基因和细胞疗法在心脏修复的应用
The Application of Gene and Cell Therapies in Cardiac Repair
DOI: 10.12677/acm.2025.15123503, PDF, HTML, XML,    国家自然科学基金支持
作者: 刘思源, 陈美桦, 张 宁*, 周斌全*:浙江大学医学院附属邵逸夫医院心内科,浙江 杭州;全省心血管介入与精准诊治重点实验室,浙江 杭州;心血管创新器械浙江省工程研究中心,浙江 杭州
关键词: 基因和细胞疗法缺血性心脏病Gene and Cell Therapies Ischemic Heart Disease
摘要: 缺血性心脏病是全球主要致死原因,亟需创新疗法促进心肌修复与再生。基因和细胞疗法(gene and cell therapies, GCTs)是通过提供改变目标基因表达的遗传物质来治疗疾病。基于基因疗法结合递送平台可实现治疗性核酸的靶向心肌损伤部位持续表达。基于细胞疗法结合递送平台能促进治疗性细胞、细胞外囊泡和细胞膜衍生囊泡在心肌损伤部位中的定植与整合。本综述整合了这些最新进展,既解决了现有局限性,又深入探讨了基因和细胞疗法在优化心脏修复与再生方面的变革潜力,最终为改善缺血性心脏病的临床治疗效果开辟了新路径。
Abstract: Ischemic heart disease remains a leading cause of mortality worldwide, necessitating the development of innovative therapeutic strategies to promote myocardial repair and regeneration. Gene and cell therapies (GCTs) offer a promising approach by delivering genetic materials capable of modulating the expression of target genes. When combined with advanced delivery platforms, gene therapy enables sustained and targeted expression of therapeutic nucleic acids in injured myocardial tissues. Similarly, cell-based therapies—through the delivery of therapeutic cells, extracellular vesicles, or cell membrane-derived vesicles—facilitate enhanced engraftment and integration at the site of cardiac injury. This review synthesizes recent advances in these fields, addressing current limitations while critically examining the transformative potential of GCTs in optimizing cardiac repair and regeneration. Collectively, these developments pave the way for improved clinical outcomes in ischemic heart disease.
文章引用:刘思源, 陈美桦, 张宁, 周斌全. 基因和细胞疗法在心脏修复的应用[J]. 临床医学进展, 2025, 15(12): 1055-1064. https://doi.org/10.12677/acm.2025.15123503

1. 引言

缺血性心脏病常常导致心肌细胞死亡、心脏功能障碍,甚至心力衰竭。长期占据全球疾病负担的前列,并增长迅速[1]。由于心肌细胞再生能力低下,目前的治疗手段仅局限于血运重建减少心肌损伤范围,而对损伤心肌的增殖修复始终无法调控。因此,针对缺血性心脏病的治疗模式必须拓展至采用创新疗法调控心肌的增殖修复。基因和细胞疗法的研发至关重要,其针对疾病的遗传和分子驱动因素,体现了精准医学。

得益于生物材料与纳米技术的突破,基因和细胞疗法近期的创新成果催生出可定制化的递送平台。这些平台能精准调控药物递送动力学特征及组织特异性靶向,从而实现心肌组织的精准靶向。这一突破性进展不仅完善了现有药物治疗与血运重建治疗体系,更为新型治疗手段的整合应用开辟了新路径。

本综述聚焦于基因和细胞疗法在心肌增殖修复领域的研究进展。通过整合前沿研究成果,旨在全面阐述如何利用基因和细胞疗法实现心肌增殖修复的机遇与挑战。

2. 基因和细胞疗法

2.1. 基因疗法

心脏组织的靶向治疗面临重大挑战,这源于心脏特异性受体的匮乏,导致生物分布效果欠佳。虽然内源性生物活性分子在心脏稳态中起着关键作用,但当出现心肌梗死等病理状态时,这些分子的失调现象以及终末分化心肌细胞活性下降,都需要进行治疗干预。人类基因组的解析[2]为识别心脏修复与再生的关键遗传决定因素提供了便利,通过核酸类治疗手段实现细胞重编程,为治疗开辟了新途径。

2.1.1. DNA疗法

在心血管研究领域,复制缺陷型腺病毒(Replication-Deficient Adenoviral Vectors)载体展现出卓越的基因递送效率,其在猪心肌组织中的基因转导效率比质粒DNA高出14万倍[3]。此外,通过腺病毒载体递送cyclin A2 (Ccna2)在心肌梗死后恢复期具有显著治疗潜力,不仅能促进心肌细胞分裂,还能通过减少纤维化和改善左心室功能参数来提升心脏功能[4]

腺相关病毒(Adeno-associated virus, AAV)凭借其低免疫原性和无致病性优势,已成为主流病毒载体平台[5]。研究人员通过AAV9载体递送钙稳态和线粒体功能关键调控因子S100A1,在心肌梗死后模型中观察到S100A1表达水平稳定、左心室重构逆转及预后改善[6]

