角膜[11]

Mimura等人[12]用硝酸银烧伤大鼠致其角膜圆周新生血管形成,在电子显微镜下观察到受伤的角膜中存在淋巴管,通过RT-PCR检测发现正常大鼠角膜中VEGF-C mRNA不表达,而受损后3天角膜中VEGF-C和VEGFR-3的表达上升,表明VEGFR-3和VEGF-C是角膜淋巴管生成相关的内源性因素。VEGF家族及其受体VEGFR在促进角膜淋巴管生成中至关重要[5] [13],除此之外,还有一些其他因子对淋巴管生成正相关,MMP14在角膜炎症后表达显著上调,能够促进角膜淋巴管的生成,MMP14可能是上调VEGF-C和VEGFR-3的表达水平来诱导角膜血管生成和淋巴管生成,具体机制还需进一步研究[13]。2002年,Kubo [14]发现成纤维细胞生长因子(FGF)能上调内皮细胞和血管周围细胞微环境中VEGF-C的浓度,刺激淋巴管和血管的生成。2019年,Tong Lin [15]团队发现TGFBIp与VEGF-C可协同促进角膜淋巴管生成,TGFBIp诱导淋巴管内皮尖端形成,为新生淋巴管延伸提供引导;而VEGF-C既能促进淋巴管内皮细胞增殖,又能促进淋巴管芽生,两者共同推动角膜淋巴管生成。血小板衍生生长因子(PDGF)及其相应受体(PDGFR)在肿瘤淋巴管生成也具有潜在的作用[16]。血管生成素2 (Ang-2)在体内角膜炎性淋巴管生成和体外淋巴内皮细胞的淋巴管生成功能中均起着关键性作用[17]。肝细胞生长因子(HGF)也是一种能间接作用促进淋巴管的生成因子,在肿瘤中过表达,通过HGF与HGF-R通路,促进淋巴内皮细胞的增殖和形成,导致淋巴转移[18] [19]。近年来研究也发现一些维持角膜生理性透明,能有效抑制角膜血管和淋巴管生成。尼达尼布可以抑制VEGF-C、bFGF和PDGF-BB刺激的体外淋巴管生成,减少炎症,抗角膜淋巴管的生成[20]。Cursiefen团队通过使用分子陷阱VEGF Trap1-2中和VEGF和PIGF抑制血管和淋巴管的生成[21]。特异性阻断整合素α5或者联合阻断α5和αv,可以实现选择性抑制炎性角膜中淋巴管生成,为选择性抑制淋巴管生成开辟了新的治疗选择[22]。此外,可溶性VEGFR1、可溶性VEGFR2、非血管VEGFR3、色素上皮衍生因子和程序性死亡配体1 (PD-L1)也是参与抗淋巴管生成的因子[5]。淋巴管可能是角膜疾病治疗的重要潜在靶点,因此,未来具有重要的研究意义。

3. 干眼症的免疫发病机制

干眼症属于炎症性疾病范畴,和自身免疫性疾病存在诸多共同特征,一般可划分为泪液分泌不足型(Aqueous-Deficient DED)以及蒸发过强型(Evaporative DED),前者包括Sjögren综合征和非Sjögren型,后者主要由睑板腺功能障碍引起[23]。干眼症的发病率较高,在全世界,有5%到34%的人患有干眼症,女性患病率高于男性,且随年龄的增长而增加。美国的干眼症患者每年的治疗费用为783美元,给社会带来巨大的经济负担[2] [3] [23] [24]。干眼症的致病因素很多,其中包括环境、自身免疫、激素失衡等,根据其原因可以分为两种基本的类型:泪液蒸发过强型和分泌不足型。患者通常会感觉到眼睛疼痛、异物感,出现眼睛发红、瘙痒、灼烧、畏光、流泪、视疲劳等,长时间发作将伴发角膜相关症状,患者通常干眼的严重程度不一,虽不危及生命严重,但会给患者带来持续的不适甚至疼痛,严重降低了人们的生活质量。

