青蒿琥酯抗宫颈癌作用机制的研究进展
Research Progress on the Mechanism of Artesunate against Cervical Cancer
DOI: 10.12677/acm.2025.15123520, PDF, HTML, XML,   
作者: 李子章:承德医学院研究生学院,河北 承德;邢台人民医院妇二科,河北 邢台;张成果, 刘晓阳, 韩嘉瑶, 周 楠*:邢台人民医院妇二科,河北 邢台
关键词: 青蒿琥酯宫颈肿瘤作用机制临床前景Artesunate Cervical Neoplasms Mechanisms of Action Clinical Prospects
摘要: 青蒿琥酯作为青蒿素的衍生物之一,因高效抗疟作用被广泛熟知,近年来其抗肿瘤潜力备受关注。宫颈癌作为全球女性高发恶性肿瘤,受耐药性、晚期转移及复发等问题影响,现有治疗效果有限。研究显示,该药物可通过多重机制发挥抗宫颈癌作用,包括诱导肿瘤细胞凋亡、触发铁死亡、抑制端粒酶活性、调节肿瘤免疫微环境、逆转放化疗耐药性,阻断肿瘤血管生成等,展现出显著的抗宫颈癌潜力。青蒿琥酯的多靶点作用特性为其老药新用、开发治疗药物或联合治疗方案提供了重要理论依据,有望为改善宫颈癌患者预后,尤其是难治性病例的治疗带来新突破。
Abstract: As one of the derivatives of artemisinin, artesunate is widely known for its potent antimalarial activity, and its antitumor potential has attracted considerable attention in recent years. Cervical cancer is a common malignant tumor among women worldwide, with limited efficacy of current treatments due to issues such as drug resistance, advanced metastasis, and recurrence. Studies have shown that artesunate exerts anti-cervical cancer effects through multiple mechanisms, including inducing tumor cell apoptosis, triggering ferroptosis, inhibiting telomerase activity, regulating the tumor immune microenvironment, reversing radioresistance and chemoresistance, and blocking tumor angiogenesis, etc. These findings demonstrate its significant anti-cervical cancer potential. The multi-targeted property of artesunate provides an important theoretical basis for its repurposing, development as a therapeutic agent, or formulation of combination therapy regimens. It is expected to bring new breakthroughs in improving the prognosis of cervical cancer patients, especially in the treatment of refractory cases.
文章引用:李子章, 张成果, 刘晓阳, 韩嘉瑶, 周楠. 青蒿琥酯抗宫颈癌作用机制的研究进展[J]. 临床医学进展, 2025, 15(12): 1202-1209. https://doi.org/10.12677/acm.2025.15123520

1. 引言

宫颈癌(Cervical cancer)是妇科领域最常见的恶性肿瘤之一,其发病率和死亡率在全球范围内均位于第四位[1],研究数据显示,2022年我国宫颈癌新发病例高达15.07万例,死亡率为8.06/10万人,宫颈癌已成为危害女性生命健康安全的重大公共问题[2]。人乳头瘤病毒(Human Papillomavirus Infection, HPV)感染是宫颈癌的主要病因,尤其是高危型HPV与宫颈癌的发生发展密切相关[3]。尽管宫颈癌的预防和筛查政策逐步推广,有利于宫颈癌的早发现、早诊断、早治疗,但由于其耐铂性、晚期复发和转移等原因,导致宫颈癌后期的整体治疗效果不理想,因此,探究宫颈癌新的治疗策略具有重要意义。

青蒿琥酯(Artesunate, ART)又称青蒿酯,是青蒿素的衍生物之一,化学名为DHA-1,2-α-琥珀酸单酯,分子式为C19O8H28,分子量为384.43 Da,其过氧化物桥结构发挥着主要作用[4]。目前,ART作为抗疟药物广泛应用于临床,具有经济、速效、低毒、不易产生耐药性等优势,同时其还具有抗炎、抗病毒、抗菌、调节免疫反应、抗血管生成及其抗肿瘤的作用[5]-[8]。研究表明,ART具有确切的抗宫颈癌作用。本文旨在综述青蒿琥酯抗宫颈癌作用机制的研究进展,为宫颈癌的治疗策略提供新的部分思路。

