妇科肿瘤围手术期管理的革命:从ERAS到预康复的系统性优化
The Revolution in Perioperative Management of Gynecologic Oncology: Systematic Optimization from ERAS to Prehabilitation
摘要: 妇科肿瘤约占全球女性新发癌症病例的15%,其围手术期管理面临传统护理模式预后不佳、循证依据薄弱、医疗质量异质性显著,以及高龄患者风险分层不完善、急性失血容量管理无统一标准等挑战。本文系统综述了妇科肿瘤围手术期管理的最新进展,重点探讨了从加速康复外科(Enhanced recovery after surgery, ERAS)到预康复策略的系统性优化路径。文章指出,传统围手术期护理模式存在住院时间长、并发症控制不佳及资源消耗大等问题,而ERAS通过多学科协作、微创技术、目标导向液体管理等核心要素,显著改善患者短期恢复结局。预康复作为新兴策略,通过术前运动、营养与心理干预提升患者生理及心理储备,与ERAS形成有效互补。文章还分析了特殊患者群体(如高龄、合并症及急性失血患者)的个体化管理策略,并探讨了人工智能在风险预测与个体化治疗中的潜在应用。尽管当前存在方案依从性不均、长期肿瘤学结局证据不足等挑战,整合ERAS与预康复的多模式干预方案仍是未来优化妇科肿瘤围手术期管理的关键方向。
Abstract: Gynecologic tumors account for approximately 15% of new cancer cases in women worldwide. Their perioperative management faces multiple challenges, including poor prognosis of traditional care models, weak evidence base, significant heterogeneity in medical quality, inadequate risk stratification for elderly patients, and lack of unified standards for acute blood loss volume management. This article systematically reviews the latest progress in perioperative management of gynecologic tumors, focusing on the systematic optimization path from Enhanced Recovery After Surgery (ERAS) to prehabilitation strategies. It points out that traditional perioperative care models have problems such as long hospital stays, poor complication control, and high resource consumption. In contrast, ERAS significantly improves patients’ short-term recovery outcomes through core elements including multidisciplinary collaboration, minimally invasive techniques, and goal-directed fluid therapy. As an emerging strategy, prehabilitation enhances patients’ physical and psychological reserves through preoperative exercise, nutrition, and psychological interventions, forming an effective complement to ERAS. The article also analyzes individualized management strategies for special patient groups (e.g., elderly patients, those with comorbidities, and patients with acute blood loss) and explores the potential application of artificial intelligence in risk prediction and individualized treatment. Despite current challenges such as uneven protocol compliance and insufficient evidence for long-term oncological outcomes, multimodal intervention regimens integrating ERAS and prehabilitation remain the key direction for optimizing perioperative management of gynecologic tumors in the future.
文章引用:赵熙萌, 刘一迪, 谭宏伟. 妇科肿瘤围手术期管理的革命:从ERAS到预康复的系统性优化[J]. 临床医学进展, 2025, 15(12): 1287-1298. https://doi.org/10.12677/acm.2025.15123530

1. 引言与研究价值定位

1.1. 妇科肿瘤围手术期管理面临的多方面临床挑战

妇科肿瘤在全球女性新发癌症病例中的占比约为15%,其围手术期管理面临多重临床挑战。现有证据表明,传统围手术期护理模式中的部分措施不仅缺乏必要性,且可能对患者预后产生不利影响,具体体现为术后住院时间延长、并发症控制效果欠佳,以及医疗资源消耗过高。在妇科肿瘤专科场景下,围手术期护理实践的循证决策依据仍较为薄弱[1],这一现状直接导致不同医疗机构间护理质量呈现显著异质性[2]。当前,针对高龄及合并基础疾病的患者,其围手术期风险分层体系尚不完善[3];针对急性失血等特殊场景,临床所需的容量管理方案也缺乏统一标准[4],这些因素共同加剧了围手术期管理的复杂性。此外,种族因素引发的妇科肿瘤围手术期护理差异具有普遍性[5],这一现象提示临床实践中需构建更具包容性的围手术期管理策略。