眼表免疫稳态失衡与炎症反应过度激活,在干眼的发病机制中占据关键地位,研究表明,干眼症患者白细胞介素(IL)-1α、IL-6、IL-8、肿瘤坏死因子(TNF)-α、TNF-β、趋化因子受体(CCR5)、巨噬细胞炎症蛋白(CXCR2)比正常人明显增高,且疾病严重程度和炎症因子含量呈正相关[8] [25]-[27]。眼表损害导致局部急性炎症,干眼症的炎症细胞主要包括HLA-DR+抗原呈递细胞,如树突状细胞、巨噬细胞、朗格汉斯细胞、B细胞和T细胞(Th1、Th17和Treg),眼表长期处于慢性炎症,免疫稳态被破坏就会发展为干眼[5] [26]-[27]。泪膜从外向内分为三层,分别为脂质层、水样层、黏液层,黏液层为杯状细胞分泌黏蛋白,分布于上皮表皮,维持泪膜稳定。炎症和免疫刺激引起结膜杯状细胞数量减少、功能下降,导致黏蛋白分泌减少,最终使得泪膜不稳定和破裂过快,是干眼症发生的主要机制[28]

4. 干眼症中角膜淋巴管生成与治疗意义

目前,干眼症已被证实与免疫系统的激活密切相关,并且会引起角膜淋巴管的生成,但并不伴随血管的生成。2011年,Goyal等人[29]首次在小鼠干眼症模型中证实了角膜新生淋巴管的形成,他们使用CD31和LYVE-1双重染色,观察到淋巴管特异性VEGF-D和VEGFR-3早期增加,其次是VEGF-C、VEGF-A和VEGFR-2水平也升高。随着研究工作的深入,次年,Goyal团队[30]向干眼症小鼠腹腔连续注射抗VEGF-C抗体,观察到干眼症小鼠角膜的淋巴口径和面积均降低,同时促炎细胞因子也减少,这与干眼症的发病机制密切相关,角膜荧光素染色的评分也显著降低,证实抗VEGF-C能抑制淋巴管生成,为角膜淋巴管生成参与干眼症的发病机制提供了有力的证据。SJ Lee团队[31]首次探讨了SP/NK1R系统与DED中淋巴管生成的关系,发现了NK1RJ拮抗剂可抑制病理性淋巴管生成,为DED治疗提供了新靶点。Ji等人[31]发现在干眼模型小鼠中抑制角膜淋巴管的生成可有效减少炎症反应和免疫细胞的运输,并且可以保护角膜神经,提示靶向淋巴管生成可作为干眼症的潜在治疗策略。

2009年,Koenig等人[32]在一项初步研究中发现贝伐单抗滴眼液可以有效抑制培养角膜细胞和体内的新生血管形成,但缺乏评估局部使用贝伐珠单抗滴眼液在干眼中的疗效和安全性的试验。VEGF家族是一种血管生成和淋巴管生成的重要因子[5] [13],Jiang等人[33]发现结膜下注射贝伐单抗(抗VEGF-A)的干眼患者比对照组在泪液破裂时间、干眼的症状和结膜血管形成面积均有显著改善。此外,在2020年,有一项前瞻性双盲随机试验报告中,Kasetsuwan [34]团队让干眼患者每日局部使用0.05%贝伐单抗滴眼液,试验结束后发现干眼患者在泪膜稳定性、角膜染色和症状方面产生了具有统计学意义的改善。贝伐珠单抗可能是干眼治疗的可行药物,至少部分是由于其抗淋巴管生成的潜力。

成纤维细胞生长因子(FGF)能够上调VEGF配体表达并诱导角膜血管和淋巴管的生成[35]。因此,抑制FGF驱动的淋巴管生成是DED的潜在治疗靶点。羟苯磺酸盐一直被认为是用作促血管药物,但最近被发现它是FGF (一种有效促淋巴管生成因子)的有效抑制剂[36],在这项为期2周的自身对照研究中,以滴眼液形式给药的羟苯磺酸盐具有良好的耐受性和效果,可有效治疗重度干眼症的客观体征和主观症状,不足之处是样本量太少,但也为抗淋巴管生成治疗干眼提供了思路。淋巴管生成靶向治疗干眼的相关策略确实是一个可行并且有前景的道路,也有一部分临床试验提供了可靠的证据,但具体的机制还需要进一步深入研究。

5. 讨论与批判

抗血管生成疗法以抑制VEGF-A介导的角膜新生血管为目标,其核心目的在于减少炎症相关血管渗漏,改善角膜透明度。贝伐珠单抗作为VEGF-A单克隆抗体,已在眼科领域(如黄斑变性)中显示疗效[6]。在DED中,个案报告表明其可减少伴随新生血管的炎症反应,但缺乏针对DED的专门RCT数据,证据强度较低。此外,贝伐珠单抗主要针对血管生成,对淋巴管生成影响有限[5]。这限制了其对DED中淋巴介导炎症的治疗效果,可能导致疗效不完全,尤其在以淋巴管生成为主的病例中。未来需设计针对性临床试验,评估其在DED中的具体疗效及局限性。