2. ART诱导肿瘤细胞凋亡

细胞凋亡是青蒿琥酯抗宫颈癌的主要机制之一。细胞凋亡是一种程序性、受基因控制的一种自主性细胞死亡的过程。细胞凋亡有两种明确的途径,线粒体途径和膜受体途径[9]。同时,外部的因素可通过信号转导途径影响细胞内基因的表达,从而间接调控细胞凋亡[10]

Bcl-2 (B-cell lymphoma/leukemia-2 gene)家族蛋白在细胞凋亡过程中起着关键的调控作用。根据其功能和氨基酸序列的相似性分为三个亚群,包括促凋亡的BH3-only蛋白(BIM等)、抗凋亡蛋白(Bcl2、Bcl-xl、Mcl-1等)和凋亡效应因子(Bax、Bak、Bak) [11]-[13]。Bcl2家族蛋白可定位于线粒体,其表达平衡稳定了线粒体膜电位[14]。当线粒体膜电位降低时,导致细胞色素C的释放,Ca2+进入细胞质,ROS的生成增加,从而导致细胞凋亡的发生[15]。Zhang等[16]研究表明,青蒿琥酯能够增加宫颈癌SiHa细胞质内ROS、Ca2+的水平和BIM、Bak、Bax和Bak的mRNA表达水平,降低Bcl2、Bcl-xl和Mcl-1的mRNA表达水平,从而诱导宫颈癌SiHa细胞通过线粒体凋亡途径发生细胞凋亡。

P38信号通路是丝裂原活化蛋白激酶(Mitogen-activated protein kinases, MAPKs)家族中的关键信号通路之一,广泛参与细胞应激反应、炎症、凋亡、分化以及细胞周期调控等过程[17]。以往研究表明,p38信号通路在促进人类宫颈癌HeLa细胞凋亡方面具有显著作用,使用PD169316 (p38抑制剂)可以显著降低p38介导的促凋亡效应[18]。根据杨华等人的研究,上调p38蛋白的磷酸化水平可能是青蒿琥酯诱导宫颈癌细胞凋亡的机制之一[19]

肿瘤坏死因子相关凋亡诱导配体(Tumor necrosis factor-related apoptosis inducing ligand, TRAIL)是肿瘤坏死因子超级家族的一员,其选择性地诱导肿瘤细胞发生凋亡,同时对大多数正常细胞表现出极小或不存在细胞毒性[20] [21]。但相当多的癌细胞,尤其是一些高度恶性肿瘤,对TRAIL诱导的细胞凋亡具有抵抗力。研究显示,ART可以通过抑制NF-κB的转录活性和Akt的磷酸化进而抑制PI3K/Akt信号通路,来有效增强 TRAIL介导的宫颈癌HeLa细胞的凋亡,导致促存活蛋白减少,从而触发外源性和内源性细胞凋亡[22]

3. ART抑制端粒酶活性

端粒酶是一种维持细胞端粒长度的酶,其活性在癌细胞中通常被激活,从而赋予癌细胞无限增殖的能力[23]。端粒酶逆转录酶(Telomerase Reverse Transcriptase,简称TERT)是端粒酶复合体的关键亚基,端粒酶和人端粒酶逆转录酶(Human telomerase reverse transcriptase,hTERT)在包括宫颈癌在内的大多数癌症中显著上调[24]。研究显示,ART能够显著抑制hTERT基因的表达,其表达的下调直接导致端粒酶活性的降低,使得癌细胞的端粒长度逐渐缩短,端粒缩短后,细胞无法维持正常的分裂能力,最终进入衰老或凋亡程序,从而抑制宫颈癌细胞的增殖能力[25]

4. ART诱导肿瘤细胞铁死亡

铁死亡(Ferroptosis)是近年来发现的一种铁依赖性、脂质过氧化驱动的非凋亡性细胞死亡形式[26]。其机制与铁代谢紊乱、氨基酸抗氧化系统破坏及脂质过氧化物堆积有关[27]。当胞内Fe2+含量明显升高时,会催化芬顿反应,驱动脂质过氧化,使细胞内产生大量活性氧(Reactive oxygen species, ROS),ROS通过一系列反应生成丙二醛(Malonic dialdehyde, MDA),造成细胞代谢和功能障碍,引起细胞死亡[28]