1.2. ERAS与预康复的概念演进与理论基础

在妇科肿瘤领域,加速康复外科(ERAS)计划已成为传统围手术期护理的重要替代方案[1],其核心理论基础围绕“减少手术应激反应、促进患者早期康复”两大原则展开[6]。多项研究证实,该方案能显著缩短患者术后住院时间、降低医疗支出,且不会增加并发症发生率与死亡率[1]。与此同时,预康复作为围手术期管理的新兴理念,核心目标是通过术前系统性优化患者生理储备及心理韧性[7],提升其对手术应激的耐受能力[8]。其实践框架通常以运动、营养及心理干预为核心的三联模式[9],与ERAS在妇科肿瘤围手术期管理中形成明确互补关系[8]。值得注意的是,预康复不仅聚焦手术短期结局,更通过提高治疗依从性、可能改善患者长期预后[10],为妇科肿瘤围手术期管理体系补充了更具整体性的理论支撑。

1.3. 多学科协作模式在围手术期管理中的必要性

妇科肿瘤围手术期管理的复杂性,对多学科协作模式的构建提出明确临床需求[6]。结直肠外科、肝胆外科及妇科肿瘤学领域专家依托改良Delphi共识模型[3],共同制定ERAS专项方案的标准化内容。临床实践证实,由妇科肿瘤专科护士主导协调的跨学科团队,可显著提升护理方案的执行依从性[2]。美国临床肿瘤学会、妇科肿瘤学会等权威专业组织已启动“包容、多样性、公平与可及性”专项倡议[11],为多学科协作机制的落地运行提供制度支撑。在实施维度,ERAS路径需整合覆盖术前评估、术中管理及术后随访的全流程协作体系[12],尤其要将麻醉科的麻醉管理方案、营养科的营养支持方案及心理科的心理干预方案,系统融入妇科肿瘤专科护理实践[13]。该多学科协作模式不仅可优化患者临床结局,还能借助标准化协议缩小不同医疗机构间的临床实践差异[14]

2. ERAS在妇科肿瘤手术中的应用进展

2.1. ERAS核心要素与实施路径

妇科肿瘤手术中ERAS方案的核心要素,涵盖多学科协作、术前生理优化、微创手术技术、目标导向液体管理及术后早期活动促进等关键维度[15]。与传统围手术期管理模式相比,ERAS方案依托标准化临床路径有效降低治疗异质性,其实施路径包含术前患者教育、术中体温管理、限制性输液策略及多模式镇痛等20余项循证干预措施[16]。在妇科肿瘤领域,ERAS的临床实施可使患者术后住院时间平均缩短2~3天,且未增加并发症发生率及再入院率[1]。值得注意的是ERAS方案在妇科肿瘤患者中的实施效果与护理团队的执行依从性高度相关,尤其当由妇科肿瘤专科护士主导协调术后护理时,可实现更高的协议执行率[17]

2.2. 妇科肿瘤特异性ERAS方案优化

针对妇科肿瘤患者的个体化需求,ERAS方案需开展特异性优化。Delphi共识研究明确27项适用于妇科肿瘤领域的ERAS建议,其中术前营养评估与干预、个体化血栓预防方案及术后早期肠内营养支持被界定为核心优化项目[18]。多中心研究数据表明,需针对手术复杂程度差异(如根治性子宫切除术与盆腔廓清术)采用差异化ERAS路径,其中中低复杂度手术的ERAS要素完成率可达78%,高复杂度手术则为62% [9]。针对老年妇科肿瘤患者,优化后的ERAS方案借助阿片类药物节约策略,显著降低术后恶心呕吐发生率(12小时内降幅约40%) [19]。此外,整合移动健康技术可进一步提升术后随访质量,使用专用APP的患者在疼痛评分与功能恢复指标上均优于传统随访组[20]

