环状RNA (circRNA)在肾细胞癌中的研究进展:生物发生、生物学功能及临床意义
Research Progress on circRNA in Renal Cell Carcinoma (RCC): Biogenesis, Biological Functions, and Clinical Significance
摘要: 环状RNA (circRNA)是一类具有共价闭环结构的非编码RNA,凭借稳定性高、时空表达特异、丰度高等独特特性,在多种生理与病理过程中发挥关键调控作用,尤其与癌症的发生发展密切相关。肾细胞癌(RCC)作为常见恶性肿瘤,其诊疗仍面临挑战,而circRNA在RCC中的功能机制与临床价值逐渐成为研究热点。本文系统综述了circRNA的生物发生机制(包括套索驱动、内含子配对驱动、RBP介导及pre-tRNA驱动的环化剪接四种模型)、核心生物学特征及主要功能(如充当miRNA海绵、与蛋白质相互作用、调控转录/选择性剪接、翻译生成肽段等),重点阐述了circRNA在RCC中的具体作用(如circGRAMD4促进癌细胞生长、circPVT1增强细胞转移能力等),并分析了circRNA作为RCC诊断与预后生物标志物、治疗靶点的潜力,同时展望了其在肿瘤诊疗及circRNA疫苗开发领域的应用前景。本文旨在为深入理解circRNA在RCC中的作用机制提供参考,为RCC的精准诊疗研究提供新思路。
Abstract: Circular RNAs (circRNAs) are a class of non-coding RNAs with a covalently closed circular structure. Endowed with unique characteristics including high stability, spatiotemporal expression specificity, and high abundance, they play crucial regulatory roles in various physiological and pathological processes, and are particularly closely associated with the occurrence and development of cancer. Renal cell carcinoma (RCC) is a common malignant tumor, and its diagnosis and treatment still face challenges. However, the functional mechanisms and clinical value of circRNAs in RCC have gradually become a research focus. This article systematically reviews the biogenesis mechanisms of circRNAs (including four models: lariat-driven circularization, intron-pairing-driven circularization, RBP-mediated circularization, and pre-tRNA-driven circular splicing), their core biological characteristics, and main functions (such as acting as miRNA sponges, interacting with proteins, regulating transcription/alternative splicing, and translating into peptides). It focuses on elaborating the specific roles of circRNAs in RCC (e.g., circGRAMD4 promotes cancer cell growth; circPVT1 enhances cell metastasis ability) and analyzes the potential of circRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets for RCC. Meanwhile, it prospects the application prospects of circRNAs in the fields of tumor diagnosis and treatment and circRNA vaccine development. This article aims to provide a reference for in-depth understanding of the mechanism of action of circRNAs in RCC and offer new ideas for the research on precise diagnosis and treatment of RCC.
文章引用:张方涛, 甘立峰, 钟海东, 谢明贵, 钱彪. 环状RNA (circRNA)在肾细胞癌中的研究进展:生物发生、生物学功能及临床意义[J]. 临床医学进展, 2025, 15(12): 998-1008. https://doi.org/10.12677/acm.2025.15123496

1. 介绍

环状RNA (circRNA)是独特的非编码RNA,其特征是共价闭合的环状结构,缺乏线性RNA的典型翻译起始元件(5’帽和3’polyA尾部) [1]。circRNA最初在植物病毒中发现[2],最初被认为缺乏功能作用[3]。随后,在从酵母到人类的多种真核生物中发现了circRNA[4]。随着技术和实验方法的进步,以前的研究已经证实了circRNA在各种生理和病理过程中的多功能作用[5]

首先,许多研究报道circRNA对组织具有很强的特异性[6] [7]。其次,由于它们对核糖核酸酶(RNase)活性的抵抗力,与线性对应物相比,circRNA要稳定得多[7] [8]。第三,全基因组分析发现,circRNA比线性对应物表现出更高的序列保守性和更多的丰度[8] [9]。此外,circRNA被认为是竞争性内源性RNA,可调节选择性剪接或转录,结合或隔离蛋白质,并被翻译成功能性肽[10] [11]。这些特征表明circRNAs可能能够在病理和生物细胞过程中发挥作用。越来越多的证据表明,circRNAs与各种疾病的病理学密切相关。特别是,circRNAs在癌症的发生、发展和耐药性中起着至关重要的作用[12] [13]。此外,circRNA由于在外泌体和人体体液中含量丰富,可以通过细胞间通讯对肿瘤微环境产生影响。因此,circRNA可以被可视化为有前途的癌症生物标志物。本文综述了circRNAs在肾细胞癌生物发生、生物学功能及功能机制中的研究进展,同时探讨了该领域当前面临的挑战与潜在临床意义。

2. circRNA的生物发生

反向剪接产生三种类型的circRNA:1) 外显子circRNA (ecRNA),2) 外显子–内含子circRNA (EIciRNA)和3) 环状内含子RNA (ciRNA) [14] [15]。CircRNA通过四种不同的机制产生[16]。目前,circRNA环化的常见模型包括:套索驱动的环化、RBP诱导的环化、内含子配对驱动的环化和前tRNA驱动的环化剪接。

2.1. 套索驱动的环化模型

由于转录过程中外显子跳跃,前体mRNA部分折叠。上游3’剪接受体与下游5’剪接供体共价连接,形成包含外显子或内含子的套索中间体。随后,套索中间体经历序列的反向剪接、切除或保留,最终形成共价闭合的ciRNA [17]。此外,ciRNA的形成取决于保守元件,即5’剪接位点附近富含GU的7个核苷酸和3’分支点附近富含C的11个核苷酸。在反向剪接过程中,这两个元素结合形成套索结构,然后通过剪接去除结构中的外显子。这两个元件保护ciRNA免受内含子脱支和降解,最终形成稳定的ciRNA [15] [18]