细胞直接重编程技术已成为攻克心脏修复领域心肌细胞替代难题的革命性方案。研究人员通过逆转录病毒(Retroviral)载体递送关键发育转录因子,成功在动物模型中实现了心肌成纤维细胞向功能性心肌细胞的转分化,并展现出纤维化减轻和心脏功能改善的疗效[7]

虽然病毒载体具有更高的转导效率,但其临床应用仍面临诸多限制,包括免疫原性、插入突变风险及生产复杂性[8]。研究人员对VEGF基因递送系统的比较分析表明,质粒载体在血管生成效果上与腺病毒载体相当[9]。病毒载体与质粒载体在递送效率上的差异,可能源于宿主特异性因素、治疗时机参数和生产流程等因素,这些因素值得系统研究,以优化基因递送平台的临床应用。

直接注射裸质粒DNA是一种简便的基因递送方法。研究证实,质粒DNA可实现至少两个月的稳定染色体外表达,其效果优于线性DNA [10]。后续临床试验验证了裸露VEGF质粒DNA治疗冠心病的安全性和促血管生成效果[11]

心肌梗死后内源性基质细胞衍生因子1 (Stromal Cell-Derived Factor 1, SDF-1)短暂表达,促进细胞存活和血管生成[12]。研究人员发现,在大鼠心肌梗死模型中,通过心肌内递送SDF-1质粒可维持长达一个月的表达,能显著改善心脏功能和促进血管生成,还能减少纤维化[13]。随后在NYHA III类心力衰竭患者中应用JVS-100 (人源SDF-1质粒)进行临床试验,实现了88%的12个月生存率,且症状改善和NYHA分级均呈现剂量依赖性提升[14]

2.1.2. RNA疗法

新冠mRNA疫苗取得的空前成功,推动了脂质纳米颗粒(Lipid Nanoparticles, LNP)技术作为多功能RNA递送平台的广泛研究[15]。支撑mRNA疗法可行性的关键技术突破在于修饰mRNA (modRNA)的开发——通过引入假尿苷和5-甲基胞苷等核苷酸修饰,显著提升了其稳定性、翻译效率并降低了免疫原性[16],从而优化了mRNA疗法的治疗潜力。

研究人员在冠状动脉旁路搭桥术患者中应用VEGF mRNA (AZD8601),标志着心脏mRNA治疗领域的一个关键里程碑[17]。该试验显示出良好的安全性特征,但其功能终点指标(包括心脏功能指标、QOL指数和NT-proBNP水平)在六个月随访时显示了非显著性趋势[18]。这些结果虽不显著,却为心脏mRNA治疗确立了关键安全性标准,同时也揭示了递送优化的潜在机遇。

研究人员后续证实,脂质纳米颗粒包封的modRNA在转染效率方面显著优于柠檬酸缓冲液中的modRNA [19]。另有研究人员通过引入选择性器官靶向(selective organ targeting, SORT)分子,将脂质纳米颗粒技术推向新高度,实现了对肝脏、肾脏和脾脏等器官的精准递送,构建出兼容mRNA和CRISPR-Cas9递送的通用平台[20]。尽管心脏特异性SORT分子仍在研发中,但这项基础性研究为心脏靶向递送系统奠定了坚实基础。

RNA干扰(RNAi)是生物体内天然的基因沉默机制,其中siRNA可以介导更为高效、精准的mRNA降解,以抑制目的基因表达[21]。siRNA常通过外源合成,以实现与靶mRNA的完全互补,通过RNA诱导沉默复合体(RISC)切割实现精准基因沉默。而miRNA则是内源性或外源合成的,具有部分互补性,通常抑制翻译而非诱导mRNA切割[22] [23]

siRNA在心血管疾病治疗中的潜力,可从Inclisiran这一药物中得到印证。该药物是经美国食品药品监督管理局(FDA)批准的靶向PCSK9 mRNA的siRNA,用于治疗家族性高胆固醇血症[24]。siRNA已被证实能有效调控心肌梗死后炎症反应。例如,siRNA可通过靶向IRF5来重编程巨噬细胞。抑制IRF5可减少M1过度活化,从而改善心肌梗死后预后[25]。此外,通过LNP递送的靶向IRF5的siRNA能有效降低心肌梗死模型中的M1标志物,从而减少左心室扩张和梗死面积,凸显其治疗潜力[26]

miRNA的调控机制远不止单基因靶向,因为单个内源性miRNA就能调控多个基因,这使它们成为极具价值的治疗靶点[27]。miR302-367基因簇就是典型代表,它通过Hippo-Yap信号通路调控心脏发育和心肌细胞增殖。虽然长期表达会导致心脏肥大,但研究人员通过7天的短暂miR302-367模拟物给药,获得了最佳的再生效果,证明治疗后50天心肌细胞增殖增加、血管生成增强、纤维化减少[28]

