|
[1]
|
(2024) Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 403, 2133-2161.
|
|
[2]
|
Lander, E.S., Linton, L.M., Birren, B., et al. (2021) Initial Sequencing and Analysis of the Human Genome. Nature, 409, 860-921.
|
|
[3]
|
French, B.A., Mazur, W., Geske, R.S. and Bolli, R. (1994) Direct in Vivo Gene Transfer into Porcine Myocardium Using Replication-Deficient Adenoviral Vectors. Circulation, 90, 2414-2424. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shapiro, S.D., Ranjan, A.K., Kawase, Y., Cheng, R.K., Kara, R.J., Bhattacharya, R., et al. (2014) Cyclin A2 Induces Cardiac Regeneration after Myocardial Infarction through Cytokinesis of Adult Cardiomyocytes. Science Translational Medicine, 6, 224ra227. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, D., Tai, P.W.L. and Gao, G. (2019) Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nature Reviews Drug Discovery, 18, 358-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kraus, C., Rohde, D., Weidenhammer, C., Qiu, G., Pleger, S.T., Voelkers, M., et al. (2009) S100A1 in Cardiovascular Health and Disease: Closing the Gap between Basic Science and Clinical Therapy. Journal of Molecular and Cellular Cardiology, 47, 445-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Song, K., Nam, Y., Luo, X., Qi, X., Tan, W., Huang, G.N., et al. (2012) Heart Repair by Reprogramming Non-Myocytes with Cardiac Transcription Factors. Nature, 485, 599-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R. and Anderson, D.G. (2014) Non-Viral Vectors for Gene-Based Therapy. Nature Reviews Genetics, 15, 541-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hao, X., Manssonbroberg, A., Grinnemo, K., Siddiqui, A., Dellgren, G., Brodin, L., et al. (2007) Myocardial Angiogenesis after Plasmid or Adenoviral VEGF-A165 Gene Transfer in Rat Myocardial Infarction Model. Cardiovascular Research, 73, 481-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., et al. (1990) Direct Gene Transfer into Mouse Muscle in Vivo. Science, 247, 1465-1468. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Symes, J.F., Losordo, D.W., Vale, P.R., Lathi, K.G., Esakof, D.D., Mayskiy, M., et al. (1999) Gene Therapy with Vascular Endothelial Growth Factor for Inoperable Coronary Artery Disease. The Annals of Thoracic Surgery, 68, 830-836. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Askari, A.T., Unzek, S., Popovic, Z.B., Goldman, C.K., Forudi, F., Kiedrowski, M., et al. (2003) Effect of Stromal-Cell-Derived Factor 1 on Stem-Cell Homing and Tissue Regeneration in Ischaemic Cardiomyopathy. The Lancet, 362, 697-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sundararaman, S., Miller, T.J., Pastore, J.M., Kiedrowski, M., Aras, R. and Penn, M.S. (2011) Plasmid-Based Transient Human Stromal Cell-Derived Factor-1 Gene Transfer Improves Cardiac Function in Chronic Heart Failure. Gene Therapy, 18, 867-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Penn, M.S., Mendelsohn, F.O., Schaer, G.L., Sherman, W., Farr, M., Pastore, J., et al. (2013) An Open-Label Dose Escalation Study to Evaluate the Safety of Administration of Nonviral Stromal Cell-Derived Factor-1 Plasmid to Treat Symptomatic Ischemic Heart Failure. Circulation Research, 112, 816-825. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., et al. (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384, 403-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Karikó, K., Buckstein, M., Ni, H. and Weissman, D. (2005) Suppression of RNA Recognition by Toll-Like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity, 23, 165-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Carlsson, L., Clarke, J.C., Yen, C., Gregoire, F., Albery, T., Billger, M., et al. (2018) Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection 1 Week Post-Myocardial Infarction in Swine. Molecular Therapy—Methods & Clinical Development, 9, 330-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Anttila, V., Saraste, A., Knuuti, J., Hedman, M., Jaakkola, P., Laugwitz, K., et al. (2023) Direct Intramyocardial Injection of VEGF mRNA in Patients Undergoing Coronary Artery Bypass Grafting. Molecular Therapy, 31, 866-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Labonia, M.C.I., Estape Senti, M., Van Der Kraak, P.H., Brans, M.A.D., Deshantri, A.K., Dokter, I., et al. (2023) Effective Cardiac mRNA Delivery Using Lipid Nanoparticles. European Heart Journal, 44, ehad655.3301. [Google Scholar] [CrossRef]
|
|
[20]
|