2.3. ERAS实施中的关键争议与解决方案

ERAS在妇科肿瘤领域的应用仍存在若干争议点。首要争议点在于方案依从性的人群差异,研究表明黑人患者在妇科肿瘤ERAS实施中的护理不依从率显著高于其他人群,这提示需针对不同人群制定差异化执行策略[17]。其次,关于ERAS对患者长期肿瘤学结局的影响,目前仍缺乏高质量循证证据,现有研究多聚焦于术后短期恢复指标[21]。针对性解决方案包括构建ERAS专用手术安全核查表,通过标准化提示强化各环节执行率,Delphi研究显示该方法可使关键要素的共识达成率提升至70%以上[18]。此外,针对体质量指数≥28kg/m²的特殊人群,改良版ERAS方案可体现更显著的恢复优势,提示需依据患者个体特征开展方案调整[4]。在争议度最高的术前肠道准备环节,妇科肿瘤手术领域的现有证据支持减少机械性肠道准备的应用,转而采用碳水化合物负荷等更符合生理需求的替代方案[6]

3. 预康复策略的系统性构建

3.1. 多模式预康复的理论框架(运动–营养–心理)

多模式预康复是一种以患者为中心、依托循证依据且强调多学科协作的围手术期管理策略,其核心理念是将优化干预的时机从传统术中及术后阶段主动前移至诊断初期[20] [22]。该模式通过整合运动训练、营养支持与心理干预三大支柱策略,核心目标是提升患者术前功能储备与生理代偿能力,进而增强其对手术应激的耐受水平[20]。运动干预涵盖有氧运动(如中等强度持续训练)、抗阻训练及针对特定手术类型的呼吸肌训练,各类训练通过差异化机制改善患者心肺功能与肌肉力量[23];营养优化以调控肌肉蛋白质合成代谢为核心,通过补充特定营养素纠正患者术前营养不良状态[24];心理干预则聚焦于缓解手术相关焦虑、强化治疗依从性,构建生物–心理–社会一体化干预模式[7]。该多维度干预的协同效应已被证实可显著提升高危患者的功能容量,为后续手术应激提供更充足的生理缓冲空间[19] [25],但对患者长期肿瘤学结局的改善仍需进一步验证。

3.2. 术前功能评估与个体化方案制定

有效的预康复实施依赖于精准的术前功能评估体系,该体系需整合客观生理指标与主观生活质量评价,形成系统化评估框架[7] [26]。心肺运动试验中测定的通气/二氧化碳斜率是预测术后肺部并发症的重要指标,常被用于指导呼吸肌训练强度的个体化调整[25]。针对妇科肿瘤患者,还需特别评估盆底肌群功能与淋巴水肿风险,为此需构建包含肿瘤特异性参数的多维度评估模型[9] [27]。基于评估结果,预康复方案需动态调整:针对心血管高风险患者,推荐采用高强度间歇训练并配合严密监护[23] [28];针对肌少症患者,则需侧重抗阻训练联合蛋白质补充[20] [24]。在时间维度上,现有证据表明,4~6周的中等周期干预可实现最佳效益,训练频率通常为每周3~6次,每次持续60分钟[29] [30]。值得注意的是,数字技术的融入使通过移动健康平台开展远程监测与方案调整成为可能,显著提升了真实世界场景下的实施可行性[31] [32]