2.1.3. CRISPR-Cas9疗法

CRISPR-Cas9系统为调控心脏修复相关信号通路提供了新思路。例如,Toll样受体4 (TLR4)介导的炎症反应会加重心肌梗死后的心脏损伤[29]。研究人员通过CRISPR-Cas9技术敲除人间充质干细胞(hMSCs)中的TLR4基因,显著增强了这些细胞的修复能力。在小鼠心肌梗死模型中,这些TLR4缺陷的人间充质干细胞(hMSCs)能有效抑制炎症反应并改善心脏功能,显示出提升存活率和重塑心脏结构的潜力[30]

靶向递送系统是提升CRISPR-Cas9技术干预精准度、安全性和治疗效果的关键。脂质纳米颗粒技术为CRISPR-Cas9的靶向递送提供了战略平台[20],既能提高基因编辑的特异性,又能最大限度降低脱靶效应。研究人员通过将细胞外囊泡(EVs)与心脏靶向T肽(cardiac-targeting T peptide)相结合,实现了CRISPR-Cas9向心肌细胞的精准递送[31]。由于非特异性CRISPR-Cas9分布可能导致脱靶突变、免疫激活及全身毒性等风险,靶向递送技术对于确保治疗精准性和临床应用价值至关重要。这些进展凸显了靶向CRISPR-Cas9递送系统在将基因编辑疗法转化为心血管疾病临床应用中的关键作用。

2.2. 细胞疗法

2.2.1. 细胞移植

细胞移植正日益与组织工程融合,将生物策略与生物材料技术相结合,以促进组织修复与再生。鉴于细胞移植在心脏修复与再生领域已积累的丰富经验,本文将重点探讨通用的递送方法与策略。

细胞移植在预防或逆转心力衰竭进展方面具有潜力[32]。然而,其临床应用面临重大挑战,主要源于对最佳细胞类型缺乏共识以及标准化递送方法的缺失[32] [33]。尽管细胞类型仍存在争议,但成功实施细胞移植的关键在于有效递送细胞,以确保其存活和植入[34]。此外,细胞移植产生治疗效果的机制仍未完全阐明。其效果主要源于移植细胞的旁分泌作用,尤其是通过细胞外囊泡(EVs)在受损部位微环境刺激下分泌[35] [36]

当前心脏损伤修复的细胞移植范式,着重强调植入细胞在受损心肌中的有效递送、滞留及存活能力[37]。尽管直接心肌内注射等传统方法仍被广泛采用,但生物材料科学的进步推动了研究方向,即通过结合纳米颗粒、水凝胶或两者结合来增强植入细胞保留率和存活率[38]。除直接给药外,模拟细胞外基质的支架或心脏补片同样能为心脏修复和细胞存活提供支持性环境。

2.2.2. 心脏原位重编程

成年心脏在应对损伤时,主要通过形成纤维化瘢痕来维持结构完整性,但这种修复机制会牺牲心脏的收缩功能[39]。相比之下,新生哺乳动物心脏通过心肌细胞增殖展现再生能力,但这种能力在出生后不久就会逐渐减弱[40]。研究人员发现心肌再生能力的丧失与代谢状态从胎儿缺氧向正常氧合的转变同步发生,活性氧(ROS)水平的升高会引发DNA损伤、细胞周期停滞[41]。心脏损伤时,能量代谢紊乱会导致ATP耗竭、活性氧(ROS)过度生成及心肌细胞凋亡[42]。因此,心肌原位代谢重编程已成为关键治疗策略。研究人员通过敲低肉碱棕榈酰转移酶1b (CPT1b),抑制心肌脂质代谢实现代谢重编程,在此过程中代谢物α-Kg在心肌细胞中积累,降低了与活跃转录相关的组蛋白修饰H3K4me3水平,促使心肌细胞进入有利于增殖的去分化状态,从而促进心肌重启增殖能力[43]

心肌缺血再灌注损伤后,巨噬细胞从促炎表型(M1)向修复表型(M2)的及时转化是心肌修复的关键[44]。因此,巨噬细胞重编程可能成为有效的治疗策略。研究人员通过递送miR-21下调炎症相关基因PTEN和PDCD4的表达,抑制促炎信号通路激活,减少促炎细胞因子的释放,同时促进抗炎及修复因子的表达。巨噬细胞重编程抑制炎症并促进血管成熟,改善心肌功能、减轻纤维化[45]

2.2.3. 细胞外囊泡

细胞外囊泡(EVs)是脂质双层包裹的囊泡结构,作为细胞间通讯的关键媒介,负责运输蛋白质、脂质和核酸等生物活性分子。细胞外囊泡(EVs)的旁分泌效应(包括分泌生长因子和miRNA)在心脏增殖修复中起着关键作用[35] [46]。例如,源自GATA4过表达间充质干细胞的富含miR-19a的外泌体可通过下调PTEN和BIM介导的细胞凋亡通路,显著提升心肌细胞的存活率[47]。然而,天然细胞外囊泡固有的异质性给分离产量、表征及载荷控制带来了挑战[48],这凸显了心血管再生医学领域标准化方法的迫切需求。