Cheng, Q., Wei, T., Farbiak, L., Johnson, L.T., Dilliard, S.A. and Siegwart, D.J. (2020) Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific mRNA Delivery and CRISPR-Cas Gene Editing. Nature Nanotechnology, 15, 313-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., et al. (2020) Therapeutic siRNA: State of the Art. Signal Transduction and Targeted Therapy, 5, Article No. 101. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature, 411, 494-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jadhav, V., Vaishnaw, A., Fitzgerald, K. and Maier, M.A. (2024) RNA Interference in the Era of Nucleic Acid Therapeutics. Nature Biotechnology, 42, 394-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gil-Cabrerizo, P., Simon-Yarza, T., Garbayo, E. and Blanco-Prieto, M.J. (2024) Navigating the Landscape of RNA Delivery Systems in Cardiovascular Disease Therapeutics. Advanced Drug Delivery Reviews, 208, 115302. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Krausgruber, T., Blazek, K., Smallie, T., Alzabin, S., Lockstone, H., Sahgal, N., et al. (2011) IRF5 Promotes Inflammatory Macrophage Polarization and TH1-TH17 Responses. Nature Immunology, 12, 231-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Courties, G., Heidt, T., Sebas, M., Iwamoto, Y., Jeon, D., Truelove, J., et al. (2014) In Vivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healing. Journal of the American College of Cardiology, 63, 1556-1566. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhou, S., Jin, J., Wang, J., Zhang, Z., Freedman, J.H., Zheng, Y., et al. (2018) MiRNAs in Cardiovascular Diseases: Potential Biomarkers, Therapeutic Targets and Challenges. Acta Pharmacologica Sinica, 39, 1073-1084. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tian, Y., Liu, Y., Wang, T., Zhou, N., Kong, J., Chen, L., et al. (2015) A MicroRNA-Hippo Pathway That Promotes Cardiomyocyte Proliferation and Cardiac Regeneration in Mice. Science Translational Medicine, 7, 279ra238. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Naftali-Shani, N., Levin-Kotler, L., Palevski, D., Amit, U., Kain, D., Landa, N., et al. (2017) Left Ventricular Dysfunction Switches Mesenchymal Stromal Cells toward an Inflammatory Phenotype and Impairs Their Reparative Properties via Toll-Like Receptor-4. Circulation, 135, 2271-2287. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Schary, Y., Rotem, I., Caller, T., Lewis, N., Shaihov-Teper, O., Brzezinski, R.Y., et al. (2023) CRISPR-Cas9 Editing of TLR4 to Improve the Outcome of Cardiac Cell Therapy. Scientific Reports, 13, Article No. 4481. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zahid, M., Phillips, B.E., Albers, S.M., Giannoukakis, N., Watkins, S.C. and Robbins, P.D. (2010) Identification of a Cardiac Specific Protein Transduction Domain by in Vivo Biopanning Using a M13 Phage Peptide Display Library in Mice. PLOS ONE, 5, e12252. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Braunwald, E. (2018) Cell-Based Therapy in Cardiac Regeneration. Circulation Research, 123, 132-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Segers, V.F.M. and Lee, R.T. (2008) Stem-Cell Therapy for Cardiac Disease. Nature, 451, 937-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hou, D., Youssef, E.A., Brinton, T.J., Zhang, P., Rogers, P., Price, E.T., et al. (2005) Radiolabeled Cell Distribution after Intramyocardial, Intracoronary, and Interstitial Retrograde Coronary Venous Delivery. Circulation, 112, 150-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gnecchi, M., He, H., Liang, O.D., Melo, L.G., Morello, F., Mu, H., et al. (2005) Paracrine Action Accounts for Marked Protection of Ischemic Heart by Akt-Modified Mesenchymal Stem Cells. Nature Medicine, 11, 367-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yoshioka, T., Ageyama, N., Shibata, H., Yasu, T., Misawa, Y., Takeuchi, K., et al. (2005) Repair of Infarcted Myocardium Mediated by Transplanted Bone Marrow-Derived CD34+ Stem Cells in a Nonhuman Primate Model. Stem Cells, 23, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, J.J., Pogwizd, S.M., Fukuda, K., Zimmermann, W., Fan, C., Hare, J.M., et al. (2024) Trials and Tribulations of Cell Therapy for Heart Failure: An Update on Ongoing Trials. Nature Reviews Cardiology, 22, 372-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Roche, E.T., Hastings, C.L., Lewin, S.A., Shvartsman, D.E., Brudno, Y., Vasilyev, N.V., et al. (2014) Comparison of Biomaterial Delivery Vehicles for Improving Acute Retention of Stem Cells in the Infarcted Heart. Biomaterials, 35, 6850-6858. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