2.2. 内含子配对驱动的环化模型

在这个过程中,外显子两侧的内含子是必不可少的元素。上游内含子和下游内含子包含反向互补序列(如Alu重复序列和其他非重复元件),碱基配对发生后,下游5供体和上游3受体剪接位点彼此靠近,最终加速ecircRNAs的形成[8] [19]。一些生物信息学分析和实验研究也证实,侧翼内含子中的反向互补Alu重复序列与circRNA生物发生有关[20]。Li等人证明,cGGNBP2 (hsa_circ_0003930)的侧翼内含子序列是高度反向互补的,并且是circRNA生物发生所必需的[21]。更重要的是,circHIPK3的表达由Alu元件促进[22]

2.3. RBP介导的环化模型

circRNA生物合成受多种蛋白质的调节,例如RBP、酶和转录因子[23]-[25]。RBP特异性结合前mRNA侧翼内含子序列中的特定位点以形成桥,使剪接位点在受体和供体之间更紧密。在反向剪接过程中,一些内含子序列没有被去除,而是保留在circRNA中,称为EIcircRNAs [26]。例如,甘露聚糖结合凝集素(MBL)通过识别和结合位于其自身前体mRNA侧翼内含子中的高度保守的MBL结合元件来增强circMBL的产生[27]。在肉瘤中融合RHOBTB3 pre-mRNA结合,然后加速circRHOBTB3产生的反向剪接过程[23]。此外,作为选择性剪接因子[28],通过与内含子中的识别元件结合并形成二聚体来诱导外显子环化,随后产生circRNA,这也促进了上皮–间质转化(EMT)过程中的反向剪接效率[29]。除此之外,腺苷脱氨酶1作为一种RNA编辑酶,通过减少侧翼内含子和反向折叠的RNA配对结构来负向调节circRNA的产生[25]。同样,RNA/DNA解旋酶DExH-Box解旋酶9通过下调内含子配对来减少circRNA的形成[30]

2.4. pre-tRNA驱动的环化剪接

此外,circRNA的一个子集是通过pre-tRNA的剪接从tRNA衍生而来的[31]。在tRNA成熟过程中,tRNA剪接核酸内切酶复合物裂解前tRNA,一种称为RNA末端磷酸化酶B (RtcB)的酶连接外显子片段和内含子以产生tricRNA [32] [33]

简单来说,circRNA的生物发生和分子机制在它们如何调节环化方面尚无定论。值得注意的是,circRNA的起源与亲本基因密切相关。

3. circRNA的特征

3.1. 稳定性

circRNA是异常稳定的分子,比线性转录本具有更高的稳定性[34]。circRNA具有共价闭环结构,没有5’帽和3’-poly尾部,对RNase介导的切割表现出更高的抗性[35] [36]。例如,EcRNA在细胞中的半衰期为48小时,而mRNA的平均半衰期为10小时[36]。高稳定性可导致circRNA在各种生理过程中积累[37]。circRNA增强的稳定性有助于其检测和定量,通常比线性对应物的水平更高。这使得circRNA特别适合作为疾病诊断的生物标志物。

3.2. 丰富

随着RNA测序技术的广泛应用,人们发现circRNA丰富且广泛[38]。研究表明,circRNA在人体组织中非常普遍,特别是在人脑中[39]。在人成纤维细胞中发现了超过25,000种不同的circRNA,其丰度是线性成纤维细胞的十倍[40]。不同侧翼互补内含子之间的选择性环化导致一个基因形成许多circRNA亚型,从而有助于circRNA的整体多样性和丰度[15]

3.3. 时间和空间表达特异性

circRNAs的表达模式具有时空特异性,在生长、发育和肿瘤进展的不同阶段有所不同。CircRNA表达模式在真核细胞中受到严格调节,并与神经发育相关[37] [41]。此外,circRNAs在肿瘤进展的几个标志中起着至关重要的作用。例如,在肝癌的起源处,circ-ZNF609增强了肝细胞癌(HCC)细胞的干性并促进致癌作用[42]。相反,circMEG3在HCC的侵袭和转移过程中下调,降低其对端粒酶活性的抑制,促进细胞复制永生和肿瘤转移[43]。同样,circRNA在肿瘤组织和邻近的非恶性组织中表现出差异表达[20] [44]。进行了一项分析,以阐明前列腺腺癌和正常细胞、骨和骨肉瘤、结肠和结直肠腺癌以及肾和肾细胞癌的circRNA谱[45]。结果表明,circRNA总丰度低于正常组织。差异表达分析显示34个上调的circRNAs具有统计学意义。这些不同的表达模式强调了circRNA作为癌症生物标志物的潜力。

上述特性使circRNA成为理想的肿瘤诊断和预后标志物。在临床实践中,可以测量特异性circRNAs的表达水平以确定肿瘤的存在或评估肿瘤进展的程度。

4. circRNAs的生物学功能

已知circRNA具有多种功能,包括充当miRNA海绵、与RBP相互作用、调节选择性剪接和转录、翻译、产生假基因、运输、通信和作为生物标志物的潜力。此外,circRNAs可以调节基因表达,因为它们在辅助翻译过程中的作用。

4.1. circRNAs与蛋白质相互作用

circRNA作为蛋白质拮抗剂或诱饵来抑制蛋白质的活性。例如,circ-Foxo3可以与细胞周期相关蛋白相互作用,包括p21和p27,从而阻断这些蛋白质在癌细胞周期进展中的作用[46]。另一种circRNAcircPABPN1已被证明可以与HuR (一种众所周知的RBP)结合[47]。同样,circPABPN1与众所周知的RNA结合蛋白HuR的结合通过阻止HuR与PABPN1 mRNA相互作用来减少PABPN1的翻译[44] [48]。circANRIL被证明与peccadillo homolo1 (PES1)结合,抑制PES1介导的rRNA成熟[49]