为提升细胞外囊泡的功能,研究人员通过缺氧或剪切应力等应激预处理供体细胞,成功调控了细胞外囊泡的货物组成特征[49]。研究表明,富集miR-22的缺氧诱导间充质干细胞(MSC)来源的细胞外囊泡,在临床前模型中显著改善了心脏功能并促进血管生成[50] [51]。此外,通过miRNA编码载体转染对分泌细胞外囊泡的细胞进行基因改造,为优化治疗性货物提供了新策略[47]

通过表面修饰细胞外囊泡是实现靶向递送优化的策略性方法。在动物心肌梗死模型中,经心脏靶向肽CSTSMLKAC修饰的细胞外囊泡,相较于随机肽对照组,显著提升了心脏细胞摄取效率[52]。此外,通过基因工程技术将心脏靶向肽(heart-homing peptide, HHP)与LAMP2b融合,成功实现了细胞外囊泡表面表达HHP [53]

尽管细胞外囊泡递送技术与功能已取得显著进展,但在标准化生产流程和有效载荷装载方面仍存在挑战。外泌体模拟纳米囊泡(Exosome-mimetic nanovesicles, EMNVs)已成为突破现有技术瓶颈的可扩展解决方案[49]。其中机械挤出法通过微孔挤压细胞实现囊泡均质化生产[54],超声破碎法利用高频声波剪切细胞膜促进囊泡快速形成[55],这两种制备方法在提升实验标准化与结果可重复性方面展现出显著优势,展现出作为心脏治疗可扩展替代方案的潜力[56]

研究人员将氧化铁纳米颗粒整合到间充质干细胞来源的EMNVs中。这种纳米囊泡将相关生物分子与磁性靶向技术相结合,不仅显著提升了心肌保留率,还能递送抗凋亡、抗纤维化及促血管生成因子,从而大幅增强心脏修复效果[57]

2.2.4. 细胞膜衍生囊泡

通过为纳米颗粒等材料涂覆天然细胞膜涂层,可显著提升生物相容性、免疫逃逸能力,并实现对受损心肌组织的精准靶向。这种包覆技术能将生长因子等治疗药物直接输送到病变部位,有效促进细胞增殖、血管生成及心脏功能改善[58] [59]。此外,细胞膜组分还可与其他生物材料结合形成复合膜结构,使不同细胞类型或合成材料的成分产生协同增效作用[58]

研究人员开发出巨噬细胞膜包被的siRNA纳米颗粒,专门靶向S100A9。S100A9与心肌损伤过程中线粒体功能障碍、心肌细胞死亡及免疫细胞募集密切相关。实验表明,该纳米颗粒能有效减轻炎症反应、缩小梗死面积并抑制纤维化进程,同时显著改善心肌梗死恢复期LVEF,展现出缓解心肌缺血再灌注损伤、促进心脏修复的潜力[60]

基于Hippo-Yap信号通路,研究人员制备了血小板–巨噬细胞复合膜包被的仿生纳米复合物,成功递送靶向Hippo信号通路关键调控因子Sav1的siRNA。该系统通过炎症趋向性和微血栓靶向特性,结合酸触发膜脱落机制,实现siRNA在心肌细胞中的精准递送。纳米复合物显著促进心肌细胞再生,抑制细胞凋亡,并在心肌缺血再灌注损伤后恢复心脏功能[61]

基于巨噬细胞重编程,研究人员制备了血小板膜–脂质体复合膜包被的纳米复合物,成功递送miR-21 [45],促进巨噬细胞从M1转化为M2,在心肌缺血再灌注损伤后改善心肌功能、减轻纤维化。

3. 障碍与挑战

心脏细胞与基因疗法作为心血管疾病治疗的革命性方向,有望打破传统治疗仅能缓解症状的局限,实现受损心肌的修复与功能重建,但在从实验室走向临床应用的过程中,仍面临多重核心挑战亟待破解。

基因疗法的脱靶效应、以及药物的免疫原性均是制约转化的核心障碍。此外,再生相关基因的非特异性表达可能引发异常增殖风险,进一步增加了技术落地的难度。生产环节的瓶颈同样突出,如病毒载体存在产量低、纯度不足、杂质难控及批次差异大等问题;细胞疗法受供体差异影响大、生产周期长,标准规模化生产成本高昂,完善的CMC体系构建迫在眉睫。

临床终点选择需平衡短期替代终点(如LVEF,小幅度改善可能具备重要临床意义)与长期硬终点(全因死亡、心力衰竭住院等),且随访周期需适当延长,同时结合生物标志物与影像学技术验证再生效应。试验设计中,需把握急性心肌梗死后治疗窗口期,合理选择给药途径,标准化基础治疗并设置科学对照。

监管要求的不断完善为疗法安全落地保驾护航。安全性方面,需强化临床前大动物毒性评估与免疫原性分层检测,临床试验随访周期不得少于5年以监测迟发性风险;生产质控上,遵循“质量源于设计”理念,明确药物载体标准,建立全程溯源系统。随着多领域技术的协同推进,心脏细胞与基因疗法有望逐步实现临床转化,为心血管疾病患者带来真正的治愈希望。

