|
[1]
|
Pak‐Yin Liu, A., Moreira, D.C., Sun, C., Krull, L., Gao, Y., Yang, B., et al. (2020) Challenges and Opportunities for Managing Pediatric Central Nervous System Tumors in China. Pediatric Investigation, 4, 211-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
儿童髓母细胞瘤诊疗规范(2021年版) [J]. 全科医学临床与教育, 2021, 19(7): 581-584.
|
|
[3]
|
Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schwalbe, E.C., Lindsey, J.C., Nakjang, S., Crosier, S., Smith, A.J., Hicks, D., et al. (2017) Novel Molecular Subgroups for Clinical Classification and Outcome Prediction in Childhood Medulloblastoma: A Cohort Study. The Lancet Oncology, 18, 958-971. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pytel, P. and Lukas, R.V. (2009) Update on Diagnostic Practice: Tumors of the Nervous System. Archives of Pathology & Laboratory Medicine, 133, 1062-1077. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
张洁洁, 牛春艳, 董莲华, 等. 循环肿瘤DNA的检测技术及在癌症诊疗中的应用价值[J]. 生物化学与生物物理进展, 2024, 51(2): 345-354.
|
|
[7]
|
Walt, F. (1939) A Medulloblastoma in an Infant with Abnormal Cells in the Cerebrospinal Fluid. Archives of Disease in Childhood, 14, 84-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Arthur, C., Jylhä, C., de Ståhl, T.D., Shamikh, A., Sandgren, J., Rosenquist, R., et al. (2023) Simultaneous Ultra-Sensitive Detection of Structural and Single Nucleotide Variants Using Multiplex Droplet Digital PCR in Liquid Biopsies from Children with Medulloblastoma. Cancers, 15, Article 1972. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Miralbell, R., Bieri, S., Huguenin, P., Feldges, A., Morin, A.M., Garcia, E., et al. (1999) Prognostic Value of Cerebrospinal Fluid Cytology in Pediatric Medulloblastoma. Annals of Oncology, 10, 239-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Escudero, L., Martínez-Ricarte, F. and Seoane, J. (2021) CtDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer. Cancers, 13, Article 1989. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pagès, M., Rotem, D., Gydush, G., Reed, S., Rhoades, J., Ha, G., et al. (2022) Liquid Biopsy Detection of Genomic Alterations in Pediatric Brain Tumors from Cell-Free DNA in Peripheral Blood, CSF, and Urine. Neuro-Oncology, 24, 1352-1363. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
O’Halloran, K., Christodoulou, E., Paulson, V.A., Cole, B.L., Margol, A.S., Biegel, J.A., et al. (2025) Low-Pass Whole Genome Sequencing of Cell-Free DNA from Cerebrospinal Fluid: A Focus on Pediatric Central Nervous System Tumors. Clinical Chemistry, 71, 87-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Adalsteinsson, V.A., Ha, G., Freeman, S.S., Choudhury, A.D., Stover, D.G., Parsons, H.A., et al. (2017) Scalable Whole-Exome Sequencing of Cell-Free DNA Reveals High Concordance with Metastatic Tumors. Nature Communications, 8, Article No. 1324. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Crotty, E.E., Paulson, V.A., Ronsley, R., Vitanza, N.A., Lee, A., Hauptman, J., et al. (2024) Cerebrospinal Fluid Liquid Biopsy by Low-Pass Whole Genome Sequencing for Clinical Disease Monitoring in Pediatric Embryonal Tumors. Neuro-Oncology Advances, 6, vdae126. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dong, L., Wang, X., Wang, S., Du, M., Niu, C., Yang, J., et al. (2020) Interlaboratory Assessment of Droplet Digital PCR for Quantification of BRAF V600E Mutation Using a Novel DNA Reference Material. Talanta, 207, Article 120293. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhukova, N., Ramaswamy, V., Remke, M., Pfaff, E., Shih, D.J.H., Martin, D.C., et al. (2013) Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma. Journal of Clinical Oncology, 31, 2927-2935. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kojic, M., Maybury, M.K., Waddell, N., Koufariotis, L.T., Addala, V., Millar, A., et al. (2023) Efficient Detection and Monitoring of Pediatric Brain Malignancies with Liquid Biopsy Based on Patient-Specific Somatic Mutation Screening. Neuro-Oncology, 25, 1507-1517. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pei, X.M., Yeung, M.H.Y., Wong, A.N.N., Tsang, H.F., Yu, A.C.S., Yim, A.K.Y., et al. (2023) Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells, 12, Article 493. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zheng, Y., Chen, X., Chen, Q. and Cao, H. (2024) Comparison of Targeted Next-Generation Sequencing and Metagenomic Next-Generation Sequencing in the Identification of Pathogens in Pneumonia after Congenital Heart Surgery: A Comparative Diagnostic Accuracy Study. Italian Journal of Pediatrics, 50, Article No. 174. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Barata, P.C., Mendiratta, P., Heald, B., Klek, S., Grivas, P., Sohal, D.P.S., et al. (2018) Targeted Next-Generation Sequencing in Men with Metastatic Prostate Cancer: A Pilot Study. Targeted Oncology, 13, 495-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Crigna, A.T., Samec, M., Koklesova, L., Liskova, A., Giordano, F.A., Kubatka, P., et al. (2020) Cell-Free Nucleic Acid Patterns in Disease Prediction and Monitoring—Hype or Hope? EPMA Journal, 11, 603-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, S., Meng, F., Li, M., Bao, H., Chen, X., Zhu, M., et al. (2023) Multidimensional Cell-Free DNA Fragmentomic Assay for Detection of Early-Stage Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 207, 1203-1213. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bao, H., Wang, Z., Ma, X., Guo, W., Zhang, X., Tang, W., et al. (2022) Letter to the Editor: An Ultra-Sensitive Assay Using Cell-Free DNA Fragmentomics for Multi-Cancer Early Detection. Molecular Cancer, 21, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, Y., Fan, X., Bao, H., Xia, F., Wan, J., Shen, L., et al. (2023) Utility of Circulating Free DNA Fragmentomics in the Prediction of Pathological Response after Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clinical Chemistry, 69, 88-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fan, R., Chen, L., Zhao, S., Yang, H., Li, Z., Qian, Y., et al. (2023) Novel, High Accuracy Models for Hepatocellular Carcinoma Prediction Based on Longitudinal Data and Cell-Free DNA Signatures. Journal of Hepatology, 79, 933-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Diehl, F., Schmidt, K., Choti, M.A., Romans, K., Goodman, S., Li, M., et al. (2008) Circulating Mutant DNA to Assess Tumor Dynamics. Nature Medicine, 14, 985-990. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Schiavon, G., Hrebien, S., Garcia-Murillas, I., Cutts, R.J., Pearson, A., Tarazona, N., et al. (2015) Analysis of esr1 Mutation in Circulating Tumor DNA Demonstrates Evolution during Therapy for Metastatic Breast Cancer. Science Translational Medicine, 7, 313ra182. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sun, Y., Li, M., Ren, S., Liu, Y., Zhang, J., Li, S., et al. (2021) Exploring Genetic Alterations in Circulating Tumor DNA from Cerebrospinal Fluid of Pediatric Medulloblastoma. Scientific Reports, 11, Article No. 5638. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, Y., Springer, S., Zhang, M., McMahon, K.W., Kinde, I., Dobbyn, L., et al. (2015) Detection of Tumor-Derived DNA in Cerebrospinal Fluid of Patients with Primary Tumors of the Brain and Spinal Cord. Proceedings of the National Academy of Sciences, 112, 9704-9709. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Martínez-Ricarte, F., Mayor, R., Martínez-Sáez, E., et al. (2018) Molecular Diagnosis of Diffuse Gliomas through Sequencing of Cell-Free Circulating Tumour DNA from Cerebrospinal Fluid. Clinical Cancer Research, 24, 2812-2819. [Google Scholar] [CrossRef]
|
|
[31]
|
Miller, A.M., Shah, R.H., Pentsova, E.I., Pourmaleki, M., Briggs, S., Distefano, N., et al. (2019) Tracking Tumour Evolution in Glioma through Liquid Biopsies of Cerebrospinal Fluid. Nature, 565, 654-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Escudero, L., Llort, A., Arias, A., Diaz-Navarro, A., Martínez-Ricarte, F., Rubio-Perez, C., et al. (2020) Circulating Tumour DNA from the Cerebrospinal Fluid Allows the Characterisation and Monitoring of Medulloblastoma. Nature Communications, 11, Article No. 5376. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, J., Zhao, S., Lee, M., Yin, Y., Li, J., Zhou, Y., et al. (2020) Reliable Tumor Detection by Whole-Genome Methylation Sequencing of Cell-Free DNA in Cerebrospinal Fluid of Pediatric Medulloblastoma. Science Advances, 6, eabb5427. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Eibl, R.H. and Schneemann, M. (2022) Liquid Biopsy for Monitoring Medulloblastoma. Extracellular Vesicles and Circulating Nucleic Acids, 3, 263-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Eibl, R.H. and Schneemann, M. (2021) Liquid Biopsy and Primary Brain Tumors. Cancers, 13, Article 5429. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
An, Y., Fan, F., Jiang, X. and Sun, K. (2021) Recent Advances in Liquid Biopsy of Brain Cancers. Frontiers in Genetics, 12, Article ID: 720270. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Liu, A.P.Y., Smith, K.S., Kumar, R., Paul, L., Bihannic, L., Lin, T., et al. (2021) Serial Assessment of Measurable Residual Disease in Medulloblastoma Liquid Biopsies. Cancer Cell, 39, 1519-1530.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Dagogo-Jack, I. and Shaw, A.T. (2018) Tumour Heterogeneity and Resistance to Cancer Therapies. Nature Reviews Clinical Oncology, 15, 81-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Brastianos, P.K., Carter, S.L., Santagata, S., Cahill, D.P., Taylor-Weiner, A., Jones, R.T., et al. (2015) Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 5, 1164-1177. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Johnson, B.E., Mazor, T., Hong, C., Barnes, M., Aihara, K., McLean, C.Y., et al. (2014) Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma. Science, 343, 189-193. [Google Scholar] [CrossRef] [PubMed]
|