4.2. circRNA充当miRNA海绵或竞争性内源性RNA

迄今为止,据报道,大多数circRNA都用作miRNA海绵[50] [51]。miRNA在肿瘤进展中起关键作用[52] [53]。据报道,竞争性内源性RNA (ceRNA)可以作为miRNA的海绵。circRNA主要位于细胞质中,具有多个miRNA反应元件(MER) [11],表明circRNA可能与miRNA竞争性结合。因此,circRNAs可以通过抑制ceRNA的作用来调节miRNA功能。

4.3. circRNA翻译成蛋白质/肽

线性mRNA翻译需要5’帽和3’poly (A)尾[54]。与mRNA不同,circRNA缺乏独特的分子结构。然而,circRNA可以通过N6-甲基腺苷修饰或内部核糖体进入位点(IRES)进行翻译,以促进初始因子与circRNA的直接结合,如工程化circRNA所示[54]。尽管大多数circRNA不具备与核糖体结合进行翻译的能力,但数据表明,一小部分内源性circRNA可以翻译成蛋白质或肽[10] [55] [56]。Pamudurti等人报道,通过质谱分析,内源性circMbl3在果蝇头部被翻译成小肽。此外,Legnini等人[56]指出,circZNF609 (一种circRNA)调节肌生成并被翻译成蛋白质。

4.4. 源自circRNA的假基因

假基因主要来源于线性mRNA的逆转录,线性mRNA位于宿主基因组内10%的已知基因位点[57] [58]。通过检查基因组的反向剪接连接序列,已经对无数circRNA起源的假基因进行了表征[59]。例如,通过检索小鼠基因组中相应的圆圈基因座,鉴定了9个低置信度circRFWD2衍生的假基因和33个高置信度circRFWD2起源的假基因。然而,大多数circRFWD2衍生的假基因不包含poly (A)尾,表明circREWD2逆转录成cDNA的方式仍不清楚。因此,应该在circRNA研究中探索产生假基因的分子机制。

4.5. circRNA调节选择性剪接或转录

细胞质中的大多数circRNA来源于外显子。相反,EIciRNAs主要位于细胞核中并充当转录调节因子[8]。Li等人[14]证明EIciRNAs与U1 snRNPs相互作用,EIciRNA-U1 snRNPs复合物可能调节RNA聚合酶II活性并促进其亲本基因的转录[18]。此外,circRNAs与PolII转录化合物相互作用以激活其亲本基因的转录[18]。circSEP3是一种ecircRNA,被证实可调节其亲本基因的剪接。circSEP3可以与同源DNA基因座紧密结合,而线性对应物与DNA的相互作用更弱。结果确定了circRNA扭曲剪接偏好并支持同源选择性剪接mRNA变体的能力[60]。这些研究共同表明,某些circRNAs可以在剪接和转录水平上调节基因表达。

4.6. 作为生物标志物的潜力

美国国家癌症研究所将生物标志物定义为“在血液、其他体液或组织中发现的生物分子,是正常或异常过程或病症或疾病的标志”,概述了作为生物标志物的几个基本特征。理想的生物标志物应该在血浆、唾液、尿液甚至外泌体等生物体中具有特异性、灵敏、可检测和可预测[61]。如前所述,circRNA符合这些标准。大量研究证实,与周围的正常组织相比,许多不同的circRNA在肿瘤中的表达异常,并且与临床肿瘤特征有关,例如位置、肿瘤大小和TNM分期[62]。迄今为止,许多circRNA已被确定为潜在的癌症诊断和预后生物标志物,无论是单独的还是与已知的癌症标志物协同的[63]。这些circRNA不仅在组织和细胞中稳定存在,而且在体液中(如血浆、血清、外泌体和尿液)中也稳定存在[64]。它们的丰度有助于在生物液体中检测它们。由于大多数circRNA可以在生物体液中检测到,因此液体活检已成为癌症管理、诊断和治疗指导的革命性工具。液体活检是一种实时、非侵入性的方法,用于早期肿瘤检测、局部恶性肿瘤以外的全面肿瘤表征以及疾病进展的动态监测[65]。液体活检与组织活检相结合,甚至可能在未来取代它[66]。临床研究已将circRNA应用于肿瘤的诊断和预后标志物,其中大多数仍处于“早期采用者”阶段。需要进行广泛的研究来建立不同癌症人群的circRNA表达模式,并确定可靠的诊断或预后生物标志物。

5. 肾细胞癌中的circRNA

5.1. 肾细胞癌的流行病学

肾细胞癌(RCC)是一种常见恶性肿瘤,在美国,男性的终生患病率估计为2.3%,女性的终生患病率为1.3% [67]。2023年,美国估计有81,800例新诊断的肾细胞癌病例,使其成为男性第六大常见癌症,女性第九大常见癌症[67]。2022年,全球共有434,840例肾细胞癌发病病例。RCC在欧洲、大洋洲和北美最常见[68],部分原因可能是腹部影像学检查中肾脏肿块的偶然检出率较高[69]-[71]。它是全球癌症相关死亡的第15大常见原因,2020年报告了超过179,000例死亡[68]。尽管从2015年到2019年,美国的RCC发病率每年增加约1%,但从2016年到2020年,美国的RCC死亡率每年下降约2%,部分原因是治疗的改进。

5.2. 肾细胞癌的病理亚型

肾细胞癌(RCC)病理亚型异质性显著,透明细胞肾细胞癌(ccRCC,占70%~80%)、乳头状肾细胞癌(pRCC, 10%~15%)、嫌色细胞肾细胞癌(chRCC, 5%~10%)为主要亚型[72]