4. 总结与展望

基因递送系统已取得显著进展,尤其是腺病毒载体和AAV等病毒载体技术,有效提升了基因传递效率和治疗效果。然而,免疫反应、脱靶效应及生产复杂性等挑战仍是主要障碍。其他技术如质粒递送、RNA干扰和CRISPR-Cas9系统虽逐渐普及,但精准递送和基因持续表达仍是关键瓶颈。未来研究需聚焦优化递送方法、提升靶向精度及解决规模化生产难题,方能充分发挥基因疗法在心血管疾病治疗中的潜力。细胞疗法在心脏修复领域展现出巨大潜力,然而,移植细胞存活率优化、细胞外囊泡异质性处理及靶向给药等技术瓶颈依然存在。新兴技术如外泌体模拟纳米囊泡和细胞膜包被技术为解决这些问题提供了新思路。

这些基于基因和细胞疗法的策略进一步推动了再生医学领域的发展,为修复曾被认为不可逆的损伤提供了可能。基因和细胞疗法的持续进步正为心脏损伤修复开辟新的治疗路径。在持续探索新型基因和细胞疗法的同时,我们更应聚焦于生产流程的标准化。实现规模化生产与成本效益优化,是确保这些尖端疗法实现临床广泛应用的关键。本文所探讨的概念与技术,仅仅是这个快速发展的领域中冰山一角。我们希望通过此综述,能够激发创新策略,架起临床前研究与临床应用之间的转化桥梁,从而提升缺血性心脏病患者的治疗效果并改善患者生存质量。

基金项目

国家自然科学基金(PYCR1抑制剂在改善急性心肌梗死后心室重构中的作用及机制研究) 8217020192,国家自然科学基金(NOS响应深层渗透负载Mn3O4的间充质干细胞外囊泡仿生递释系统促进心肌缺血损伤修复与增殖研究) 82300565。