抗淋巴管生成疗法聚焦于VEGF-C/D-VEGFR-3信号通路,该通路特异性调控淋巴管生成,并在DED中上调,与炎症和免疫反应密切相关[4]。Ji [32]团队发现VEGFR-2敲除小鼠在DED诱导后淋巴管减少,炎症标志物(如TNF-α、IL-8)显著下降,提示VEGFR-3抑制可能有效。Lee [4]进一步通过NK1R拮抗剂L733060证明阻断SP/NK1R系统可下调VEGFR-3表达,减少淋巴管形成并改善干眼症状。这些动物实验数据支持抗淋巴管生成疗法的潜力,但临床转化证据尚缺。相比贝伐珠单抗,靶向VEGF-C/D或VEGFR-3的疗法更具特异性,可能更适合DED中以淋巴介导炎症为主的病例。未来需开发特异性抑制剂,并通过人体试验验证其安全性和疗效。

6. 小结与展望

随着电子设备的普及,干眼症在社会中已经是一个非常普遍的现象,并且发病人群趋于年轻化,被认为是一种多因素的眼表和泪膜疾病,症状范围从轻度至重度瘙痒、灼热、刺激、眼疲劳和眼部炎症,严重者甚至可能导致角膜、结膜的潜在损伤,甚至视力丧失[37]。随着淋巴管内皮特异性标记物的发现以及人们对角膜新生淋巴管的深入研究,发现干眼会伴随角膜新生淋巴管,一些临床试验也证实了减少角膜新生淋巴管能改善干眼的症状,这为干眼的防治提供了新的思路和方向。靶向角膜淋巴管生成是治疗干眼可行且有价值的策略,目前这方面的临床试验和药物研究还较少,值得相关学科研究人员关注并深入研究。