有研究表明,许多肿瘤细胞过表达转铁蛋白受体(Transferrin receptor 1, TFR1)以增加铁的摄取,这使宫颈癌细胞和HPV转化细胞中的细胞内铁离子相比正常细胞内的铁离子多[29]。研究表明,铁浓度的升高促进了HPV-16 SiHa细胞的生长,增加了E6和E7蛋白的表达,进而使持续性HPV感染的风险增加[30],促进了宫颈癌的发生及发展。青蒿琥酯中的内过氧化物桥结构与细胞内的铁离子起反应后断裂,可产生以碳为核心的自由基或ROS,通过铁死亡诱导肿瘤细胞的死亡[31]-[33]

5. ART对免疫功能进行调节

青蒿琥酯对宫颈癌诱导的免疫抑制性肿瘤微环境也存在调控作用。前列腺素E2 (Prostaglandin E2, PGE2)是一种具有免疫抑制作用的细胞因子,是环氧合酶-2 (Cyclooxygenase-2, COX-2)的合成产物,广泛存在于肿瘤微环境中,它能够抑制T细胞和自然杀伤细胞(NK细胞)的活性,促进调节性T细胞(Tregs)的扩增[34]。Tregs是一类具有免疫抑制功能的细胞,能够通过分泌抑制性细胞因子IL-10、TGF-β和直接抑制效应T细胞的活性,促进肿瘤的免疫逃逸。Foxp3是Tregs的关键转录因子,其高表达与Tregs的免疫抑制功能密切相关[35]。在宫颈癌组织中,COX-2的表达和PGE2的合成均上调[36]。据报道,ART可有效抑制HOTAIR (HOX transcript antisense intergenic RNA)的表达,导致COX-2的表达和催化活性降低[37],抑制PGE2的产生,从而降低Tregs中Foxp3的表达水平,显著降低了肿瘤的免疫逃逸能力[38]

6. ART逆转肿瘤耐药性

随着放化疗在宫颈癌治疗中的广泛应用,肿瘤耐药及毒副作用的问题进入人们的视线,青蒿琥酯与放化疗的联合应用研究也成为了重要的研究方向。

研究显示[39],放射性DNA损伤的细胞会分别被阻滞在C1期和G2期,进行DNA损伤修复。肿瘤抑制基因p53在启动细胞周期阻滞方面具有重要作用,而p53功能缺失的肿瘤细胞不能启动G1期关卡,在DNA受损后主要表现为G2期阻滞,只能依靠G2期关卡的功能阻止细胞在进入有丝分裂前期修复损伤DNA。若抑制由射线诱导的细胞G2/M期阻滞,使有放射损伤的细胞因得不到充足的时间进行DNA修复,直接进入有丝分裂期,会促进细胞死亡发生。细胞从G1期进入M期主要调控因素是细胞周期蛋白依赖性激酶2/细胞周期蛋白B1蛋白复合物(Cyclin-Dependent Kinase 2/Cyclin B1 Protein Complex, Cdc2/Cyclin Bl) [40]。Cdc2的活性除了和Cyclin B1结合外,还受磷酸化所支配。Wee1样蛋白激酶(Wee1-like Protein Kinase, Wee1)是控制Cdc2的磷酸化的主要激酶,抑制Wee1激酶的活性,可以降低Cdc2的磷酸化水平,从而使Cdc2活性增强,降低电离辐射引起的G2期阻滞。周媛媛等研究表明,ART通过调控Wee1和Cyclin B1蛋白的表达,抑制由射线诱导的移植瘤细胞G2/M期阻滞,对p53突变型宫颈癌HeLa细胞移植瘤发挥放射增敏作用,而对p53野生型子宫颈癌Siha细胞没有明显的放射增敏作用。并且ART通过Wee1对Cdc2间接发挥作用,而不是直接作用[41]-[44]。据报道,ART似乎通过复杂的机制调节HeLa细胞的放射敏感性,包括RNA运输、剪接体、RNA降解、p53信号通路和丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK) [45]

研究显示,ART能够与顺铂协同作用,增强后者的抗癌效果[46] [47]。ART被证明可以上调DNA损伤标志物的表达,增强顺铂诱导DNA损伤,从而促进肿瘤细胞凋亡。同时下调多药耐药相关蛋白Bcl-xl和Mcl-1水平,进而克服宫颈癌顺铂耐药性[22]。ART还可以下调c-Myc (Cellular Myelocytomatosis Oncogene, c-Myc)与ABCG2 (ATP-binding cassette sub-family G member 2, ABCG2)的mRNA和蛋白质的表达,既起到抑制肿瘤细胞增殖的作用,还起到逆转顺铂耐药性的作用[47]

