|
[1]
|
Liu, Y., Ao, X., Yu, W., Zhang, Y. and Wang, J. (2022) Biogenesis, Functions, and Clinical Implications of Circular RNAs in Non-Small Cell Lung Cancer. Molecular Therapy Nucleic Acids, 27, 50-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kolakofsky, D. (1976) Isolation and Characterization of Sendai Virus DI-RNAs. Cell, 8, 547-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Capel, B., Swain, A., Nicolis, S., Hacker, A., Walter, M., Koopman, P., et al. (1993) Circular Transcripts of the Testis-Determining Gene Sry in Adult Mouse Testis. Cell, 73, 1019-1030. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schroeder, R., Breitenbach, M. and Schweyen, R.J. (1983) Mitochondria Circular RNAs Are Absent in Sporulating Cells Ofsaccharomyces Cerevisiae. Nucleic Acids Research, 11, 1735-1746. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhou, X., Ao, X., Jia, Z., Li, Y., Kuang, S., Du, C., et al. (2022) Non-Coding RNA in Cancer Drug Resistance: Underlying Mechanisms and Clinical Applications. Frontiers in Oncology, 12, Article 951864. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hallajzadeh, J., Amirani, E., Mirzaei, H., Shafabakhsh, R., Mirhashemi, S.M., Sharifi, M., et al. (2020) Circular RNAs: New Genetic Tools in Melanoma. Biomarkers in Medicine, 14, 563-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013) Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature, 495, 333-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., et al. (2013) Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. RNA, 19, 141-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Du, W.W., Fang, L., Yang, W., Wu, N., Awan, F.M., Yang, Z., et al. (2017) Induction of Tumor Apoptosis through a Circular RNA Enhancing Foxo3 Activity. Cell Death & Differentiation, 24, 357-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., et al. (2017) Translation of CircRNAs. Molecular Cell, 66, 9-21.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, L.L. (2016) The Biogenesis and Emerging Roles of Circular RNAs. Nature Reviews Molecular Cell Biology, 17, 205-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Borran, S., Ahmadi, G., Rezaei, S., Anari, M.M., Modabberi, M., Azarash, Z., et al. (2020) Circular RNAs: New Players in Thyroid Cancer. Pathology—Research and Practice, 216, Article 153217. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guarnerio, J., Bezzi, M., Jeong, J.C., Paffenholz, S.V., Berry, K., Naldini, M.M., et al. (2016) Oncogenic Role of Fusion-CircRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell, 166, 1055-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015) Exon-intron Circular RNAs Regulate Transcription in the Nucleus. Nature Structural & Molecular Biology, 22, 256-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, X.O., Wang, H.B., Zhang, Y., et al. (2014) Complementary Sequence-Mediated Exon Circularization. Cell, 159, 134-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, M., Yu, F. and Li, P. (2023) Noncoding RNAs as an Emerging Resistance Mechanism to Immunotherapies in Cancer: Basic Evidence and Therapeutic Implications. Frontiers in Immunology, 14, Article 1268745. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Guo, Y., Yang, J., Huang, Q., Hsueh, C., Zheng, J., Wu, C., et al. (2019) Circular RNAs and Their Roles in Head and Neck Cancers. Molecular Cancer, 18, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, Y., Zhang, X., Chen, T., Xiang, J., Yin, Q., Xing, Y., et al. (2013) Circular Intronic Long Noncoding RNAs. Molecular Cell, 51, 792-806. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Salzman, J., Gawad, C., Wang, P.L., Lacayo, N. and Brown, P.O. (2012) Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLOS ONE, 7, e30733. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liang, D. and Wilusz, J.E. (2014) Short Intronic Repeat Sequences Facilitate Circular RNA Production. Genes & Development, 28, 2233-2247. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, H., Lan, T., Liu, H., Liu, C., Dai, J., Xu, L., et al. (2022) IL-6-Induced cGGNBP2 Encodes a Protein to Promote Cell Growth and Metastasis in Intrahepatic Cholangiocarcinoma. Hepatology, 75, 1402-1419.