NOTES

*通讯作者。

参考文献

[1] (2024) Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 403, 2133-2161.
[2] Lander, E.S., Linton, L.M., Birren, B., et al. (2021) Initial Sequencing and Analysis of the Human Genome. Nature, 409, 860-921.
[3] French, B.A., Mazur, W., Geske, R.S. and Bolli, R. (1994) Direct in Vivo Gene Transfer into Porcine Myocardium Using Replication-Deficient Adenoviral Vectors. Circulation, 90, 2414-2424. [Google Scholar] [CrossRef] [PubMed]
[4] Shapiro, S.D., Ranjan, A.K., Kawase, Y., Cheng, R.K., Kara, R.J., Bhattacharya, R., et al. (2014) Cyclin A2 Induces Cardiac Regeneration after Myocardial Infarction through Cytokinesis of Adult Cardiomyocytes. Science Translational Medicine, 6, 224ra227. [Google Scholar] [CrossRef] [PubMed]
[5] Wang, D., Tai, P.W.L. and Gao, G. (2019) Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nature Reviews Drug Discovery, 18, 358-378. [Google Scholar] [CrossRef] [PubMed]
[6] Kraus, C., Rohde, D., Weidenhammer, C., Qiu, G., Pleger, S.T., Voelkers, M., et al. (2009) S100A1 in Cardiovascular Health and Disease: Closing the Gap between Basic Science and Clinical Therapy. Journal of Molecular and Cellular Cardiology, 47, 445-455. [Google Scholar] [CrossRef] [PubMed]
[7] Song, K., Nam, Y., Luo, X., Qi, X., Tan, W., Huang, G.N., et al. (2012) Heart Repair by Reprogramming Non-Myocytes with Cardiac Transcription Factors. Nature, 485, 599-604. [Google Scholar] [CrossRef] [PubMed]
[8] Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R. and Anderson, D.G. (2014) Non-Viral Vectors for Gene-Based Therapy. Nature Reviews Genetics, 15, 541-555. [Google Scholar] [CrossRef] [PubMed]
[9] Hao, X., Manssonbroberg, A., Grinnemo, K., Siddiqui, A., Dellgren, G., Brodin, L., et al. (2007) Myocardial Angiogenesis after Plasmid or Adenoviral VEGF-A165 Gene Transfer in Rat Myocardial Infarction Model. Cardiovascular Research, 73, 481-487. [Google Scholar] [CrossRef] [PubMed]
[10] Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., et al. (1990) Direct Gene Transfer into Mouse Muscle in Vivo. Science, 247, 1465-1468. [Google Scholar] [CrossRef] [PubMed]
[11] Symes, J.F., Losordo, D.W., Vale, P.R., Lathi, K.G., Esakof, D.D., Mayskiy, M., et al. (1999) Gene Therapy with Vascular Endothelial Growth Factor for Inoperable Coronary Artery Disease. The Annals of Thoracic Surgery, 68, 830-836. [Google Scholar] [CrossRef] [PubMed]
[12] Askari, A.T., Unzek, S., Popovic, Z.B., Goldman, C.K., Forudi, F., Kiedrowski, M., et al. (2003) Effect of Stromal-Cell-Derived Factor 1 on Stem-Cell Homing and Tissue Regeneration in Ischaemic Cardiomyopathy. The Lancet, 362, 697-703. [Google Scholar] [CrossRef] [PubMed]
[13] Sundararaman, S., Miller, T.J., Pastore, J.M., Kiedrowski, M., Aras, R. and Penn, M.S. (2011) Plasmid-Based Transient Human Stromal Cell-Derived Factor-1 Gene Transfer Improves Cardiac Function in Chronic Heart Failure. Gene Therapy, 18, 867-873. [Google Scholar] [CrossRef] [PubMed]
[14] Penn, M.S., Mendelsohn, F.O., Schaer, G.L., Sherman, W., Farr, M., Pastore, J., et al. (2013) An Open-Label Dose Escalation Study to Evaluate the Safety of Administration of Nonviral Stromal Cell-Derived Factor-1 Plasmid to Treat Symptomatic Ischemic Heart Failure. Circulation Research, 112, 816-825. [Google Scholar] [CrossRef] [PubMed]
[15] Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., et al. (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384, 403-416. [Google Scholar] [CrossRef] [PubMed]
[16] Karikó, K., Buckstein, M., Ni, H. and Weissman, D. (2005) Suppression of RNA Recognition by Toll-Like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity, 23, 165-175. [Google Scholar] [CrossRef] [PubMed]
[17] Carlsson, L., Clarke, J.C., Yen, C., Gregoire, F., Albery, T., Billger, M., et al. (2018) Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection 1 Week Post-Myocardial Infarction in Swine. Molecular TherapyMethods & Clinical Development, 9, 330-346. [Google Scholar] [CrossRef] [PubMed]
[18] Anttila, V., Saraste, A., Knuuti, J., Hedman, M., Jaakkola, P., Laugwitz, K., et al. (2023) Direct Intramyocardial Injection of VEGF mRNA in Patients Undergoing Coronary Artery Bypass Grafting. Molecular Therapy, 31, 866-874. [Google Scholar] [CrossRef] [PubMed]
[19] Labonia, M.C.I., Estape Senti, M., Van Der Kraak, P.H., Brans, M.A.D., Deshantri, A.K., Dokter, I., et al. (2023) Effective Cardiac mRNA Delivery Using Lipid Nanoparticles. European Heart Journal, 44, ehad655.3301. [Google Scholar] [CrossRef
[20] Cheng, Q., Wei, T., Farbiak, L., Johnson, L.T., Dilliard, S.A. and Siegwart, D.J. (2020) Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific mRNA Delivery and CRISPR-Cas Gene Editing. Nature Nanotechnology, 15, 313-320. [Google Scholar] [CrossRef] [PubMed]
[21] Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., et al. (2020) Therapeutic siRNA: State of the Art. Signal Transduction and Targeted Therapy, 5, Article No. 101. [Google Scholar] [CrossRef] [PubMed]
