|
[1]
|
Finnerty, C.C., Jeschke, M.G., Branski, L.K., Barret, J.P., Dziewulski, P. and Herndon, D.N. (2016) Hypertrophic Scarring: The Greatest Unmet Challenge after Burn Injury. The Lancet, 388, 1427-1436. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mustoe, T.A., Cooter, R.D., Gold, M.H., Richard Hobbs, F.D., Ramelet, A., Shakespeare, P.G., et al. (2002) International Clinical Recommendations on Scar Management. Plastic and Reconstructive Surgery, 110, 560-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Patel, L., McGrouther, D. and Chakrabarty, K. (2014) Evaluating Evidence for Atrophic Scarring Treatment Modalities. JRSM Open, 5, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kolimi, P., Narala, S., Nyavanandi, D., Youssef, A.A.A. and Dudhipala, N. (2022) Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells, 11, Article 2439. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Johnson, K.E. and Wilgus, T.A. (2014) Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Advances in Wound Care, 3, 647-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cialdai, F., Risaliti, C. and Monici, M. (2022) Role of Fibroblasts in Wound Healing and Tissue Remodeling on Earth and in Space. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 958381. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ziolkowski, N., Kitto, S.C., Jeong, D., Zuccaro, J., Adams-Webber, T., Miroshnychenko, A., et al. (2019) Psychosocial and Quality of Life Impact of Scars in the Surgical, Traumatic and Burn Populations: A Scoping Review Protocol. BMJ Open, 9, e021289. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lee, H. and Jang, Y. (2018) Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. International Journal of Molecular Sciences, 19, Article 711. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wiseman, J., Ware, R.S., Simons, M., McPhail, S., Kimble, R., Dotta, A., et al. (2020) Effectiveness of Topical Silicone Gel and Pressure Garment Therapy for Burn Scar Prevention and Management in Children: A Randomized Controlled Trial. Clinical Rehabilitation, 34, 120-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
O’Brien, L. and Jones, D.J. (2013) Silicone Gel Sheeting for Preventing and Treating Hypertrophic and Keloid Scars. Cochrane Database of Systematic Reviews, No. 9, CD003826. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
De Sousa, R., Chakravarty, B., Sharma, A., Parwaz, M. and Malik, A. (2014) Efficacy of Triple Therapy in Auricular Keloids. Journal of Cutaneous and Aesthetic Surgery, 7, 98-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Phan, T.T., Lim, I.J., Sun, L., Chan, S.Y., Bay, B.H., Tan, E.K., et al. (2003) Quercetin Inhibits Fibronectin Production by Keloid-Derived Fibroblasts. Implication for the Treatment of Excessive Scars. Journal of Dermatological Science, 33, 192-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Téot, L., Mustoe, T.A., Middelkoop, E., et al. (2020) Textbook on Scar Management: State of the Art Management and Emerging Technologies. Springer.
|
|
[14]
|
Fanous, A., Bezdjian, A., Caglar, D., Mlynarek, A., Fanous, N., Lenhart, S.F., et al. (2019) Treatment of Keloid Scars with Botulinum Toxin Type a versus Triamcinolone in an Athymic Nude Mouse Model. Plastic & Reconstructive Surgery, 143, 760-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Acosta, S., Ureta, E., Yañez, R., Oliva, N., Searle, S. and Guerra, C. (2016) Effectiveness of Intralesional Triamcinolone in the Treatment of Keloids in Children. Pediatric Dermatology, 33, 75-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cui, X., Zhu, J., Wu, X., Yang, S., Yao, X., Zhu, W., et al. (2020) Hematoporphyrin Monomethyl Ether-Mediated Photodynamic Therapy Inhibits the Growth of Keloid Graft by Promoting Fibroblast Apoptosis and Reducing Vessel Formation. Photochemical & Photobiological Sciences, 19, 114-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Weshay, A.H., Abdel Hay, R.M., Sayed, K., El Hawary, M.S. and Nour-Edin, F. (2015) Combination of Radiofrequency and Intralesional Steroids in the Treatment of Keloids. Dermatologic Surgery, 41, 731-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, J., Wu, J., Xu, M., Gao, Q., Chen, B., Wang, F., et al. (2020) Combination Therapy of Refractory Keloid with Ultrapulse Fractional Carbon Dioxide (CO2) Laser and Topical Triamcinolone in Asians‐Long‐Termprevention of Keloid Recurrence. Dermatologic Therapy, 33, e14359. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sabry, H.H., Abdel Rahman, S.H., Hussein, M.S., Sanad, R.R. and Abd El Azez, T.A. (2019) The Efficacy of Combining Fractional Carbon Dioxide Laser with Verapamil Hydrochloride or 5-Fluorouracil in the Treatment of Hypertrophic Scars and Keloids: A Clinical and Immunohistochemical Study. Dermatologic Surgery, 45, 536-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, J., Fu, R., Li, L., Yang, G., Ding, S., Zhong, Z., et al. (2014) Co-Delivery of Dexamethasone and Green Tea Polyphenols Using Electrospun Ultrafine Fibers for Effective Treatment of Keloid. Pharmaceutical Research, 31, 1632-1643. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Panabiere‐Castaings, M.H. (1988) Retinoic Acid in the Treatment of Keloids. The Journal of Dermatologic Surgery and Oncology, 14, 1275-1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Janssen de Limpens, A.M.P. (1980) The Local Treatment of Hypertrophic Scars and Keloids with Topical Retinoic Acid. British Journal of Dermatology, 103, 319-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Goh, M.S., Magee, J. and Chong, A.H. (2005) Keratosis Follicularis Spinulosa Decalvans and Acne Keloidalis Nuchae. Australasian Journal of Dermatology, 46, 257-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bulstrode, N.W., Mudera, V., McGrouther, D.A., Grobbelaar, A.O. and Cambrey, A.D. (2005) 5-Fluorouracil Selectively Inhibits Collagen Synthesis. Plastic and Reconstructive Surgery, 116, 209-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Huang, L., Wong, Y.P., Cai, Y.J., Lung, I., Leung, C.S. and Burd, A. (2010) Low-Dose 5-Fluorouracil Induces Cell Cycle G2 Arrest and Apoptosis in Keloid Fibroblasts. British Journal of Dermatology, 163, 1181-1185. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pereira, M.P. and Ständer, S. (2017) Chronic Pruritus: Current and Emerging Treatment Options. Drugs, 77, 999-1007. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wulff, B.C. and Wilgus, T.A. (2013) Mast Cell Activity in the Healing Wound: More than Meets the Eye? Experimental Dermatology, 22, 507-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Simons, F.E.R. (2003) H1-Antihistamines: More Relevant than ever in the Treatment of Allergic Disorders. Journal of Allergy and Clinical Immunology, 112, S42-S52. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Vitale, M., Fields-Blache, C. and Luterman, A. (1991) Severe Itching in the Patient with Burns. Journal of Burn Care & Rehabilitation, 12, 330-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sun, B., Wu, L., Wu, Y., Zhang, C., Qin, L., Hayashi, M., et al. (2020) Therapeutic Potential of Centella Asiatica and Its Triterpenes: A Review. Frontiers in Pharmacology, 11, Article ID: 568032. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jenwitheesuk, K., Rojsanga, P., Chowchuen, B. and Surakunprapha, P. (2018) A Prospective Randomized, Controlled, Double‐blind Trial of the Efficacy Using Centella Cream for Scar Improvement. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 9525624. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Selig, H.F., Lumenta, D.B., Giretzlehner, M., Jeschke, M.G., Upton, D. and Kamolz, L.P. (2012) The Properties of an “Ideal” Burn Wound Dressing—What Do We Need in Daily Clinical Practice? Results of a Worldwide Online Survey among Burn Care Specialists. Burns, 38, 960-966. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Levin, A., Sharma, V., Hook, L. and García-Gareta, E. (2018) The Importance of Factorial Design in Tissue Engineering and Biomaterials Science: Optimisation of Cell Seeding Efficiency on Dermal Scaffolds as a Case Study. Journal of Tissue Engineering, 9, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pan, B.H., Zhang, Q., Lam, C.H., Yuen, H.Y., Kuang, S. and Zhao, X. (2022) Petite Miracles: Insight into the Nano-Management of Scarless Wound Healing. Drug Discovery Today, 27, 857-865. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kakar, M.U., Khan, K., Akram, M., Sami, R., Khojah, E., Iqbal, I., et al. (2021) Synthesis of Bimetallic Nanoparticles Loaded on to PNIPAM Hybrid Microgel and Their Catalytic Activity. Scientific Reports, 11, Article No. 14759. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liang, Y., He, J. and Guo, B. (2021) Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano, 15, 12687-12722. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jeong, D., Kim, T.S., Chung, Y.W., Lee, B.J. and Kim, I.Y. (2002) Selenoprotein W Is a Glutathione‐Dependent Antioxidant in Vivo. FEBS Letters, 517, 225-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sun, J., Zheng, Y., Tian, D., Li, D., Liu, Z., Zhang, X., et al. (2022) A Cell Membrane Repair Protein-Based Nanoformulation with Multiple Actuators for Scarless Wound Healing. Journal of Materials Chemistry B, 10, 5733-5742. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cao, X., Wu, X., Zhang, Y., Qian, X., Sun, W. and Zhao, Y. (2024) Emerging Biomedical Technologies for Scarless Wound Healing. Bioactive Materials, 42, 449-477. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Tu, T., Huang, J., Lin, M., Gao, Z., Wu, X., Zhang, W., et al. (2019) CUDC-907 Reverses Pathological Phenotype of Keloid Fibroblasts in Vitro and in Vivo via Dual Inhibition of PI3K/Akt/mTOR Signaling and HDAC2. International Journal of Molecular Medicine, 44, 1789-1800. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ma, Y., Liu, Z., Miao, L., Jiang, X., Ruan, H., Xuan, R., et al. (2023) Mechanisms Underlying Pathological Scarring by Fibroblasts during Wound Healing. International Wound Journal, 20, 2190-2206. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Gu, S., Huang, X., Luo, S., Liu, Y., Khoong, Y., Liang, H., et al. (2024) Targeting the Nuclear Long Noncoding Transcript LSP1P5 Abrogates Extracellular Matrix Deposition by Trans-Upregulating CEBPA in Keloids. Molecular Therapy, 32, 1984-1999. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Roumelioti, F., Tzaferis, C., Konstantopoulos, D., Papadopoulou, D., Prados, A., Sakkou, M., et al. (2024) Mir221/222 Drive Synovial Hyperplasia and Arthritis by Targeting Cell Cycle Inhibitors and Chromatin Remodeling Components. eLife, 13, e84698. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Raval, C.M., Zhong, J.L., Mitchell, S.A. and Tyrrell, R.M. (2012) The Role of Bach1 in Ultraviolet A-Mediated Human Heme Oxygenase 1 Regulation in Human Skin Fibroblasts. Free Radical Biology and Medicine, 52, 227-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, Q., Zhang, C. and Fu, X. (2016) Will Stem Cells Bring Hope to Pathological Skin Scar Treatment? Cytotherapy, 18, 943-956. [Google Scholar] [CrossRef] [PubMed]
|