7. ART抑制HPV活性

HPV感染是宫颈癌发生的核心病因,其关键致癌蛋白E6和E7在肿瘤发展中发挥关键作用:E6通过抑制p53肿瘤抑制蛋白,E7通过抑制pRb肿瘤抑制蛋白,共同帮助肿瘤细胞逃避免疫监视,诱导癌变[48] [49]。青蒿琥酯可直接下调HPV的E6和E7蛋白表达,解除其对p53和pRb的抑制作用,恢复这两种肿瘤抑制蛋白的正常功能,从病因层面阻断宫颈癌的发生和进展[50]。这一机制为青蒿琥酯在HPV阳性宫颈癌,尤其是高危型HPV相关宫颈癌中的应用提供了重要分子基础。

此外,针对HPV相关宫颈上皮内瘤样病变(CIN)的临床研究显示,在标准护理治疗切除之前使用青蒿琥酯阴道栓(50 mg、200 mg)局部治疗宫颈上皮内瘤变2/3 (CIN 2/3),观察到67.9% (19/28)患者实现组织学缓解(CIN 1及以下),47.4% (9/19)的人将HPV清除到无法检测的水平,且2~3周期组缓解时间(12.9周)短于1周期组(20.4周);并且无3~4级不良事件(Adverse Event, AE),90%患者报告AE但多为1级局部反应(阴道瘙痒、阴道疼痛),结论认为在ART有效剂量下安全性和耐受性良好[51]。Chad等[52]人使用青蒿琥酯软膏外用局部治疗HPV相关外阴上皮内瘤变(VIN) 2/3,共纳入15例完成治疗的患者,分为1周期(5天)、2周期(每2周1次,共2次)、3周期(每2周1次,共3次)三组,均使用40%青蒿琥酯软膏(400 mg青蒿琥酯复合于1 g凡士林)自涂。结果显示,治疗同样无3~4级AE及剂量限制性毒性(Dose-Limiting Toxicity, DLT),93.3%患者出现外阴灼热(最常见AE),76.4% AE为1级;总完全缓解(CR)率53.3%、部分缓解(PR)率26.7%,其中3周期组总缓解率(Overall Response Rate, ORR)最高达,CR患者中62.5%实现HPV清除,非HPV16感染患者CR率100%。一项I期药代动力学研究评价了在非洲低资源地区采用青蒿琥酯阴道制剂治疗宫颈癌前病变的可行性,为优化剂量和给药频率提供了信息基础[53],这都为其临床转化奠定了初步基础。

8. ART抗血管生成

血管内皮生长因子(Vascular endothelial growth factor, VEGF)是关键的促血管生成因子,肿瘤细胞通过分泌VEGF诱导新生血管形成,为肿瘤生长和转移提供营养支持,在宫颈癌进展中起重要作用。在HPV-18阳性宫颈癌细胞中,hTERT可通过HPV E7调控VEGF表达,下调hTERT表达可显著降低VEGF水平,这一调控轴是HPV诱导宫颈癌血管生成的关键机制[53]。青蒿琥酯可以减少VEGF介导的血管生成[25],还能通过抑制端粒酶亚基的表达,间接下调VEGF水平,进而抑制宫颈癌细胞增殖和肿瘤血管形成,阻断肿瘤转移途径。