|
|
[22]
|
Zheng, Q., Bao, C., Guo, W., et al. (2016) Circular RNA Profiling Reveals an Abundant CircHIPK3 That Regulates Cell Growth by Sponging Multiple miRNAs. Nature Communications, 7, Article No. 11215. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, T., Shen, P., Chen, Q., et al. (2021) FUS-Induced CircRHOBTB3 Facilitates Cell Proliferation via miR-600/NACC1 Mediated Autophagy Response in Pancreatic Ductal Adenocarcinoma. Journal of Experimental & Clinical Cancer Research, 40, Article 261. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ma, S., Kong, S., Wang, F. and Ju, S. (2020) CircRNAs: Biogenesis, Functions, and Role in Drug-Resistant Tumours. Molecular Cancer, 19, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H.T., Orejuela, M.R., et al. (2015) Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Reports, 10, 170-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lasda, E. and Parker, R. (2014) Circular RNAs: Diversity of Form and Function. RNA, 20, 1829-1842. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Pamudurti, N.R., Patop, I.L., Krishnamoorthy, A., Bartok, O., Maya, R., Lerner, N., et al. (2022) CircMbl Functions in Cis and in Trans to Regulate Gene Expression and Physiology in a Tissue-Specific Fashion. Cell Reports, 39, Article No. 110740. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Conn, S.J., Pillman, K.A., Toubia, J., Conn, V.M., Salmanidis, M., Phillips, C.A., et al. (2015) The RNA Binding Protein Quaking Regulates Formation of CircRNAs. Cell, 160, 1125-1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xi, Y., Shen, Y., Wu, D., Zhang, J., Lin, C., Wang, L., et al. (2022) CircBCAR3 Accelerates Esophageal Cancer Tumorigenesis and Metastasis via Sponging miR-27a-3p. Molecular Cancer, 21, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shen, Y., Zhang, N., Chai, J., Wang, T., Ma, C., Han, L., et al. (2023) Circpdia4 Induces Gastric Cancer Progression by Promoting ERK1/2 Activation and Enhancing Biogenesis of Oncogenic CircRNAs. Cancer Research, 83, 538-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lu, Z., Filonov, G.S., Noto, J.J., Schmidt, C.A., Hatkevich, T.L., Wen, Y., et al. (2015) Metazoan tRNA Introns Generate Stable Circular RNAs in Vivo. RNA, 21, 1554-1565. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shen, H., Liu, B., Xu, J., Zhang, B., Wang, Y., Shi, L., et al. (2021) Circular RNAs: Characteristics, Biogenesis, Mechanisms and Functions in Liver Cancer. Journal of Hematology & Oncology, 14, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Schmidt, C.A., Giusto, J.D., Bao, A., Hopper, A.K. and Matera, A.G. (2019) Molecular Determinants of Metazoan TricRNA Biogenesis. Nucleic Acids Research, 47, 6452-6465. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Enuka, Y., Lauriola, M., Feldman, M.E., Sas-Chen, A., Ulitsky, I. and Yarden, Y. (2016) Circular RNAs Are Long-Lived and Display Only Minimal Early Alterations in Response to a Growth Factor. Nucleic Acids Research, 44, 1370-1383. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J., et al. (2016) The Biogenesis of Nascent Circular RNAs. Cell Reports, 15, 611-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jeck, W.R. and Sharpless, N.E. (2014) Detecting and Characterizing Circular RNAs. Nature Biotechnology, 32, 453-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Szabo, L., Morey, R., Palpant, N.J., Wang, P.L., Afari, N., Jiang, C., et al. (2015) Statistically Based Splicing Detection Reveals Neural Enrichment and Tissue-Specific Induction of Circular RNA during Human Fetal Development. Genome Biology, 16, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, X., Yang, L. and Chen, L.L. (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Molecular Cell, 71, 428-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hanan, M., Soreq, H. and Kadener, S. (2016) CircRNAs in the Brain. RNA Biology, 14, 1028-1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Salzman, J., Chen, R.E., Olsen, M.N., Wang, P.L. and Brown, P.O. (2013) Cell-Type Specific Features of Circular RNA Expression. PLOS Genetics, 9, e1003777. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., et al. (2015) Neural Circular RNAs Are Derived from Synaptic Genes and Regulated by Development and Plasticity. Nature Neuroscience, 18, 603-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
He, Y., Huang, H., Jin, L., Zhang, F., Zeng, M., Wei, L., et al. (2020) CircZNF609 Enhances Hepatocellular Carcinoma Cell Proliferation, Metastasis, and Stemness by Activating the Hedgehog Pathway through the Regulation of miR-15a-5p/15b-5p and GLI2 Expressions. Cell Death & Disease, 11, Article No. 358. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Jiang, X., Xing, L., Chen, Y., Qin, R., Song, S., Lu, Y., et al. (2021) CircMEG3 Inhibits Telomerase Activity by Reducing Cbf5 in Human Liver Cancer Stem Cells. Molecular Therapy—Nucleic Acids, 23, 310-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Venø, M.T., Hansen, T.B., Venø, S.T., Clausen, B.H., Grebing, M., Finsen, B., et al. (2015) Spatio-Temporal Regulation of Circular RNA Expression during Porcine Embryonic Brain Development. Genome Biology, 16, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Vo, J.N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., et al. (2019) The Landscape of Circular RNA in Cancer. Cell, 176, 869-881.e13. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Du, W.W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P. and Yang, B.B. (2016) Foxo3 Circular RNA Retards Cell Cycle Progression via Forming Ternary Complexes with P21 and CDK2. Nucleic Acids Research, 44, 2846-2858. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, X.X., Xiao, L., Chung, H.K., et al. (2020) Interaction between HuR and circPABPN1 Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. Molecular and Cellular Biology, 40, e00492-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Abdelmohsen, K., Panda, A.C., Munk, R., Grammatikakis, I., Dudekula, D.B., De, S., et al. (2017) Identification of Hur Target Circular RNAs Uncovers Suppression of PABPN1 Translation by CircPABPN1. RNA Biology, 14, 361-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Holdt, L.M., Stahringer, A., Sass, K., Pichler, G., Kulak, N.A., Wilfert, W., et al. (2016) Circular Non-Coding RNA ANRIL Modulates Ribosomal RNA Maturation and Atherosclerosis in Humans. Nature Communications, 7, Article No. 12429. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., et al. (2017) Loss of a Mammalian Circular RNA Locus Causes miRNA Deregulation and Affects Brain Function. Science, 357.