[22] Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature, 411, 494-498. [Google Scholar] [CrossRef] [PubMed]
[23] Jadhav, V., Vaishnaw, A., Fitzgerald, K. and Maier, M.A. (2024) RNA Interference in the Era of Nucleic Acid Therapeutics. Nature Biotechnology, 42, 394-405. [Google Scholar] [CrossRef] [PubMed]
[24] Gil-Cabrerizo, P., Simon-Yarza, T., Garbayo, E. and Blanco-Prieto, M.J. (2024) Navigating the Landscape of RNA Delivery Systems in Cardiovascular Disease Therapeutics. Advanced Drug Delivery Reviews, 208, 115302. [Google Scholar] [CrossRef] [PubMed]
[25] Krausgruber, T., Blazek, K., Smallie, T., Alzabin, S., Lockstone, H., Sahgal, N., et al. (2011) IRF5 Promotes Inflammatory Macrophage Polarization and TH1-TH17 Responses. Nature Immunology, 12, 231-238. [Google Scholar] [CrossRef] [PubMed]
[26] Courties, G., Heidt, T., Sebas, M., Iwamoto, Y., Jeon, D., Truelove, J., et al. (2014) In Vivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healing. Journal of the American College of Cardiology, 63, 1556-1566. [Google Scholar] [CrossRef] [PubMed]
[27] Zhou, S., Jin, J., Wang, J., Zhang, Z., Freedman, J.H., Zheng, Y., et al. (2018) MiRNAs in Cardiovascular Diseases: Potential Biomarkers, Therapeutic Targets and Challenges. Acta Pharmacologica Sinica, 39, 1073-1084. [Google Scholar] [CrossRef] [PubMed]
[28] Tian, Y., Liu, Y., Wang, T., Zhou, N., Kong, J., Chen, L., et al. (2015) A MicroRNA-Hippo Pathway That Promotes Cardiomyocyte Proliferation and Cardiac Regeneration in Mice. Science Translational Medicine, 7, 279ra238. [Google Scholar] [CrossRef] [PubMed]
[29] Naftali-Shani, N., Levin-Kotler, L., Palevski, D., Amit, U., Kain, D., Landa, N., et al. (2017) Left Ventricular Dysfunction Switches Mesenchymal Stromal Cells toward an Inflammatory Phenotype and Impairs Their Reparative Properties via Toll-Like Receptor-4. Circulation, 135, 2271-2287. [Google Scholar] [CrossRef] [PubMed]
[30] Schary, Y., Rotem, I., Caller, T., Lewis, N., Shaihov-Teper, O., Brzezinski, R.Y., et al. (2023) CRISPR-Cas9 Editing of TLR4 to Improve the Outcome of Cardiac Cell Therapy. Scientific Reports, 13, Article No. 4481. [Google Scholar] [CrossRef] [PubMed]
[31] Zahid, M., Phillips, B.E., Albers, S.M., Giannoukakis, N., Watkins, S.C. and Robbins, P.D. (2010) Identification of a Cardiac Specific Protein Transduction Domain by in Vivo Biopanning Using a M13 Phage Peptide Display Library in Mice. PLOS ONE, 5, e12252. [Google Scholar] [CrossRef] [PubMed]
[32] Braunwald, E. (2018) Cell-Based Therapy in Cardiac Regeneration. Circulation Research, 123, 132-137. [Google Scholar] [CrossRef] [PubMed]
[33] Segers, V.F.M. and Lee, R.T. (2008) Stem-Cell Therapy for Cardiac Disease. Nature, 451, 937-942. [Google Scholar] [CrossRef] [PubMed]
[34] Hou, D., Youssef, E.A., Brinton, T.J., Zhang, P., Rogers, P., Price, E.T., et al. (2005) Radiolabeled Cell Distribution after Intramyocardial, Intracoronary, and Interstitial Retrograde Coronary Venous Delivery. Circulation, 112, 150-156. [Google Scholar] [CrossRef] [PubMed]
[35] Gnecchi, M., He, H., Liang, O.D., Melo, L.G., Morello, F., Mu, H., et al. (2005) Paracrine Action Accounts for Marked Protection of Ischemic Heart by Akt-Modified Mesenchymal Stem Cells. Nature Medicine, 11, 367-368. [Google Scholar] [CrossRef] [PubMed]
[36] Yoshioka, T., Ageyama, N., Shibata, H., Yasu, T., Misawa, Y., Takeuchi, K., et al. (2005) Repair of Infarcted Myocardium Mediated by Transplanted Bone Marrow-Derived CD34+ Stem Cells in a Nonhuman Primate Model. Stem Cells, 23, 355-364. [Google Scholar] [CrossRef] [PubMed]
[37] Zhang, J.J., Pogwizd, S.M., Fukuda, K., Zimmermann, W., Fan, C., Hare, J.M., et al. (2024) Trials and Tribulations of Cell Therapy for Heart Failure: An Update on Ongoing Trials. Nature Reviews Cardiology, 22, 372-385. [Google Scholar] [CrossRef] [PubMed]
[38] Roche, E.T., Hastings, C.L., Lewin, S.A., Shvartsman, D.E., Brudno, Y., Vasilyev, N.V., et al. (2014) Comparison of Biomaterial Delivery Vehicles for Improving Acute Retention of Stem Cells in the Infarcted Heart. Biomaterials, 35, 6850-6858. [Google Scholar] [CrossRef] [PubMed]
[39] van den Borne, S.W.M., Diez, J., Blankesteijn, W.M., Verjans, J., Hofstra, L. and Narula, J. (2009) Myocardial Remodeling after Infarction: The Role of Myofibroblasts. Nature Reviews Cardiology, 7, 30-37. [Google Scholar] [CrossRef] [PubMed]
[40] Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., et al. (2012) Mammalian Heart Renewal by Pre-Existing Cardiomyocytes. Nature, 493, 433-436. [Google Scholar] [CrossRef] [PubMed]
[41] Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., et al. (2016) Hypoxia Induces Heart Regeneration in Adult Mice. Nature, 541, 222-227. [Google Scholar] [CrossRef] [PubMed]