9. 临床转化挑战与前景

青蒿琥酯在宫颈癌治疗中展现出多机制协同优势,但从基础研究走向临床应用仍面临诸多挑战,同时也具备明确的发展前景。

AS为弱酸性药物,在体内主要通过简单扩散的方式跨过生物膜,在酸性体液中较易透过生物膜,在弱碱性溶液中可完全溶解。鉴于其优秀的理化性质,AS可以制成各类制剂,如注射液、片剂、栓剂、脂质体微囊[54]等,用于注射、口服或直肠给药,甚至可以经静脉滴注进行全身给药。局部给药如阴道栓剂等可直接作用于宫颈病灶,提高局部药物浓度,治疗宫颈上皮内瘤变(CIN)中显示出良好安全性与初步疗效,提示局部递送可能是优化其应用的策略之一,但该途径对晚期转移性宫颈癌效果有限,且给药的便利性和患者的依从性需进一步优化。全身给药如静脉注射、口服等全身给药方式可作用于全身转移病灶,适合晚期宫颈癌治疗,但需解决生物利用度低和全身毒性问题。未来可通过制剂改良(如纳米载体、脂质体包裹等)提高生物利用度,降低非靶向组织毒性。在生物标志物开发方面,目前尚未确立可用于筛选青蒿琥酯优势人群的可靠标志物。未来研究可聚焦于铁代谢相关蛋白(如TFR1)、HPV基因型、凋亡通路关键分子等,以期实现个体化治疗。

与顺铂、放疗等现有标准疗法相比,青蒿琥酯展现出多机制协同、毒副作用较低以及可逆转耐药等潜在优势,尤其适合作为联合治疗方案的一部分。此外,青蒿琥酯与靶向药物或免疫疗法之间也可能存在的协同作用,需进一步探索。未来有必要开展更大规模、多中心的II/III期临床试验。以明确青蒿琥酯在局部晚期、复发或耐药宫颈癌患者中的疗效与安全性,并积极探索其与免疫检查点抑制剂、PARP抑制剂等新型疗法联合应用的潜力。

10. 总结与展望

蒿琥酯作为一种多靶点、低毒、不易耐受的中国传统药物,在抗宫颈癌研究中展现出广阔的应用前景。然而,现有研究虽已明确其核心作用机制,但仍存在诸多亟待突破的领域:① 深入解析青蒿琥酯在宫颈癌中的分子靶点与信号网络;② 扩大临床试验规模,聚焦晚期宫颈癌患者,尤其是在难治性病例中的疗效与安全性;③ 探索单药及联合放化疗、免疫治疗及HPV疫苗等联合治疗的疗效和安全性;④ 优化给药途径及制剂工艺,开发高效、低毒的局部或全身给药制剂,提高治疗效果;⑤ 探索可靠的生物标志物,用于患者分层与疗效预测,建立更精准的用药指导体系。综上所述,青蒿琥酯有望成为宫颈癌治疗体系中的重要组成部分,其临床转化路径虽充满挑战,但也有着重要的科学价值与临床应用潜力。