5.3. circRNA在不同RCC病理亚型中的差异表达、功能特异性及与驱动基因突变的关联

周等人的研究揭示了环状RNA circGRAMD4调控NBR1的机制。circGRAMD4在肾细胞癌中显著升高,其高水平与不良预后相关。值得注意的是,circGRAMD4的缺失已被证明会显著抑制肾癌细胞的生长[73]。张等人的研究发现,circPVT1编码一个104个氨基酸的肽,称为cP104aa。功能测试表明,circPVT1和cP104aa肽在体外和体内均能增强肾细胞癌细胞的增殖、侵袭、迁移和肺转移[74]。王等人的研究发现circKCNK2的过表达能够促进破骨细胞的分化,并通过刺激IL-11分泌加速溶骨性骨转移的破坏。此外,我们观察到,circKCNK2表达水平高的肾细胞癌患者可能受益于抗IL-11策略而非基于地诺单抗的治疗方案[75]。王等人的研究发现环状RNA测序分析显示,ccRCC中circASAP1的表达显著升高,且其表达水平的升高与不良预后和转移存在显著关联[76]。郑等人的研究中,描述了一种新发现的环状RNA,名为circPPAP2B,其在高度侵袭性的ccRCC细胞中表达水平较高,这一结果是通过先进的高通量RNA测序技术得出的。此外,我们观察到在ccRCC组织中,尤其是转移性ccRCC组织中,circPPAP2B的表达水平升高,并且发现其与不良预后相关。功能实验揭示了circPPAP2B会积极刺激ccRCC细胞的增殖和转移能力[77]。姚等人的研究发现,环状ABCC4RNA,特别是包含外显子25~29的变异体(circABCC4e),在RCC细胞系和组织中均上调。这种上调与RCC患者的晚期肿瘤阶段相关,表明circABCC4e有可能作为RCC进展的生物标志物。此外,肿瘤切除后circABCC4e水平的降低表明其在监测治疗反应方面具有潜在用途[78]。杨等人的研究发现在RCC组织和细胞中,circ_0000069的水平异常升高。circ_0000069的敲除抑制了肾癌细胞的增殖、侵袭、迁移和谷氨酰胺代谢,并促进了细胞凋亡,同时在体外抑制了肿瘤的生长,在体内抑制了肿瘤的生长[79]。夏等人的研究发现ARL4C的敲低显著降低了肾细胞癌细胞的增殖,而环状RNA_000558的过表达能够显著诱导肾细胞癌细胞的增殖,在miR-1225-5p处理后,进一步增强了ARL4C敲低的抑制能力[80]。总的来说,这些结果表明circRNA可以作为RCC的新型诊断、治疗靶点和预后生物标志物。

6. circRNA作为RCC生物标志物的临床转化挑战与解决方案

circRNA最初被认为是mRNA剪接的副产品,随着生物和计算技术的进步,现已成为一类重要的非编码RNA。它们目前是各个生物学领域的广泛研究的主题,揭示了多种功能,包括充当miRNA海绵、调节亲本基因转录以及作为蛋白质翻译的模板。circRNA与一系列生理和病理过程有关,最近的证据表明它们参与肿瘤发生、癌细胞增殖、迁移和侵袭,在癌症发展中形成了一个关键网络。circRNA的稳定性、丰度、组织和发育特异性和可检测性使其成为癌症诊断和预后有前途的候选者。因此,许多研究已将circRNA应用于癌症的临床诊断和治疗。

然而,与其他非编码RNA相比,我们对circRNAs的认识还很浅,距离将circRNA应用于临床实践还很远。未来的研究应侧重于几个关键领域。首先,circRNA的形成、降解和功能的确切机制尚不清楚[81]。需要进一步的探索来充分阐明和加深我们对circRNA的理解。其次,我们缺乏识别、验证和检测临床circRNA的标准化方法。体液中circRNA的可靠检测方法至关重要。第三,由于大多数circRNA表达水平较低,无法准确检测,因此研究应重点提高circRNA检测的灵敏度和准确性。最后,大多数circRNA研究是单中心和回顾性的,验证和临床转化有限。前瞻性验证和对照临床试验对于将circRNA确立为可靠的生物标志物是必要的[82]

7. 结论与未来展望

circRNA的特性,如其独特的构象和稳定性,吸引了众多研究人员开发基于circRNA的技术[83] [84]。circRNA的高稳定性和特异性表达使其成为有前途的候选诊断和预后生物标志物。CircRNA可用于开发基于circRNA的适配体或传感器,以调节各种细胞内途径[85]。含有IRESs/m6A修饰的CircRNA是可翻译的,这意味着它们具有作为表达载体启动多种蛋白质生产的潜力。已经有一些专利证实了circRNA作为疫苗有效载体的作用。与线性RNA (mRNA)疫苗相比,circRNA疫苗表现出更高的稳定性和更低的降解敏感性。值得注意的是,在COVID-19大流行期间,科学家们开发了circRNA疫苗,旨在增强和更持久的抗原产生[86]

综上所述,circRNA是具共价闭环结构的非编码RNA,拥有稳定性高、时空表达特异、丰度高等特性,其通过多种机制调控肾细胞癌发生发展,如circGRAMD4促进癌细胞生长、circPVT1增强细胞转移能力。它可作为肾细胞癌诊断、预后的生物标志物及治疗靶点,未来在肿瘤诊疗与circRNA疫苗开发中也具重要潜力。