|
|
[51]
|
Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., et al. (2013) Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature, 495, 384-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Rupaimoole, R., Calin, G.A., Lopez-Berestein, G. and Sood, A.K. (2016) miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 6, 235-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kohlhapp, F.J., Mitra, A.K., Lengyel, E. and Peter, M.E. (2015) MicroRNAs as Mediators and Communicators between Cancer Cells and the Tumor Microenvironment. Oncogene, 34, 5857-5868. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017) Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Research, 27, 626-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liang, W.C., Wong, C.W., Liang, P.P., et al. (2019) Translation of the Circular RNA Circβ-Catenin Promotes Liver Cancer Cell Growth through Activation of the Wnt Pathway. Genome Biology, 20, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Legnini, I., Di Timoteo, G., Rossi, F., Morlando, M., Briganti, F., Sthandier, O., et al. (2017) Circ-ZNF609 Is a Circular RNA That Can Be Translated and Functions in Myogenesis. Molecular Cell, 66, 22-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhang, Z., Carriero, N. and Gerstein, M. (2004) Comparative Analysis of Processed Pseudogenes in the Mouse and Human Genomes. Trends in Genetics, 20, 62-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, Z.L., Harrison, P.M., Liu, Y., et al. (2003) Millions of Years of Evolution Preserved: A Comprehensive Catalog of the Processed Pseudogenes in the Human Genome. Genome Research, 13, 2541-2558. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Dong, R., Zhang, X.O., Zhang, Y., et al. (2016) CircRNA-Derived Pseudogenes. Cell Research, 26, 747-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Conn, V.M., Hugouvieux, V., Nayak, A., Conos, S.A., Capovilla, G., Cildir, G., et al. (2017) A CircRNA from SEPALLATA3 Regulates Splicing of Its Cognate mRNA through R-Loop Formation. Nature Plants, 3, Article 17053. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015) Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Research, 25, 981-984. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Jing, Y., Shang-Guan, H.C., Cai, J., et al. (2025) Hsa_circ 0059511 Promote Glioma Cell Proliferation and Migration through Hsa-miR-194-5p/HBEGF Axis. Cancer Cell International, 25, 219.
|
|
[63]
|
Weng, W., Wei, Q., Toden, S., Yoshida, K., Nagasaka, T., Fujiwara, T., et al. (2017) Circular RNA ciRS-7—A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clinical Cancer Research, 23, 3918-3928. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D. and Lawrie, C.H. (2019) CircRNAs and Cancer: Biomarkers and Master Regulators. Seminars in Cancer Biology, 58, 90-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Heitzer, E., Haque, I.S., Roberts, C.E.S. and Speicher, M.R. (2019) Current and Future Perspectives of Liquid Biopsies in Genomics-Driven Oncology. Nature Reviews Genetics, 20, 71-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wang, S., Zhang, K., Tan, S., Xin, J., Yuan, Q., Xu, H., et al. (2021) Circular RNAs in Body Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Molecular Cancer, 20, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
GBD 2023 Disease and Injury and Risk Factor Collaborators (2025) Burden of 375 Diseases and Injuries, Risk-Attributable Burden of 88 Risk Factors, and Healthy Life Expectancy in 204 Countries and Territories, Including 660 Subnational Locations, 1990-2023: A Systematic Analysis for the Global Burden of Disease Study 2023. The Lancet, 406, 1873-922.