NOTES

*通讯作者。

参考文献

[1] 王裕新, 潘凯枫, 李文庆. 2022全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2024, 10(3): 1-16.
[2] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. [Google Scholar] [CrossRef] [PubMed]
[3] Huang, R., Liu, Z., Sun, T. and Zhu, L. (2024) Cervicovaginal Microbiome, High-Risk HPV Infection and Cervical Cancer: Mechanisms and Therapeutic Potential. Microbiological Research, 287, Article ID: 127857. [Google Scholar] [CrossRef] [PubMed]
[4] 蒋沅岐, 董玉洁, 周福军, 等. 青蒿素及其衍生物的研究进展[J]. 中草药, 2022, 53(2): 599-608.
[5] 张雨婷, Muhammad Shahbaz, 张蕊, 等. 青蒿琥酯联合用药及作用机制研究进展[J]. 中国实验方剂学杂志, 2024, 30(3): 290-298.
[6] An, J., Minie, M., Sasaki, T., Woodward, J.J. and Elkon, K.B. (2017) Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs. Annual Review of Medicine, 68, 317-330. [Google Scholar] [CrossRef] [PubMed]
[7] 封潇添, 马剑雄, 王岩, 等. 青蒿素及其衍生物治疗骨科相关疾病的研究进[J]. 中国中药杂志, 2024, 49(18): 4829-4840.
[8] 李林林, 张会敏, 宋健, 等. 青蒿琥酯的抗炎作用及机制研究进展[J]. 中国实验方剂学杂志, 2023, 29(12): 241-247.
[9] Strasser, A., Harris, A.W., Huang, D.C., Krammer, P.H. and Cory, S. (1995) Bcl-2 and Fas/APO-1 Regulate Distinct Pathways to Lymphocyte Apoptosis. The EMBO Journal, 14, 6136-6147. [Google Scholar] [CrossRef] [PubMed]
[10] Green, D.R. and Kroemer, G. (2004) The Pathophysiology of Mitochondrial Cell Death. Science, 305, 626-629. [Google Scholar] [CrossRef] [PubMed]
[11] Adams, J.M. and Cory, S. (1998) The Bcl-2 Protein Family: Arbiters of Cell Survival. Science, 281, 1322-1326. [Google Scholar] [CrossRef] [PubMed]
[12] Youle, R.J. and Strasser, A. (2008) The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nature Reviews Molecular Cell Biology, 9, 47-59. [Google Scholar] [CrossRef] [PubMed]
[13] Czabotar, P.E., Lessene, G., Strasser, A. and Adams, J.M. (2013) Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nature Reviews Molecular Cell Biology, 15, 49-63. [Google Scholar] [CrossRef] [PubMed]
[14] Kaloni, D., Diepstraten, S.T., Strasser, A. and Kelly, G.L. (2022) BCL-2 Protein Family: Attractive Targets for Cancer Therapy. Apoptosis, 28, 20-38. [Google Scholar] [CrossRef] [PubMed]
[15] Li, J., Cui, J., Li, Z., Fu, X., Li, J., Li, H., et al. (2020) ORP8 Induces Apoptosis by Releasing Cytochrome c from Mitochondria in Non-Small Cell Lung Cancer. Oncology Reports, 43, 1516-1524. [Google Scholar] [CrossRef] [PubMed]
[16] Zhang, Q., Li, X., He, C., Zhou, R., Wang, J. and Liu, L. (2024) Artesunate Promotes Cervical Cancer Cell Apoptosis by Regulating Bcl2 Family Molecules and Reducing the Mitochondrial Membrane Potential. Oncology Letters, 28, Article No. 315. [Google Scholar] [CrossRef] [PubMed]
[17] 夏洪平, 杨惠玲. p38 MAPK信号转导通路及其与细胞凋亡的关系[J]. 癌变. 畸变. 突变, 2006(3): 255-256.
[18] Wang, J., Zhang, B., Guo, Y., Li, G., Xie, Q., Zhu, B., et al. (2008) Artemisinin Inhibits Tumor Lymphangiogenesis by Suppression of Vascular Endothelial Growth Factor C. Pharmacology, 82, 148-155. [Google Scholar] [CrossRef] [PubMed]
[19] Hua, Y., Xianjie T, Jinghe L. (2017) Analysis of the Effects of Artemisinin Derivatives on Proliferation and Apoptosis of HeLa Cells in Cervical Cancer and Its Molecular Mechanism. Progress in Obstetrics and Gynecology, 26, 881-884.
[20] Wang, S. (2008) The Promise of Cancer Therapeutics Targeting the TNF-Related Apoptosis-Inducing Ligand and TRAIL Receptor Pathway. Oncogene, 27, 6207-6215. [Google Scholar] [CrossRef] [PubMed]
[21] Perez-Cruz, I., Cárcamo, J.M. and Golde, D.W. (2006) Caspase-8 Dependent TRAIL-Induced Apoptosis in Cancer Cell Lines Is Inhibited by Vitamin C and Catalase. Apoptosis, 12, 225-234. [Google Scholar] [CrossRef] [PubMed]