3.3. 高强度训练对功能储备的影响机制

高强度训练作为预康复的关键组成部分,其生理效应主要通过多维度机制发挥作用:在呼吸系统层面,针对通气/二氧化碳斜率的高强度呼吸肌训练可改善通气效率,使肺切除术后肺部并发症发生率降低35%~40% [25]。在代谢层面,高强度间歇训练通过激活AMPK-PGC-1α信号通路增强线粒体生物合成,进而提升术后胰岛素敏感性与氧利用效率[24] [28]。针对肿瘤患者,高强度运动还能调控系统性炎症反应,降低IL-6等促炎因子水平,这可能与降低术后感染风险相关[28] [33]。临床研究显示,接受14天高强度预康复(涵盖呼吸训练、营养支持及心理干预)的患者,术后机械通气需求显著降低,住院时间平均缩短2.3天[25] [34]。但实施过程中需重点关注心血管风险评估与运动监护,尤其针对合并基础疾病的老年人群,建议采用分级强度递增方案以保障安全性[23] [31]。上述机制共同阐释了高强度预康复为何能更高效构建“生理储备银行”,助力患者应对手术引发的代谢挑战[7] [35]

4. 围手术期关键环节的技术革新

4.1. 目标导向液体管理的血流动力学优化

目标导向液体管理(GDFM)作为围手术期血流动力学优化的重要策略,在妇科肿瘤手术中展现出明确优势。多项随机对照研究表明,与传统液体管理方案相比,GDFM可显著降低晶体液输注速率(5.4 vs 7.0 ml/kg/h)和胶体液输注速率(1.1 vs 1.7 ml/kg/h),同时维持更理想的液体平衡量(0.3 vs 1.9 ml/kg/h) [28] [36]。其核心机制在于通过动态监测每搏量变异度、心输出量等血流动力学参数,实现个体化液体输注方案的制定[37] [38]。值得注意的是,脑肿瘤手术领域的研究显示,尽管GDFM能显著减少静脉输液量,但对术后脑水肿的改善效果尚不明确[27],该结论在妇科肿瘤手术领域仍需进一步验证。当前GDFM的临床实施仍面临算法复杂等挑战,Acumen辅助液体管理系统等新型辅助系统或可为该问题提供解决方案[32]

4.2. 微创手术与ERAS的协同效应

微创手术技术与ERAS方案在妇科肿瘤领域展现出明确的协同效应。数据显示,2012~2017年间微创手术在妇科肿瘤中的应用率从45.6%显著提升至75.3% [39]。在良性妇科手术中,微创技术的并发症发生率显著低于开腹手术,以卵巢囊肿切除术为例,两者发生率分别为3.1%与22.9% [40]。该优势在ERAS框架下进一步放大,meta分析显示,ERAS方案可将接受微创减重手术患者的总体并发症发生率从17.6%降至7.6% [22] [41]。特别值得关注的是,ERAS在微创肝手术中的应用同样呈现类似积极效果(P = 0.036) [41],这为妇科肿瘤微创手术的ERAS方案优化提供了参考。然而,2018年后妇科肿瘤领域微创手术应用率呈现下降趋势(从50.4%降至11.4%) [39]。这一变化主要源于对微创手术可能增加肿瘤复发风险的担忧,多项研究指出,微创手术在部分宫颈癌病例中的复发率和总生存率低于开腹手术[42]。然而,针对高危子宫内膜癌患者,微创手术在疾病无进展生存率和总体生存率上与开腹手术无显著差异[43],表明临床决策需根据肿瘤类型、分期及患者个体情况进行个性化评估,以权衡手术益处与潜在复发风险。

4.3. 实验室监测的精准化与成本效益分析

围手术期实验室监测的精准化发展为妇科肿瘤围手术期管理提供了新方向。腹膜液来源的小细胞外囊泡其相关分析可作为卵巢癌临床预后的新型生物标志物[44],该液体活检技术可作为术中和术后监测的微创工具。在成本效益维度,ERAS方案在妇科肿瘤领域的实施已被证实可降低医疗成本[25],但方案中具体实验室监测项目的投入产出比仍需进一步细化评估。现有证据显示,将传统实验室指标与新型生物标志物进行联合监测,或可实现效益最优平衡[45]。值得关注的是,在液体管理领域,尽管GDFM需额外投入监测设备,但其通过减少液体相关并发症,或可从整体上优化成本效益[36] [46]。未来需开展更多针对妇科肿瘤特异性实验室监测方案的经济学评估研究。

