|
[1]
|
Luster, A.D. and Ravetch, J.V. (1987) Genomic Characterization of a γ-Interferon-Inducible Gene (IP-10) and Identification of an Interferon-Inducible Hypersensitive Site. Molecular and Cellular Biology, 7, 3723-3731. [Google Scholar] [CrossRef]
|
|
[2]
|
Liu, M., Guo, S., Hibbert, J.M., Jain, V., Singh, N., Wilson, N.O., et al. (2011) CXCL10/IP-10 in Infectious Diseases Pathogenesis and Potential Therapeutic Implications. Cytokine & Growth Factor Reviews, 22, 121-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ichikawa, A., Kuba, K., Morita, M., Chida, S., Tezuka, H., Hara, H., et al. (2013) CXCL10-CXCR3 Enhances the Development of Neutrophil-Mediated Fulminant Lung Injury of Viral and Nonviral Origin. American Journal of Respiratory and Critical Care Medicine, 187, 65-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lang, S., Li, L., Wang, X., Sun, J., Xue, X., Xiao, Y., et al. (2017) CXCL10/IP-10 Neutralization Can Ameliorate Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats. PLOS ONE, 12, e0169100. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
中华医学会呼吸病学分会. 中国成人社区获得性肺炎诊断和治疗指南(2016年版) [J]. 中华结核和呼吸杂志, 2016, 39(4): 253-279.
|
|
[6]
|
周玲, 张霞, 费海莹, 等. 血清CXCL10水平与社区获得性肺炎严重程度及预后的关系[J]. 东南大学学报(医学版), 2023, 42(4): 553-559.
|
|
[7]
|
Xu, C., Luo, L., Wu, B., Ding, N., Jin, S., Huang, J., et al. (2024) Diagnostic Values of Soluble Triggering Receptor Expressed on Myeloid Cells (sTREM-1) and Interferon-Inducible Protein-10 (IP-10) for Severe Mycoplasma Pneumoniae Pneumonia in Children. Clinics, 79, Article ID: 100361. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zou, Y., Huang, F., Sun, J., Zheng, Y., Dai, G., Wang, T., et al. (2025) The Role of IFN-γ/CXCL10 Axis in Mycoplasma Pneumonia Infection. Scientific Reports, 15, Article No. 2671. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zeng, X., Moore, T.A., Newstead, M.W., Deng, J.C., Kunkel, S.L., Luster, A.D., et al. (2005) Interferon-Inducible Protein 10, but Not Monokine Induced by γ Interferon, Promotes Protective Type 1 Immunity in Murine Klebsiella pneumoniae Pneumonia. Infection and Immunity, 73, 8226-8236. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Haroun, R.A., Osman, W.H. and Eessa, A.M. (2021) Interferon-γ-Induced Protein 10 (IP-10) and Serum Amyloid a (SAA) Are Excellent Biomarkers for the Prediction of COVID-19 Progression and Severity. Life Sciences, 269, Article ID: 119019. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Samaras, C., Kyriazopoulou, E., Poulakou, G., Reiner, E., Kosmidou, M., Karanika, I., et al. (2023) Interferon γ-Induced Protein 10 (IP-10) for the Early Prognosis of the Risk for Severe Respiratory Failure and Death in COVID-19 Pneumonia. Cytokine, 162, Article ID: 156111. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hachem, H., Godara, A., Schroeder, C., Fein, D., Mann, H., Lawlor, C., et al. (2021) Rapid and Sustained Decline in CXCL-10 (IP-10) Annotates Clinical Outcomes Following TNFα-Antagonist Therapy in Hospitalized Patients with Severe and Critical COVID-19 Respiratory Failure. Journal of Clinical and Translational Science, 5, e146. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ruhwald, M., Bjerregaard-Andersen, M., Rabna, P., Kofoed, K., Eugen-Olsen, J. and Ravn, P. (2007) CXCL10/IP-10 Release Is Induced by Incubation of Whole Blood from Tuberculosis Patients with ESAT-6, CFP10 and Tb7.7. Microbes and Infection, 9, 806-812. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, Y., Yang, X., Zhang, X., Yu, Q., Zhao, P., Wang, J., et al. (2018) IP-10 and RANTES as Biomarkers for Pulmonary Tuberculosis Diagnosis and Monitoring. Tuberculosis, 111, 45-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Strzelak, A., Komorowska-Piotrowska, A., Borowa, A., Krasińska, M., Feleszko, W. and Kulus, M. (2024) IP-10 for the Diagnosis and Treatment Monitoring of Tuberculosis in Children. Diagnostics, 14, Article 177. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Vanini, V., Petruccioli, E., Gioia, C., Cuzzi, G., Orchi, N., Rianda, A., et al. (2012) IP-10 Is an Additional Marker for Tuberculosis (TB) Detection in HIV-Infected Persons in a Low-TB Endemic Country. Journal of Infection, 65, 49-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tang, Y., Yu, Y., Wang, Q., Wen, Z., Song, R., Li, Y., et al. (2023) Evaluation of the IP-10 mRNA Release Assay for Diagnosis of TB in HIV-Infected Individuals. Frontiers in Cellular and Infection Microbiology, 13, Article 1152665. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
中华医学会呼吸病学分会慢性阻塞性肺疾病学组. 慢性阻塞性肺疾病诊治指南(2007年修订版) [J]. 中华结核和呼吸杂志, 2007, 30(1): 8-17.