参考文献

[1] Hessen, M. and Akpek, E.K. (2014) Dry Eye: An Inflammatory Ocular Disease. Journal of Ophthalmic and Vision Research, 9, 240-250.
[2] Messmer, E.M. (2015) The Pathophysiology, Diagnosis, and Treatment of Dry Eye Disease. Deutsches Ärzteblatt international, 112, 71-81. [Google Scholar] [CrossRef] [PubMed]
[3] Farrand, K.F., Fridman, M., Stillman, I.Ö. and Schaumberg, D.A. (2017) Prevalence of Diagnosed Dry Eye Disease in the United States among Adults Aged 18 Years and Older. American Journal of Ophthalmology, 182, 90-98. [Google Scholar] [CrossRef] [PubMed]
[4] Lee, S.J., Im, S., Wu, J., Cho, C.S., Jo, D.H., Chen, Y., et al. (2021) Corneal Lymphangiogenesis in Dry Eye Disease Is Regulated by Substance P/Neurokinin-1 Receptor System through Controlling Expression of Vascular Endothelial Growth Factor Receptor 3. The Ocular Surface, 22, 72-79. [Google Scholar] [CrossRef] [PubMed]
[5] Chennakesavalu, M., Somala, S.R.R., Dommaraju, S.R., Peesapati, M.P., Guo, K., Rosenblatt, M.I., et al. (2021) Corneal Lymphangiogenesis as a Potential Target in Dry Eye Disease—A Systematic Review. Survey of Ophthalmology, 66, 960-976. [Google Scholar] [CrossRef] [PubMed]
[6] Cursiefen, C. (2007) Immune Privilege and Angiogenic Privilege of the Cornea. In: Niederkorn, J.Y. and Kaplan, H.J., Eds., Chemical Immunology and Allergy, KARGER, 50-57. [Google Scholar] [CrossRef] [PubMed]
[7] Cursiefen, C., et al. (2002) Lymphatic Vessels in Vascularized Human Corneas: Immunohistochemical Investigation Using LYVE-1 and Podoplanin. Investigative Ophthalmology & Visual Science, 43, 2127-2135.
[8] Collin, H.B. (1966) Endothelial Cell Lined Lymphatics in the Vascularized Rabbit Cornea. Investigative Ophthalmology, 5, 337-354.
[9] Hou, Y., Bock, F., Hos, D. and Cursiefen, C. (2021) Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells, 10, Article 1661. [Google Scholar] [CrossRef] [PubMed]
[10] Azar, D.T. (2006) Corneal Angiogenic Privilege: Angiogenic and Antiangiogenic Factors in Corneal Avascularity, Vasculogenesis, and Wound Healing (An American Ophthalmological Society Thesis). Transactions of the American Ophthalmological Society, 104, 264-302.
[11] Truong, T., Huang, E., Yuen, D. and Chen, L. (2014) Corneal Lymphatic Valve Formation in Relation to Lymphangiogenesis. Investigative Opthalmology & Visual Science, 55, 1876-1883. [Google Scholar] [CrossRef] [PubMed]
[12] Mimura, T., Amano, S., Usui, T., Kaji, Y., Oshika, T. and Ishii, Y. (2001) Expression of Vascular Endothelial Growth Factor C and Vascular Endothelial Growth Factor Receptor 3 in Corneal Lymphangiogenesis. Experimental Eye Research, 72, 71-78. [Google Scholar] [CrossRef] [PubMed]
[13] Du, H. and Liu, P. (2016) Matrix Metalloproteinase 14 Participates in Corneal Lymphangiogenesis through the VEGF-C/VEGFR-3 Signaling Pathway. Experimental and Therapeutic Medicine, 12, 2120-2128. [Google Scholar] [CrossRef] [PubMed]
[14] Kubo, H., Cao, R., Bräkenhielm, E., Mäkinen, T., Cao, Y. and Alitalo, K. (2002) Blockade of Vascular Endothelial Growth Factor Receptor-3 Signaling Inhibits Fibroblast Growth Factor-2-Induced Lymphangiogenesis in Mouse Cornea. Proceedings of the National Academy of Sciences, 99, 8868-8873. [Google Scholar] [CrossRef] [PubMed]
[15] Lin, T., Zhang, X., Lu, Y. and Gong, L. (2019) TGFBIp Mediates Lymphatic Sprouting in Corneal Lymphangiogenesis. Journal of Cellular and Molecular Medicine, 23, 7602-7616. [Google Scholar] [CrossRef] [PubMed]
[16] Jitariu, A.A., Cimpean, A.M., Kundnani, N.R. and Raica, M. (2015) State of the Art Paper Platelet-Derived Growth Factors Induced Lymphangiogenesis: Evidence, Unanswered Questions and Upcoming Challenges. Archives of Medical Science, 1, 57-66. [Google Scholar] [CrossRef] [PubMed]
[17] Yuen, D., Grimaldo, S., Sessa, R., Ecoiffier, T., Truong, T., Huang, E., et al. (2014) Role of Angiopoietin-2 in Corneal Lymphangiogenesis. Investigative Opthalmology & Visual Science, 55, 3320-3327. [Google Scholar] [CrossRef] [PubMed]
[18] Kajiya, K., Hirakawa, S., Ma, B., Drinnenberg, I. and Detmar, M. (2005) Hepatocyte Growth Factor Promotes Lymphatic Vessel Formation and Function. The EMBO Journal, 24, 2885-2895. [Google Scholar] [CrossRef] [PubMed]