5. 特殊患者群体的管理策略

5.1. 急性失血患者的容量管理方案

妇科肿瘤手术中急性失血患者的容量管理,需依托患者血液管理策略开展针对性优化。研究表明,通过强化围手术期动态监测并落实患者血液管理方案,可显著改善急性失血患者的临床预后[40]。在容量管理方案构建中,需重点关注隐匿性失血对患者免疫微环境的扰动,该因素可能延缓术后恢复进程[47]。此外,目标导向液体治疗策略的临床应用已被证实可有效优化患者血流动力学状态,对急性失血人群的意义尤为突出[48]

5.2. 高龄与合并症患者的风险分层

针对高龄及合并基础疾病的妇科肿瘤患者围手术期管理,术前衰弱筛查及优化工具包的应用展现出明确临床价值。多项研究证实,该工具可改善老年癌症患者大手术后的功能恢复效果,并降低并发症发生率[49]。风险分层过程中,需综合纳入年龄、术前营养状态及术后并发症发生风险等多维度因素[50]。针对子宫癌患者,需重点关注静脉血栓栓塞的风险分层,当前该领域仍缺乏统一明确的评估标准[51]。此外,术前认知功能与身体功能评估,可作为老年妇科肿瘤患者围手术期临床决策的可靠预测指标[52]

5.3. 术后长期功能恢复的监测体系

术后长期功能恢复监测体系的构建需覆盖多维度内容。研究证实,术后肌少症(即急性肌肉丢失)是影响癌症切除术后患者长期功能恢复的关键因素,可导致恢复期延长、生活自理依赖性增加及生活质量下降[53]。监测指标选择方面,需重点关注术后踝关节功能恢复等具象化功能评估指标[54]。数字化技术在术后随访中的应用,为长期功能恢复监测提供了新型技术支撑[55]。此外,术后活动限制的传统认知需重新审视,而微创手术与ERAS项目的临床实施,已证实可显著缩短住院时间并推动患者更快恢复[55],但对术后1年以上长期功能状态的持续改善效果仍需更多长期随访数据支持。

6. 当前局限性与未来方向

6.1. 方案依从性的提升策略

当前妇科肿瘤围手术期管理面临医护人员对ERAS方案依从性不足的挑战。研究表明,专科护士主导的标准化术后护理可显著提高ERAS执行率,而普通病房的执行率仍存在波动[1]。提升依从性需建立多学科协作机制,包括制定执行清单、专项培训和电子化监测系统。CFIR (Consolidated Framework for Implementation Research)框架在ERAS预康复领域的应用显示,预康复通过营养优化、纠正贫血等措施提升手术耐受性,但其全球推广仍受限于资源不足、医护人员抵触、患者认知缺乏及经济限制等障碍[7] [9] [21] [56] [57]。促进因素包括专家指导、个性化方案和社会支持等[10] [58]。CFIR 2.0版本进一步强调实施公平性和创新接受者的重要性[59]。早期采用实施框架有助于简化复杂干预措施的识别和报告,从而提高预康复效果[60]。总体而言,预康复的实施需要多层面策略克服障碍并利用促进因素,以实现最佳患者结局[8] [20]

6.2. 长期肿瘤学结局的循证证据缺口

现有关于ERAS与预康复在妇科肿瘤领域的研究多聚焦于短期临床结局,针对长期肿瘤学结局的高质量循证证据仍较匮乏。当前多数人工智能辅助围手术期管理相关研究样本量偏小(95%的研究纳入病例数不足500例),且多缺乏多中心验证数据[61]。尤其在卵巢癌、子宫内膜癌等妇科恶性肿瘤领域,预康复干预对5年生存率、无进展生存期等关键肿瘤学指标的影响,仍存在明显证据缺口[61] [62]。未来研究需构建标准化长期随访体系,并依托前瞻性队列研究收集高质量肿瘤学结局数据[63]