NOTES

*通讯作者。

参考文献

[1] Liu, Y., Ao, X., Yu, W., Zhang, Y. and Wang, J. (2022) Biogenesis, Functions, and Clinical Implications of Circular RNAs in Non-Small Cell Lung Cancer. Molecular Therapy Nucleic Acids, 27, 50-72. [Google Scholar] [CrossRef] [PubMed]
[2] Kolakofsky, D. (1976) Isolation and Characterization of Sendai Virus DI-RNAs. Cell, 8, 547-555. [Google Scholar] [CrossRef] [PubMed]
[3] Capel, B., Swain, A., Nicolis, S., Hacker, A., Walter, M., Koopman, P., et al. (1993) Circular Transcripts of the Testis-Determining Gene Sry in Adult Mouse Testis. Cell, 73, 1019-1030. [Google Scholar] [CrossRef] [PubMed]
[4] Schroeder, R., Breitenbach, M. and Schweyen, R.J. (1983) Mitochondria Circular RNAs Are Absent in Sporulating Cells Ofsaccharomyces Cerevisiae. Nucleic Acids Research, 11, 1735-1746. [Google Scholar] [CrossRef] [PubMed]
[5] Zhou, X., Ao, X., Jia, Z., Li, Y., Kuang, S., Du, C., et al. (2022) Non-Coding RNA in Cancer Drug Resistance: Underlying Mechanisms and Clinical Applications. Frontiers in Oncology, 12, Article 951864. [Google Scholar] [CrossRef] [PubMed]
[6] Hallajzadeh, J., Amirani, E., Mirzaei, H., Shafabakhsh, R., Mirhashemi, S.M., Sharifi, M., et al. (2020) Circular RNAs: New Genetic Tools in Melanoma. Biomarkers in Medicine, 14, 563-571. [Google Scholar] [CrossRef] [PubMed]
[7] Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013) Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature, 495, 333-338. [Google Scholar] [CrossRef] [PubMed]
[8] Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., et al. (2013) Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. RNA, 19, 141-157. [Google Scholar] [CrossRef] [PubMed]
[9] Du, W.W., Fang, L., Yang, W., Wu, N., Awan, F.M., Yang, Z., et al. (2017) Induction of Tumor Apoptosis through a Circular RNA Enhancing Foxo3 Activity. Cell Death & Differentiation, 24, 357-370. [Google Scholar] [CrossRef] [PubMed]
[10] Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., et al. (2017) Translation of CircRNAs. Molecular Cell, 66, 9-21.e7. [Google Scholar] [CrossRef] [PubMed]
[11] Chen, L.L. (2016) The Biogenesis and Emerging Roles of Circular RNAs. Nature Reviews Molecular Cell Biology, 17, 205-211. [Google Scholar] [CrossRef] [PubMed]
[12] Borran, S., Ahmadi, G., Rezaei, S., Anari, M.M., Modabberi, M., Azarash, Z., et al. (2020) Circular RNAs: New Players in Thyroid Cancer. PathologyResearch and Practice, 216, Article 153217. [Google Scholar] [CrossRef] [PubMed]
[13] Guarnerio, J., Bezzi, M., Jeong, J.C., Paffenholz, S.V., Berry, K., Naldini, M.M., et al. (2016) Oncogenic Role of Fusion-CircRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell, 166, 1055-1056. [Google Scholar] [CrossRef] [PubMed]
[14] Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015) Exon-intron Circular RNAs Regulate Transcription in the Nucleus. Nature Structural & Molecular Biology, 22, 256-264. [Google Scholar] [CrossRef] [PubMed]
[15] Zhang, X.O., Wang, H.B., Zhang, Y., et al. (2014) Complementary Sequence-Mediated Exon Circularization. Cell, 159, 134-147. [Google Scholar] [CrossRef] [PubMed]
[16] Wang, M., Yu, F. and Li, P. (2023) Noncoding RNAs as an Emerging Resistance Mechanism to Immunotherapies in Cancer: Basic Evidence and Therapeutic Implications. Frontiers in Immunology, 14, Article 1268745. [Google Scholar] [CrossRef] [PubMed]
[17] Guo, Y., Yang, J., Huang, Q., Hsueh, C., Zheng, J., Wu, C., et al. (2019) Circular RNAs and Their Roles in Head and Neck Cancers. Molecular Cancer, 18, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
[18] Zhang, Y., Zhang, X., Chen, T., Xiang, J., Yin, Q., Xing, Y., et al. (2013) Circular Intronic Long Noncoding RNAs. Molecular Cell, 51, 792-806. [Google Scholar] [CrossRef] [PubMed]
[19] Salzman, J., Gawad, C., Wang, P.L., Lacayo, N. and Brown, P.O. (2012) Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLOS ONE, 7, e30733. [Google Scholar] [CrossRef] [PubMed]
[20] Liang, D. and Wilusz, J.E. (2014) Short Intronic Repeat Sequences Facilitate Circular RNA Production. Genes & Development, 28, 2233-2247. [Google Scholar] [CrossRef] [PubMed]
[21] Li, H., Lan, T., Liu, H., Liu, C., Dai, J., Xu, L., et al. (2022) IL-6-Induced cGGNBP2 Encodes a Protein to Promote Cell Growth and Metastasis in Intrahepatic Cholangiocarcinoma. Hepatology, 75, 1402-1419.
[22] Zheng, Q., Bao, C., Guo, W., et al. (2016) Circular RNA Profiling Reveals an Abundant CircHIPK3 That Regulates Cell Growth by Sponging Multiple miRNAs. Nature Communications, 7, Article No. 11215. [Google Scholar] [CrossRef] [PubMed]
[23] Yang, T., Shen, P., Chen, Q., et al. (2021) FUS-Induced CircRHOBTB3 Facilitates Cell Proliferation via miR-600/NACC1 Mediated Autophagy Response in Pancreatic Ductal Adenocarcinoma. Journal of Experimental & Clinical Cancer Research, 40, Article 261. [Google Scholar] [CrossRef] [PubMed]