[22] Thanaketpaisarn, O., Waiwut, P., Sakurai, H., et al. (2011) Artesunate Enhances TRAIL-Induced Apoptosis in Human Cervical Carcinoma Cells through Inhibition of the NF-κB and PI3K/Akt Signaling Pathways. International Journal of Oncology, 39, 279-285.
[23] Shay, J.W. (2016) Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discovery, 6, 584-593. [Google Scholar] [CrossRef] [PubMed]
[24] Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L.C., et al. (1994) Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science, 266, 2011-2015. [Google Scholar] [CrossRef] [PubMed]
[25] Mondal, A. and Chatterji, U. (2015) Artemisinin Represses Telomerase Subunits and Induces Apoptosis in HPV‐39 Infected Human Cervical Cancer Cells. Journal of Cellular Biochemistry, 116, 1968-1981. [Google Scholar] [CrossRef] [PubMed]
[26] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
[27] Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
[28] Sharma, G.N., Gupta, G. and Sharma, P. (2018) A Comprehensive Review of Free Radicals, Antioxidants, and Their Relationship with Human Ailments. Critical Reviews in Eukaryotic Gene Expression, 28, 139-154. [Google Scholar] [CrossRef] [PubMed]
[29] Disbrow, G.L., Baege, A.C., Kierpiec, K.A., Yuan, H., Centeno, J.A., Thibodeaux, C.A., et al. (2005) Dihydroartemisinin Is Cytotoxic to Papillomavirus-Expressing Epithelial Cells in Vitro and in Vivo. Cancer Research, 65, 10854-10861. [Google Scholar] [CrossRef] [PubMed]
[30] Siegel, E.M., Patel, N., Lu, B., Lee, J., Nyitray, A.G., Huang, X., et al. (2012) Circulating Biomarkers of Iron Storage and Clearance of Incident Human Papillomavirus Infection. Cancer Epidemiology, Biomarkers & Prevention, 21, 859-865. [Google Scholar] [CrossRef] [PubMed]
[31] Batty, K.T., Anh Thu, L.T., Davis, T.M.E., Ilett, K.F., Xuan Mai, T., Canh Hung, N., et al. (1998) A Pharmacokinetic and Pharmacodynamic Study of Intravenous vs Oral Artesunate in Uncomplicated Falciparum Malaria. British Journal of Clinical Pharmacology, 45, 123-129. [Google Scholar] [CrossRef] [PubMed]
[32] Zhang, C., Liu, X., Jin, S., Chen, Y. and Guo, R. (2022) Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Molecular Cancer, 21, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
[33] Shi, H., Xiong, L., Yan, G., Du, S., Liu, J. and Shi, Y. (2023) Susceptibility of Cervical Cancer to Dihydroartemisinin-Induced Ferritinophagy-Dependent Ferroptosis. Frontiers in Molecular Biosciences, 10, Article ID: 1156062. [Google Scholar] [CrossRef] [PubMed]
[34] Baratelli, F., Lin, Y., Zhu, L., Yang, S., Heuzé-Vourc’h, N., Zeng, G., et al. (2005) Prostaglandin E2 Induces foxp3 Gene Expression and T Regulatory Cell Function in Human CD4+ T Cells. The Journal of Immunology, 175, 1483-1490. [Google Scholar] [CrossRef] [PubMed]
[35] Josefowicz, S.Z., Lu, L. and Rudensky, A.Y. (2012) Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology, 30, 531-564. [Google Scholar] [CrossRef] [PubMed]
[36] Sales, K.J., Katz, A.A., Davis, M., Hinz, S., Soeters, R.P., Hofmeyr, M.D., et al. (2001) Cyclooxygenase-2 Expression and Prostaglandin E2 Synthesis Are Up-Regulated in Carcinomas of the Cervix: A Possible Autocrine/Paracrine Regulation of Neoplastic Cell Function via EP2/EP4 Receptors. The Journal of Clinical Endocrinology & Metabolism, 86, 2243-2249. [Google Scholar] [CrossRef] [PubMed]
[37] Zhang, L., Qian, H., Sha, M., Luan, Z., Lin, M., Yuan, D., et al. (2016) Downregulation of HOTAIR Expression Mediated Anti-Metastatic Effect of Artesunate on Cervical Cancer by Inhibiting COX-2 Expression. PLOS ONE, 11, e0164838. [Google Scholar] [CrossRef] [PubMed]
[38] Zhang, L.X., Liu, Z.N., Ye, J., Sha, M., Qian, H., Bu, X., et al. (2014) Artesunate Exerts an Anti‐Immunosuppressive Effect on Cervical Cancer by Inhibiting Pge2 Production and Foxp3 Expression. Cell Biology International, 38, 639-646. [Google Scholar] [CrossRef] [PubMed]