|
|
[69]
|
Vasudev, N.S., Wilson, M., Stewart, G.D., Adeyoju, A., Cartledge, J., Kimuli, M., et al. (2020) Challenges of Early Renal Cancer Detection: Symptom Patterns and Incidental Diagnosis Rate in a Multi-Centre Prospective UK Cohort of Patients Presenting with Suspected Renal Cancer. BMJ Open, 10, e035938. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Campbell, S.C. (2020) Commentary RE: Increased Incidence of Serendipitously Discovered Renal Cell Carcinoma. Urology, 145, Article 333. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Gudbjartsson, T., Thoroddsen, A., Petursdottir, V., Hardarson, S., Magnusson, J. and Einarsson, G.V. (2005) Effect of Incidental Detection for Survival of Patients with Renal Cell Carcinoma: Results of Population-Based Study of 701 Patients. Urology, 66, 1186-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Bahadoram, S., Davoodi, M., Hassanzadeh, S., et al. (2022) Renal Cell Carcinoma: An Overview of the Epidemiology, Diagnosis, and Treatment. The Italian Journal of Nephrology, 39, 2022-vol3.
|
|
[73]
|
Zhou, M., Chen, M., Zheng, Z., Li, Q., Liao, L., Wang, Y., et al. (2025) CircRNA GRAMD4 Induces NBR1 Expression to Promote Autophagy and Immune Escape in Renal Cell Carcinoma. Autophagy, 21, 2332-2352. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Zhang, H., Tao, T., Ji, J., Zhao, T., Sun, S., Zhang, L., et al. (2025) CircPVT1 Promotes Lung Metastasis and Tumor Progression in Renal Cell Carcinoma by Encoding the cP104aa Peptide and Targeting EIF4A3. Advanced Science, 2025, e01211. [Google Scholar] [CrossRef]
|
|
[75]
|
Wang, Y., Zhao, D., Lu, J., Hou, N., Wu, Q., Zhou, S., et al. (2025) The Molecular Axis hnRNPU/circKCNK2/EDC4/IL-11 Aggravates Osteolytic Bone Metastasis of RCC. Oncogene, 44, 3310-3332. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Wang, Y., Yang, T., Li, Q., Zheng, Z., Liao, L., Cen, J., et al. (2025) Circasap1 Induces Renal Clear Cell Carcinoma Ferroptosis by Binding to HNRNPC and Thereby Regulating GPX4. Molecular Cancer, 24, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Zheng, Z., Zeng, X., Zhu, Y., Leng, M., Zhang, Z., Wang, Q., et al. (2024) CircPPAP2B Controls Metastasis of Clear Cell Renal Cell Carcinoma via HNRNPC-Dependent Alternative Splicing and Targeting the miR-182-5p/Cyp1b1 Axis. Molecular Cancer, 23, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Yao, Y., Wang, T., Li, S., Song, Q. and Yuan, K. (2024) Circular RNA Circabcc4 as the Cerna Facilitates Renal Carcinoma Progression. World Journal of Urology, 42, Article No. 607. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Yang, L., Wang, L., Wu, J. and Wang, Y. (2023) Circ_0000069 Contributes to the Growth, Metastasis and Glutamine Metabolism in Renal Cell Carcinoma (RCC) via Regulating miR-125a-5p-Dependent SLC1A5 Expression. Transplant Immunology, 77, Article 101764. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Xia, L., Ge, M., Shan, G., Qian, H. and Xia, Y. (2023) The Effects of Circ_000558/miR-1225-5p/ARL4c on Regulating the Proliferation of Renal Cell Carcinoma Cells. Journal of Oncology, 2023, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Wang, J., Li, X., Lu, L., He, L., Hu, H. and Xu, Z. (2018) Circular RNA Hsa_circ_0000567 Can Be Used as a Promising Diagnostic Biomarker for Human Colorectal Cancer. Journal of Clinical Laboratory Analysis, 32, e22379. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Zhang, J., Luo, Z., Zheng, Y., Duan, M., Qiu, Z. and Huang, C. (2024) CircRNA as an Achilles Heel of Cancer: Characterization, Biomarker and Therapeutic Modalities. Journal of Translational Medicine, 22, Article No. 752. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Liu, Y., Wang, Y., Li, X., Jia, Y., Wang, J. and Ao, X. (2022) FOXO3a in Cancer Drug Resistance. Cancer Letters, 540, Article 215724. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Liu, Y., Li, X., Zhou, X., Wang, J. and Ao, X. (2022) FADD as a Key Molecular Player in Cancer Progression. Molecular Medicine, 28, Article No. 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Litke, J.L. and Jaffrey, S.R. (2019) Highly Efficient Expression of Circular RNA Aptamers in Cells Using Autocatalytic Transcripts. Nature Biotechnology, 37, 667-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., et al. (2022) Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants. Cell, 185, 1728-1744.e16. [Google Scholar] [CrossRef] [PubMed]
|