[24] Ma, S., Kong, S., Wang, F. and Ju, S. (2020) CircRNAs: Biogenesis, Functions, and Role in Drug-Resistant Tumours. Molecular Cancer, 19, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
[25] Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H.T., Orejuela, M.R., et al. (2015) Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Reports, 10, 170-177. [Google Scholar] [CrossRef] [PubMed]
[26] Lasda, E. and Parker, R. (2014) Circular RNAs: Diversity of Form and Function. RNA, 20, 1829-1842. [Google Scholar] [CrossRef] [PubMed]
[27] Pamudurti, N.R., Patop, I.L., Krishnamoorthy, A., Bartok, O., Maya, R., Lerner, N., et al. (2022) CircMbl Functions in Cis and in Trans to Regulate Gene Expression and Physiology in a Tissue-Specific Fashion. Cell Reports, 39, Article No. 110740. [Google Scholar] [CrossRef] [PubMed]
[28] Conn, S.J., Pillman, K.A., Toubia, J., Conn, V.M., Salmanidis, M., Phillips, C.A., et al. (2015) The RNA Binding Protein Quaking Regulates Formation of CircRNAs. Cell, 160, 1125-1134. [Google Scholar] [CrossRef] [PubMed]
[29] Xi, Y., Shen, Y., Wu, D., Zhang, J., Lin, C., Wang, L., et al. (2022) CircBCAR3 Accelerates Esophageal Cancer Tumorigenesis and Metastasis via Sponging miR-27a-3p. Molecular Cancer, 21, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
[30] Shen, Y., Zhang, N., Chai, J., Wang, T., Ma, C., Han, L., et al. (2023) Circpdia4 Induces Gastric Cancer Progression by Promoting ERK1/2 Activation and Enhancing Biogenesis of Oncogenic CircRNAs. Cancer Research, 83, 538-552. [Google Scholar] [CrossRef] [PubMed]
[31] Lu, Z., Filonov, G.S., Noto, J.J., Schmidt, C.A., Hatkevich, T.L., Wen, Y., et al. (2015) Metazoan tRNA Introns Generate Stable Circular RNAs in Vivo. RNA, 21, 1554-1565. [Google Scholar] [CrossRef] [PubMed]
[32] Shen, H., Liu, B., Xu, J., Zhang, B., Wang, Y., Shi, L., et al. (2021) Circular RNAs: Characteristics, Biogenesis, Mechanisms and Functions in Liver Cancer. Journal of Hematology & Oncology, 14, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
[33] Schmidt, C.A., Giusto, J.D., Bao, A., Hopper, A.K. and Matera, A.G. (2019) Molecular Determinants of Metazoan TricRNA Biogenesis. Nucleic Acids Research, 47, 6452-6465. [Google Scholar] [CrossRef] [PubMed]
[34] Enuka, Y., Lauriola, M., Feldman, M.E., Sas-Chen, A., Ulitsky, I. and Yarden, Y. (2016) Circular RNAs Are Long-Lived and Display Only Minimal Early Alterations in Response to a Growth Factor. Nucleic Acids Research, 44, 1370-1383. [Google Scholar] [CrossRef] [PubMed]
[35] Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J., et al. (2016) The Biogenesis of Nascent Circular RNAs. Cell Reports, 15, 611-624. [Google Scholar] [CrossRef] [PubMed]
[36] Jeck, W.R. and Sharpless, N.E. (2014) Detecting and Characterizing Circular RNAs. Nature Biotechnology, 32, 453-461. [Google Scholar] [CrossRef] [PubMed]
[37] Szabo, L., Morey, R., Palpant, N.J., Wang, P.L., Afari, N., Jiang, C., et al. (2015) Statistically Based Splicing Detection Reveals Neural Enrichment and Tissue-Specific Induction of Circular RNA during Human Fetal Development. Genome Biology, 16, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
[38] Li, X., Yang, L. and Chen, L.L. (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Molecular Cell, 71, 428-442. [Google Scholar] [CrossRef] [PubMed]
[39] Hanan, M., Soreq, H. and Kadener, S. (2016) CircRNAs in the Brain. RNA Biology, 14, 1028-1034. [Google Scholar] [CrossRef] [PubMed]
[40] Salzman, J., Chen, R.E., Olsen, M.N., Wang, P.L. and Brown, P.O. (2013) Cell-Type Specific Features of Circular RNA Expression. PLOS Genetics, 9, e1003777. [Google Scholar] [CrossRef] [PubMed]
[41] You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., et al. (2015) Neural Circular RNAs Are Derived from Synaptic Genes and Regulated by Development and Plasticity. Nature Neuroscience, 18, 603-610. [Google Scholar] [CrossRef] [PubMed]
[42] He, Y., Huang, H., Jin, L., Zhang, F., Zeng, M., Wei, L., et al. (2020) CircZNF609 Enhances Hepatocellular Carcinoma Cell Proliferation, Metastasis, and Stemness by Activating the Hedgehog Pathway through the Regulation of miR-15a-5p/15b-5p and GLI2 Expressions. Cell Death & Disease, 11, Article No. 358. [Google Scholar] [CrossRef] [PubMed]
[43] Jiang, X., Xing, L., Chen, Y., Qin, R., Song, S., Lu, Y., et al. (2021) CircMEG3 Inhibits Telomerase Activity by Reducing Cbf5 in Human Liver Cancer Stem Cells. Molecular TherapyNucleic Acids, 23, 310-323. [Google Scholar] [CrossRef] [PubMed]
[44] Venø, M.T., Hansen, T.B., Venø, S.T., Clausen, B.H., Grebing, M., Finsen, B., et al. (2015) Spatio-Temporal Regulation of Circular RNA Expression during Porcine Embryonic Brain Development. Genome Biology, 16, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