[19] Cao, R., Björndahl, M.A., Gallego, M.I., Chen, S., Religa, P., Hansen, A.J., et al. (2006) Hepatocyte Growth Factor Is a Lymphangiogenic Factor with an Indirect Mechanism of Action. Blood, 107, 3531-3536. [Google Scholar] [CrossRef] [PubMed]
[20] Lin, T. and Gong, L. (2017) Inhibition of Lymphangiogenesis in Vitro and in Vivo by the Multikinase Inhibitor Nintedanib. Drug Design, Development and Therapy, 11, 1147-1158. [Google Scholar] [CrossRef] [PubMed]
[21] Cursiefen, C., Cao, J., Chen, L., Liu, Y., Maruyama, K., Jackson, D., et al. (2004) Inhibition of Hemangiogenesis and Lymphangiogenesis after Normal-Risk Corneal Transplantation by Neutralizing VEGF Promotes Graft Survival. Investigative Opthalmology & Visual Science, 45, 2666-2673. [Google Scholar] [CrossRef] [PubMed]
[22] Dietrich, T., Onderka, J., Bock, F., Kruse, F.E., Vossmeyer, D., Stragies, R., et al. (2007) Inhibition of Inflammatory Lymphangiogenesis by Integrin Α5 Blockade. The American Journal of Pathology, 171, 361-372. [Google Scholar] [CrossRef] [PubMed]
[23] O’Neil, E.C., Henderson, M., Massaro-Giordano, M. and Bunya, V.Y. (2019) Advances in Dry Eye Disease Treatment. Current Opinion in Ophthalmology, 30, 166-178. [Google Scholar] [CrossRef] [PubMed]
[24] Yu, J., Asche, C.V. and Fairchild, C.J. (2011) The Economic Burden of Dry Eye Disease in the United States: A Decision Tree Analysis. Cornea, 30, 379-387. [Google Scholar] [CrossRef] [PubMed]
[25] Mu, P. (2020) PPARγ: The Dominant Regulator among PPARs in Dry Eye Lacrimal Gland and Diabetic Lacrimal Gland. International Journal of Ophthalmology, 13, 860-869. [Google Scholar] [CrossRef] [PubMed]
[26] 万雨, 李学民. 免疫介导炎症在干眼发病机制中的作用[J]. 中华实验眼科杂志, 2022, 40(12): 1202-1206.
[27] Wei, Y. and Asbell, P.A. (2014) The Core Mechanism of Dry Eye Disease Is Inflammation. Eye & Contact Lens: Science & Clinical Practice, 40, 248-256. [Google Scholar] [CrossRef] [PubMed]
[28] 孙倩娜, 邓新国. 干眼的研究现状[J]. 眼科研究, 2009, 27(9): 819-822.
[29] Goyal, S. (2010) Evidence of Corneal Lymphangiogenesis in Dry Eye Disease: A Potential Link to Adaptive Immunity? Archives of Ophthalmology, 128, 819-824. [Google Scholar] [CrossRef] [PubMed]
[30] Goyal, S., Chauhan, S.K. and Dana, R. (2012) Blockade of Prolymphangiogenic Vascular Endothelial Growth Factor C in Dry Eye Disease. Archives of Ophthalmology, 130, 84-89. [Google Scholar] [CrossRef] [PubMed]
[31] Ji, Y.W., Lee, J.L., Kang, H.G., Gu, N., Byun, H., Yeo, A., et al. (2018) Corneal Lymphangiogenesis Facilitates Ocular Surface Inflammation and Cell Trafficking in Dry Eye Disease. The Ocular Surface, 16, 306-313. [Google Scholar] [CrossRef] [PubMed]
[32] Koenig, Y., Bock, F., Horn, F., Kruse, F., Straub, K. and Cursiefen, C. (2009) Short-and Long-Term Safety Profile and Efficacy of Topical Bevacizumab (Avastin®) Eye Drops against Corneal Neovascularization. Graefes Archive for Clinical and Experimental Ophthalmology, 247, 1375-1382. [Google Scholar] [CrossRef] [PubMed]
[33] Li, X., Jiang, X., Lv, H., Liu, Z., Qiu, W. and Wang, W. (2015) Efficiency and Safety of Subconjunctival Injection of Anti-VEGF Agent—Bevacizumab—In Treating Dry Eye. Drug Design, Development and Therapy, 9, 3043-3050. [Google Scholar] [CrossRef] [PubMed]
[34] Kasetsuwan, N., Chantaralawan, K., Reinprayoon, U. and Uthaithammarat, L. (2020) Efficacy of Topical Bevacizumab 0.05% Eye Drops in Dry Eye Disease: A Double-Masked, Randomized Trial. PLOS ONE, 15, e0234186. [Google Scholar] [CrossRef] [PubMed]
[35] Hajrasouliha, A.R., Sadrai, Z., Chauhan, S.K. and Dana, R. (2012) b-FGF Induces Corneal Blood and Lymphatic Vessel Growth in a Spatially Distinct Pattern. Cornea, 31, 804-809. [Google Scholar] [CrossRef] [PubMed]
[36] Cuevas, P., Outeiriño, L.A., Azanza, C., Angulo, J. and Giménez-Gallego, G. (2015) Improvement in the Signs and Symptoms of Dry Eye Disease with Dobesilate Eye Drops. Military Medical Research, 2, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
[37] Mohamed, H.B., Abd El-Hamid, B.N., Fathalla, D. and Fouad, E.A. (2022) Current Trends in Pharmaceutical Treatment of Dry Eye Disease: A Review. European Journal of Pharmaceutical Sciences, 175, Article ID: 106206. [Google Scholar] [CrossRef] [PubMed]