van den Borne, S.W.M., Diez, J., Blankesteijn, W.M., Verjans, J., Hofstra, L. and Narula, J. (2009) Myocardial Remodeling after Infarction: The Role of Myofibroblasts. Nature Reviews Cardiology, 7, 30-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., et al. (2012) Mammalian Heart Renewal by Pre-Existing Cardiomyocytes. Nature, 493, 433-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., et al. (2016) Hypoxia Induces Heart Regeneration in Adult Mice. Nature, 541, 222-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Dambrova, M., Zuurbier, C.J., Borutaite, V., Liepinsh, E. and Makrecka-Kuka, M. (2021) Energy Substrate Metabolism and Mitochondrial Oxidative Stress in Cardiac Ischemia/Reperfusion Injury. Free Radical Biology and Medicine, 165, 24-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, X., Wu, F., Günther, S., Looso, M., Kuenne, C., Zhang, T., et al. (2023) Inhibition of Fatty Acid Oxidation Enables Heart Regeneration in Adult Mice. Nature, 622, 619-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J. and Popovich, P.G. (2009) Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing Either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. The Journal of Neuroscience, 29, 13435-13444. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tan, H., Song, Y., Chen, J., Zhang, N., Wang, Q., Li, Q., et al. (2021) Platelet‐Like Fusogenic Liposome‐Mediated Targeting Delivery of miR‐21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemia‐Reperfusion Injury. Advanced Science, 8, e2100787. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., et al. (2007) Secreted Frizzled Related Protein 2 (Sfrp2) Is the Key Akt-Mesenchymal Stem Cell-Released Paracrine Factor Mediating Myocardial Survival and Repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643-1648. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yu, B., Kim, H.W., Gong, M., Wang, J., Millard, R.W., Wang, Y., et al. (2015) Exosomes Secreted from GATA-4 Overexpressing Mesenchymal Stem Cells Serve as a Reservoir of Anti-Apoptotic MicroRNAs for Cardioprotection. International Journal of Cardiology, 182, 349-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
de Abreu, R.C., Fernandes, H., da Costa Martins, P.A., Sahoo, S., Emanueli, C. and Ferreira, L. (2020) Native and Bioengineered Extracellular Vesicles for Cardiovascular Therapeutics. Nature Reviews Cardiology, 17, 685-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Cui, X., Guo, J., Yuan, P., Dai, Y., Du, P., Yu, F., et al. (2024) Bioderived Nanoparticles for Cardiac Repair. ACS Nano, 18, 24622-24649. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y. and Yu, H. (2013) Extracellular Vesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Angiogenesis in a Rat Myocardial Infarction Model. Journal of Molecular Medicine, 92, 387-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Feng, Y., Huang, W., Wani, M., Yu, X. and Ashraf, M. (2014) Ischemic Preconditioning Potentiates the Protective Effect of Stem Cells through Secretion of Exosomes by Targeting Mecp2 via miR-22. PLOS ONE, 9, e88685. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Vandergriff, A., Huang, K., Shen, D., Hu, S., Hensley, M.T., Caranasos, T.G., et al. (2018) Targeting Regenerative Exosomes to Myocardial Infarction Using Cardiac Homing Peptide. Theranostics, 8, 1869-1878. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Mao, L., Li, Y., Chen, R., Li, G., Zhou, X., Song, F., et al. (2022) Heart-Targeting Exosomes from Human Cardiosphere-Derived Cells Improve the Therapeutic Effect on Cardiac Hypertrophy. Journal of Nanobiotechnology, 20, Article No. 435. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Jo, W., Kim, J., Yoon, J., Jeong, D., Cho, S., Jeong, H., et al. (2014) Large-Scale Generation of Cell-Derived Nanovesicles. Nanoscale, 6, 12056-12064. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, L., Abhange, K.K., Wen, Y., Chen, Y., Xue, F., Wang, G., et al. (2019) Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells with Ultrasonication for Skin Rejuvenation. ACS Omega, 4, 22638-22645. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wang, X., Hu, S., Li, J., Zhu, D., Wang, Z., Cores, J., et al. (2021) Extruded Mesenchymal Stem Cell Nanovesicles Are Equally Potent to Natural Extracellular Vesicles in Cardiac Repair. ACS Applied Materials & Interfaces, 13, 55767-55779. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Lee, J., Park, B., Kim, J., Choo, Y.W., Kim, H.Y., Yoon, J., et al. (2020) Nanovesicles Derived from Iron Oxide Nanoparticles-Incorporated Mesenchymal Stem Cells for Cardiac Repair. Science Advances, 6, eaaz0952. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Fang, R.H., Kroll, A.V., Gao, W. and Zhang, L. (2018) Cell Membrane Coating Nanotechnology. Advanced Materials, 30, e1706759. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liu, Y., Luo, J., Chen, X., Liu, W. and Chen, T. (2019) Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 11, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Lu, H., Wang, J., Chen, Z., Wang, J., Jiang, Y., Xia, Z., et al. (2024) Engineered Macrophage Membrane‐Coated S100A9‐siRNA for Ameliorating Myocardial Ischemia‐Reperfusion Injury. Advanced Science, 11, e2403542. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Li, Y., Yu, J., Cheng, C., Chen, W., Lin, R., Wang, Y., et al. (2024) Platelet and Erythrocyte Membranes Coassembled Biomimetic Nanoparticles for Heart Failure Treatment. ACS Nano, 18, 26614-26630. [Google Scholar] [CrossRef] [PubMed]
|