[45] Vo, J.N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., et al. (2019) The Landscape of Circular RNA in Cancer. Cell, 176, 869-881.e13. [Google Scholar] [CrossRef] [PubMed]
[46] Du, W.W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P. and Yang, B.B. (2016) Foxo3 Circular RNA Retards Cell Cycle Progression via Forming Ternary Complexes with P21 and CDK2. Nucleic Acids Research, 44, 2846-2858. [Google Scholar] [CrossRef] [PubMed]
[47] Li, X.X., Xiao, L., Chung, H.K., et al. (2020) Interaction between HuR and circPABPN1 Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. Molecular and Cellular Biology, 40, e00492-19. [Google Scholar] [CrossRef] [PubMed]
[48] Abdelmohsen, K., Panda, A.C., Munk, R., Grammatikakis, I., Dudekula, D.B., De, S., et al. (2017) Identification of Hur Target Circular RNAs Uncovers Suppression of PABPN1 Translation by CircPABPN1. RNA Biology, 14, 361-369. [Google Scholar] [CrossRef] [PubMed]
[49] Holdt, L.M., Stahringer, A., Sass, K., Pichler, G., Kulak, N.A., Wilfert, W., et al. (2016) Circular Non-Coding RNA ANRIL Modulates Ribosomal RNA Maturation and Atherosclerosis in Humans. Nature Communications, 7, Article No. 12429. [Google Scholar] [CrossRef] [PubMed]
[50] Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., et al. (2017) Loss of a Mammalian Circular RNA Locus Causes miRNA Deregulation and Affects Brain Function. Science, 357.
[51] Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., et al. (2013) Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature, 495, 384-388. [Google Scholar] [CrossRef] [PubMed]
[52] Rupaimoole, R., Calin, G.A., Lopez-Berestein, G. and Sood, A.K. (2016) miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 6, 235-246. [Google Scholar] [CrossRef] [PubMed]
[53] Kohlhapp, F.J., Mitra, A.K., Lengyel, E. and Peter, M.E. (2015) MicroRNAs as Mediators and Communicators between Cancer Cells and the Tumor Microenvironment. Oncogene, 34, 5857-5868. [Google Scholar] [CrossRef] [PubMed]
[54] Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017) Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Research, 27, 626-641. [Google Scholar] [CrossRef] [PubMed]
[55] Liang, W.C., Wong, C.W., Liang, P.P., et al. (2019) Translation of the Circular RNA Circβ-Catenin Promotes Liver Cancer Cell Growth through Activation of the Wnt Pathway. Genome Biology, 20, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
[56] Legnini, I., Di Timoteo, G., Rossi, F., Morlando, M., Briganti, F., Sthandier, O., et al. (2017) Circ-ZNF609 Is a Circular RNA That Can Be Translated and Functions in Myogenesis. Molecular Cell, 66, 22-37. [Google Scholar] [CrossRef] [PubMed]
[57] Zhang, Z., Carriero, N. and Gerstein, M. (2004) Comparative Analysis of Processed Pseudogenes in the Mouse and Human Genomes. Trends in Genetics, 20, 62-67. [Google Scholar] [CrossRef] [PubMed]
[58] Zhang, Z.L., Harrison, P.M., Liu, Y., et al. (2003) Millions of Years of Evolution Preserved: A Comprehensive Catalog of the Processed Pseudogenes in the Human Genome. Genome Research, 13, 2541-2558. [Google Scholar] [CrossRef] [PubMed]
[59] Dong, R., Zhang, X.O., Zhang, Y., et al. (2016) CircRNA-Derived Pseudogenes. Cell Research, 26, 747-750. [Google Scholar] [CrossRef] [PubMed]
[60] Conn, V.M., Hugouvieux, V., Nayak, A., Conos, S.A., Capovilla, G., Cildir, G., et al. (2017) A CircRNA from SEPALLATA3 Regulates Splicing of Its Cognate mRNA through R-Loop Formation. Nature Plants, 3, Article 17053. [Google Scholar] [CrossRef] [PubMed]
[61] Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015) Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Research, 25, 981-984. [Google Scholar] [CrossRef] [PubMed]
[62] Jing, Y., Shang-Guan, H.C., Cai, J., et al. (2025) Hsa_circ 0059511 Promote Glioma Cell Proliferation and Migration through Hsa-miR-194-5p/HBEGF Axis. Cancer Cell International, 25, 219.
[63] Weng, W., Wei, Q., Toden, S., Yoshida, K., Nagasaka, T., Fujiwara, T., et al. (2017) Circular RNA ciRS-7—A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clinical Cancer Research, 23, 3918-3928. [Google Scholar] [CrossRef] [PubMed]
[64] Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D. and Lawrie, C.H. (2019) CircRNAs and Cancer: Biomarkers and Master Regulators. Seminars in Cancer Biology, 58, 90-99. [Google Scholar] [CrossRef] [PubMed]
[65] Heitzer, E., Haque, I.S., Roberts, C.E.S. and Speicher, M.R. (2019) Current and Future Perspectives of Liquid Biopsies in Genomics-Driven Oncology. Nature Reviews Genetics, 20, 71-88. [Google Scholar] [CrossRef] [PubMed]
[66] Wang, S., Zhang, K., Tan, S., Xin, J., Yuan, Q., Xu, H., et al. (2021) Circular RNAs in Body Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Molecular Cancer, 20, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