[39] Essmann, F., Engels, I.H., Totzke, G., Schulze-Osthoff, K. and Jänicke, R.U. (2004) Apoptosis Resistance of MCF-7 Breast Carcinoma Cells to Ionizing Radiation Is Independent of P53 and Cell Cycle Control but Caused by the Lack of Caspase-3 and a Caffeine-Inhibitable Event. Cancer Research, 64, 7065-7072. [Google Scholar] [CrossRef] [PubMed]
[40] Kawamoto, H., Koizumi, H. and Uchikoshi, T. (1997) Expression of the G2-M Checkpoint Regulators Cyclin B1 and cdc2 in Nonmalignant and Malignant Human Breast Lesions: Immunocytochemical and Quantitative Image Analyses. The American Journal of Pathology, 150, 15-23.
[41] 周媛媛, 封阳, 张旭光, 等. 青蒿琥酯对人宫颈癌HeLa和Siha细胞辐照后DNA损伤水平的影响[J]. 辐射研究与辐射工艺学报, 2011, 29(1): 33.
[42] Gong, X.M., Zhang, Q., Torossian, A., Cao, J. and Fu, S. (2012) Selective Radiosensitization of Human Cervical Cancer Cells and Normal Cells by Artemisinin through the Abrogation of Radiation-Induced G2 Block. International Journal of Gynecological Cancer, 22, 718-724. [Google Scholar] [CrossRef] [PubMed]
[43] 周媛媛. 青蒿琥酯对宫颈癌HeLa和Siha细胞裸鼠移植瘤放射增敏的实验研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2011.
[44] 陈文佳, 毛霞, 张彦琼, 等. 青蒿琥酯对肿瘤放化疗增敏作用的研究现状分析和展望[J]. 中国中药杂志, 2019, 44(23): 5231-5239.
[45] Luo, J., Zhu, W., Tang, Y., Cao, H., Zhou, Y., Ji, R., et al. (2014) Artemisinin Derivative Artesunate Induces Radiosensitivity in Cervical Cancer Cells in Vitro and in Vivo. Radiation Oncology, 9, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
[46] Niederreiter, M., Klein, J., Arndt, K., Werner, J. and Mayer, B. (2023) Anti-Cancer Effects of Artesunate in Human 3D Tumor Models of Different Complexity. International Journal of Molecular Sciences, 24, Article No. 7844. [Google Scholar] [CrossRef] [PubMed]
[47] 刘又彰. 青蒿琥酯对化疗耐药癌细胞裸鼠腮腺移植瘤c-Myc、ABCG2表达的影响[D]: [硕士学位论文]. 南宁: 广西医科大学, 2017.
[48] Chen, T.H., Huang, C.C., Yeh, K.T., et al. (2012) Human Papilloma Virus 16 E6 Oncoprotein Associated with P53 Inactivation in Colorectal Cancer. World Journal of Gastroenterology, 18, 4051-4058. [Google Scholar] [CrossRef] [PubMed]
[49] Helt, A.M. and Galloway, D.A. (2001) Destabilization of the Retinoblastoma Tumor Suppressor by Human Papillomavirus Type 16 E7 Is Not Sufficient to Overcome Cell Cycle Arrest in Human Keratinocytes. Journal of Virology, 75, 6737-6747. [Google Scholar] [CrossRef] [PubMed]
[50] Goodrich, S.K., Schlegel, C.R., Wang, G. and Belinson, J.L. (2014) Use of Artemisinin and Its Derivatives to Treat HPV-Infected/Transformed Cells and Cervical Cancer: A Review. Future Oncology, 10, 647-654. [Google Scholar] [CrossRef] [PubMed]
[51] Trimble, C.L., Levinson, K., Maldonado, L., Donovan, M.J., Clark, K.T., Fu, J., et al. (2020) A First-in-Human Proof-of-Concept Trial of Intravaginal Artesunate to Treat Cervical Intraepithelial Neoplasia 2/3 (CIN2/3). Gynecologic Oncology, 157, 188-194. [Google Scholar] [CrossRef] [PubMed]
[52] Michener, C.M., Ricci, S., AlHilli, M., Beffa, L., Debernardo, R., Waggoner, S.E., et al. (2023) Safety and Efficacy of Topical Artesunate for the Treatment of Vulvar Intraepithelial Neoplasia 2/3. Gynecologic Oncology, 178, 102-109. [Google Scholar] [CrossRef] [PubMed]
[53] Mungo, C., Sorgi, K., Misiko, B., et al. (2025) Phase I Study on the Pharmacokinetics of Intravaginal, Self-Administered Artesunate Vaginal Pessaries among Women in Kenya.
[54] Li, F. and Cui, J. (2015) Human Telomerase Reverse Transcriptase Regulates Vascular Endothelial Growth Factor Expression via Human Papillomavirus Oncogene E7 in HPV-18-Positive Cervical Cancer Cells. Medical Oncology, 32, Article No. 199. [Google Scholar] [CrossRef] [PubMed]