[42] Dambrova, M., Zuurbier, C.J., Borutaite, V., Liepinsh, E. and Makrecka-Kuka, M. (2021) Energy Substrate Metabolism and Mitochondrial Oxidative Stress in Cardiac Ischemia/Reperfusion Injury. Free Radical Biology and Medicine, 165, 24-37. [Google Scholar] [CrossRef] [PubMed]
[43] Li, X., Wu, F., Günther, S., Looso, M., Kuenne, C., Zhang, T., et al. (2023) Inhibition of Fatty Acid Oxidation Enables Heart Regeneration in Adult Mice. Nature, 622, 619-626. [Google Scholar] [CrossRef] [PubMed]
[44] Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J. and Popovich, P.G. (2009) Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing Either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. The Journal of Neuroscience, 29, 13435-13444. [Google Scholar] [CrossRef] [PubMed]
[45] Tan, H., Song, Y., Chen, J., Zhang, N., Wang, Q., Li, Q., et al. (2021) Platelet‐Like Fusogenic Liposome‐Mediated Targeting Delivery of miR‐21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemia‐Reperfusion Injury. Advanced Science, 8, e2100787. [Google Scholar] [CrossRef] [PubMed]
[46] Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., et al. (2007) Secreted Frizzled Related Protein 2 (Sfrp2) Is the Key Akt-Mesenchymal Stem Cell-Released Paracrine Factor Mediating Myocardial Survival and Repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643-1648. [Google Scholar] [CrossRef] [PubMed]
[47] Yu, B., Kim, H.W., Gong, M., Wang, J., Millard, R.W., Wang, Y., et al. (2015) Exosomes Secreted from GATA-4 Overexpressing Mesenchymal Stem Cells Serve as a Reservoir of Anti-Apoptotic MicroRNAs for Cardioprotection. International Journal of Cardiology, 182, 349-360. [Google Scholar] [CrossRef] [PubMed]
[48] de Abreu, R.C., Fernandes, H., da Costa Martins, P.A., Sahoo, S., Emanueli, C. and Ferreira, L. (2020) Native and Bioengineered Extracellular Vesicles for Cardiovascular Therapeutics. Nature Reviews Cardiology, 17, 685-697. [Google Scholar] [CrossRef] [PubMed]
[49] Cui, X., Guo, J., Yuan, P., Dai, Y., Du, P., Yu, F., et al. (2024) Bioderived Nanoparticles for Cardiac Repair. ACS Nano, 18, 24622-24649. [Google Scholar] [CrossRef] [PubMed]
[50] Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y. and Yu, H. (2013) Extracellular Vesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Angiogenesis in a Rat Myocardial Infarction Model. Journal of Molecular Medicine, 92, 387-397. [Google Scholar] [CrossRef] [PubMed]
[51] Feng, Y., Huang, W., Wani, M., Yu, X. and Ashraf, M. (2014) Ischemic Preconditioning Potentiates the Protective Effect of Stem Cells through Secretion of Exosomes by Targeting Mecp2 via miR-22. PLOS ONE, 9, e88685. [Google Scholar] [CrossRef] [PubMed]
[52] Vandergriff, A., Huang, K., Shen, D., Hu, S., Hensley, M.T., Caranasos, T.G., et al. (2018) Targeting Regenerative Exosomes to Myocardial Infarction Using Cardiac Homing Peptide. Theranostics, 8, 1869-1878. [Google Scholar] [CrossRef] [PubMed]
[53] Mao, L., Li, Y., Chen, R., Li, G., Zhou, X., Song, F., et al. (2022) Heart-Targeting Exosomes from Human Cardiosphere-Derived Cells Improve the Therapeutic Effect on Cardiac Hypertrophy. Journal of Nanobiotechnology, 20, Article No. 435. [Google Scholar] [CrossRef] [PubMed]
[54] Jo, W., Kim, J., Yoon, J., Jeong, D., Cho, S., Jeong, H., et al. (2014) Large-Scale Generation of Cell-Derived Nanovesicles. Nanoscale, 6, 12056-12064. [Google Scholar] [CrossRef] [PubMed]
[55] Wang, L., Abhange, K.K., Wen, Y., Chen, Y., Xue, F., Wang, G., et al. (2019) Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells with Ultrasonication for Skin Rejuvenation. ACS Omega, 4, 22638-22645. [Google Scholar] [CrossRef] [PubMed]
[56] Wang, X., Hu, S., Li, J., Zhu, D., Wang, Z., Cores, J., et al. (2021) Extruded Mesenchymal Stem Cell Nanovesicles Are Equally Potent to Natural Extracellular Vesicles in Cardiac Repair. ACS Applied Materials & Interfaces, 13, 55767-55779. [Google Scholar] [CrossRef] [PubMed]
[57] Lee, J., Park, B., Kim, J., Choo, Y.W., Kim, H.Y., Yoon, J., et al. (2020) Nanovesicles Derived from Iron Oxide Nanoparticles-Incorporated Mesenchymal Stem Cells for Cardiac Repair. Science Advances, 6, eaaz0952. [Google Scholar] [CrossRef] [PubMed]
[58] Fang, R.H., Kroll, A.V., Gao, W. and Zhang, L. (2018) Cell Membrane Coating Nanotechnology. Advanced Materials, 30, e1706759. [Google Scholar] [CrossRef] [PubMed]
[59] Liu, Y., Luo, J., Chen, X., Liu, W. and Chen, T. (2019) Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 11, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
[60] Lu, H., Wang, J., Chen, Z., Wang, J., Jiang, Y., Xia, Z., et al. (2024) Engineered Macrophage Membrane‐Coated S100A9‐siRNA for Ameliorating Myocardial Ischemia‐Reperfusion Injury. Advanced Science, 11, e2403542. [Google Scholar] [CrossRef] [PubMed]
[61] Li, Y., Yu, J., Cheng, C., Chen, W., Lin, R., Wang, Y., et al. (2024) Platelet and Erythrocyte Membranes Coassembled Biomimetic Nanoparticles for Heart Failure Treatment. ACS Nano, 18, 26614-26630. [Google Scholar] [CrossRef] [PubMed]