[67] Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
[68] GBD 2023 Disease and Injury and Risk Factor Collaborators (2025) Burden of 375 Diseases and Injuries, Risk-Attributable Burden of 88 Risk Factors, and Healthy Life Expectancy in 204 Countries and Territories, Including 660 Subnational Locations, 1990-2023: A Systematic Analysis for the Global Burden of Disease Study 2023. The Lancet, 406, 1873-922.
[69] Vasudev, N.S., Wilson, M., Stewart, G.D., Adeyoju, A., Cartledge, J., Kimuli, M., et al. (2020) Challenges of Early Renal Cancer Detection: Symptom Patterns and Incidental Diagnosis Rate in a Multi-Centre Prospective UK Cohort of Patients Presenting with Suspected Renal Cancer. BMJ Open, 10, e035938. [Google Scholar] [CrossRef] [PubMed]
[70] Campbell, S.C. (2020) Commentary RE: Increased Incidence of Serendipitously Discovered Renal Cell Carcinoma. Urology, 145, Article 333. [Google Scholar] [CrossRef] [PubMed]
[71] Gudbjartsson, T., Thoroddsen, A., Petursdottir, V., Hardarson, S., Magnusson, J. and Einarsson, G.V. (2005) Effect of Incidental Detection for Survival of Patients with Renal Cell Carcinoma: Results of Population-Based Study of 701 Patients. Urology, 66, 1186-1191. [Google Scholar] [CrossRef] [PubMed]
[72] Bahadoram, S., Davoodi, M., Hassanzadeh, S., et al. (2022) Renal Cell Carcinoma: An Overview of the Epidemiology, Diagnosis, and Treatment. The Italian Journal of Nephrology, 39, 2022-vol3.
[73] Zhou, M., Chen, M., Zheng, Z., Li, Q., Liao, L., Wang, Y., et al. (2025) CircRNA GRAMD4 Induces NBR1 Expression to Promote Autophagy and Immune Escape in Renal Cell Carcinoma. Autophagy, 21, 2332-2352. [Google Scholar] [CrossRef] [PubMed]
[74] Zhang, H., Tao, T., Ji, J., Zhao, T., Sun, S., Zhang, L., et al. (2025) CircPVT1 Promotes Lung Metastasis and Tumor Progression in Renal Cell Carcinoma by Encoding the cP104aa Peptide and Targeting EIF4A3. Advanced Science, 2025, e01211. [Google Scholar] [CrossRef
[75] Wang, Y., Zhao, D., Lu, J., Hou, N., Wu, Q., Zhou, S., et al. (2025) The Molecular Axis hnRNPU/circKCNK2/EDC4/IL-11 Aggravates Osteolytic Bone Metastasis of RCC. Oncogene, 44, 3310-3332. [Google Scholar] [CrossRef] [PubMed]
[76] Wang, Y., Yang, T., Li, Q., Zheng, Z., Liao, L., Cen, J., et al. (2025) Circasap1 Induces Renal Clear Cell Carcinoma Ferroptosis by Binding to HNRNPC and Thereby Regulating GPX4. Molecular Cancer, 24, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
[77] Zheng, Z., Zeng, X., Zhu, Y., Leng, M., Zhang, Z., Wang, Q., et al. (2024) CircPPAP2B Controls Metastasis of Clear Cell Renal Cell Carcinoma via HNRNPC-Dependent Alternative Splicing and Targeting the miR-182-5p/Cyp1b1 Axis. Molecular Cancer, 23, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[78] Yao, Y., Wang, T., Li, S., Song, Q. and Yuan, K. (2024) Circular RNA Circabcc4 as the Cerna Facilitates Renal Carcinoma Progression. World Journal of Urology, 42, Article No. 607. [Google Scholar] [CrossRef] [PubMed]
[79] Yang, L., Wang, L., Wu, J. and Wang, Y. (2023) Circ_0000069 Contributes to the Growth, Metastasis and Glutamine Metabolism in Renal Cell Carcinoma (RCC) via Regulating miR-125a-5p-Dependent SLC1A5 Expression. Transplant Immunology, 77, Article 101764. [Google Scholar] [CrossRef] [PubMed]
[80] Xia, L., Ge, M., Shan, G., Qian, H. and Xia, Y. (2023) The Effects of Circ_000558/miR-1225-5p/ARL4c on Regulating the Proliferation of Renal Cell Carcinoma Cells. Journal of Oncology, 2023, 1-12. [Google Scholar] [CrossRef] [PubMed]
[81] Wang, J., Li, X., Lu, L., He, L., Hu, H. and Xu, Z. (2018) Circular RNA Hsa_circ_0000567 Can Be Used as a Promising Diagnostic Biomarker for Human Colorectal Cancer. Journal of Clinical Laboratory Analysis, 32, e22379. [Google Scholar] [CrossRef] [PubMed]
[82] Zhang, J., Luo, Z., Zheng, Y., Duan, M., Qiu, Z. and Huang, C. (2024) CircRNA as an Achilles Heel of Cancer: Characterization, Biomarker and Therapeutic Modalities. Journal of Translational Medicine, 22, Article No. 752. [Google Scholar] [CrossRef] [PubMed]
[83] Liu, Y., Wang, Y., Li, X., Jia, Y., Wang, J. and Ao, X. (2022) FOXO3a in Cancer Drug Resistance. Cancer Letters, 540, Article 215724. [Google Scholar] [CrossRef] [PubMed]
[84] Liu, Y., Li, X., Zhou, X., Wang, J. and Ao, X. (2022) FADD as a Key Molecular Player in Cancer Progression. Molecular Medicine, 28, Article No. 132. [Google Scholar] [CrossRef] [PubMed]
[85] Litke, J.L. and Jaffrey, S.R. (2019) Highly Efficient Expression of Circular RNA Aptamers in Cells Using Autocatalytic Transcripts. Nature Biotechnology, 37, 667-675. [Google Scholar] [CrossRef] [PubMed]
[86] Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., et al. (2022) Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants. Cell, 185, 1728-1744.e16. [Google Scholar] [CrossRef] [PubMed]