|
|
[19]
|
Lin, T., Chen, W., Ding, Z., Wei, S., Huang, M. and Li, C. (2019) Correlations between Serum Amyloid A, C‐Reactive Protein and Clinical Indices of Patients with Acutely Exacerbated Chronic Obstructive Pulmonary Disease. Journal of Clinical Laboratory Analysis, 33, e22831. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Grumelli, S., Corry, D.B., Song, L., Song, L., Green, L., Huh, J., et al. (2004) An Immune Basis for Lung Parenchymal Destruction in Chronic Obstructive Pulmonary Disease and Emphysema. PLOS Medicine, 1, e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hardaker, E.L., Bacon, A.M., Carlson, K., Roshak, A.K., Foley, J.J., Schmidt, D.B., et al. (2003) Regulation of TNF‐α and IFN‐γ Induced CXCL10 Expression: Participation of the Airway Smooth Muscle in the Pulmonary Inflammatory Response in Chronic Obstructive Pulmonary Disease. The FASEB Journal, 18, 191-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Osman, H.M., El Basha, N.R., Mansour, A.F. and Hanna, M.O.F. (2021) Serum IFNγ-Induced Protein 10 (IP10/CXCL10): Association with Asthma Exacerbations and Severity in Children. Journal of Asthma, 59, 2135-2142. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ghebre, M.A., Pang, P.H., Desai, D., Hargadon, B., Newby, C., Woods, J., et al. (2019) Severe Exacerbations in Moderate-to-Severe Asthmatics Are Associated with Increased Pro-Inflammatory and Type 1 Mediators in Sputum and Serum. BMC Pulmonary Medicine, 19, Article No. 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Arikoglu, T., Akyilmaz, E., Yildirim, D.D., Batmaz, S.B., Ulger, S.T., Aslan, G., et al. (2017) The Relation of Innate and Adaptive Immunity with Viral-Induced Acute Asthma Attacks: Focusing on IP-10 and Cathelicidin. Allergologia et Immunopathologia, 45, 160-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bradding, P., Walls, A.F. and Holgate, S.T. (2006) The Role of the Mast Cell in the Pathophysiology of Asthma. Journal of Allergy and Clinical Immunology, 117, 1277-1284. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ebert, C., Walsh, A.M., Sereda, L., Wilson, C.L., Schafer, P.H., Fischer, A., et al. (2024) Circulating Biomarker Analyses in a Longitudinal Cohort of Patients with IPF. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L303-L312. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tager, A.M., Kradin, R.L., LaCamera, P., Bercury, S.D., Campanella, G.S.V., Leary, C.P., et al. (2004) Inhibition of Pulmonary Fibrosis by the Chemokine IP-10/CXCL10. American Journal of Respiratory Cell and Molecular Biology, 31, 395-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Coward, W.R., Watts, K., Feghali-Bostwick, C.A., Jenkins, G. and Pang, L. (2010) Repression of IP-10 by Interactions between Histone Deacetylation and Hypermethylation in Idiopathic Pulmonary Fibrosis. Molecular and Cellular Biology, 30, 2874-2886. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, W., Yang, P., Zhong, Y., Zhao, Z., Xing, L., Zhao, Y., et al. (2013) Monoclonal Antibody against CXCL-10/IP-10 Ameliorates Influenza a (H1N1) Virus Induced Acute Lung Injury. Cell Research, 23, 577-580. [Google Scholar] [CrossRef] [PubMed]
|