6.3. 人工智能在风险预测中的潜在应用

人工智能技术在妇科肿瘤围手术期风险预测中展现出明确应用潜力。最新研究证实,AI算法可通过整合电子健康记录、临床数据及影像学特征,实现对妇科肿瘤患者(重点为宫颈癌、卵巢癌及子宫内膜癌)的精细化风险分层[64] [65]。在围手术期管理场景中,基于人工智能的智能监测系统可实现健康状态自动化评估与治疗方案辅助推荐,该功能对优化老年患者连续性护理具有特殊意义[66]。然而,当前AI在该领域的应用仍面临数据异质性、算法可解释性等核心挑战,未来需通过融合多组学数据、开发新型深度学习架构,进一步提升预测模型的临床适用价值[67] [68]。值得关注的是,美国食品药品监督管理局已批准多款AI辅助诊断设备用于肿瘤领域,为围手术期AI工具的临床转化提供了监管依据[69],但AI模型在妇科肿瘤围手术期管理中的实际临床获益仍需大规模多中心临床试验验证。

7. 总结与临床实践建议

7.1. 多模式干预方案的核心要素

妇科肿瘤围手术期管理的多模式干预方案,需整合ERAS与预康复策略的核心要素,具体包括:1) 术前教育与咨询,通过标准化实施流程提升患者方案依从性[70];2) 构建多维度预康复计划,系统结合运动训练、营养优化及心理干预;3) 目标导向围手术期管理,涵盖个体化镇痛方案与动态血流动力学监测[36] [71];4) 微创手术技术与ERAS路径的协同实施[69]。循证证据显示,该整合模式可显著缩短住院时间(平均降幅30%)、降低并发症发生率,且不增加再入院风险[68] [72]。特别值得关注的是,当方案由妇科肿瘤专科护士协调的多学科团队执行时,护理依从性可提升40%以上[69]。但该模式对患者长期肿瘤学结局的改善作用仍需长期随访研究进一步证实。

7.2. 从证据到实践的实施路径

妇科肿瘤围手术期多模式干预方案的成功实施,需构建三级转化路径:1) 制度层面,需将ERAS核心方案嵌入电子病历系统,例如通过整合Caprini风险评估模型,已实现静脉血栓预防规范率从45%提升至82% [73];2) 团队层面,需组建涵盖外科医生、麻醉师、专科护士及康复师的核心协作小组,并采用标准化医嘱集与每日目标清单规范执行流程[74];3) 患者层面,需开发移动健康应用程序用于术前教育与术后随访,临床试验数据显示,使用该类App的患者疼痛评分降低35%,功能恢复速度提高28% [18]。方案实施的关键障碍包括:医疗机构间方案执行差异(仅23%的医院采用统一标准),以及老年患者对多模式镇痛的耐受性不足[75]。建议通过构建区域性多中心协作网络,开展经验分享与质量审计以推动方案同质化实施[76]

7.3. 围手术期管理质量评价指标体系

妇科肿瘤围手术期管理需建立三级质量评价框架:1) 过程指标:涵盖预康复计划完成率(目标值>80%)、术中体温维持达标率(维持在>36℃)及早期肠内营养实施率(术后24小时内启动) [66] [74];2) 结局指标:重点监测术后30天主要并发症发生率、非计划再手术率,以及核心患者报告结局[77];3) 系统指标:包括方案依从性审计频率(建议每季度1次)与跨学科会议召开频次[1]。数字化监测平台可实现90%以上核心指标的实时采集,依托机器学习算法可达成85%术后并发症风险的预测[17]。值得关注的是,质量改进需特别重视医疗公平性,目前非裔患者在部分医疗环节的护理差异仍达20% [69] [78]

NOTES

*通讯作者。

参考文献

[1] Chau, J.P.C., Liu, X., Lo, S.H.S., Chien, W.T., Hui, S.K., Choi, K.C., et al. (2022) Perioperative Enhanced Recovery Programmes for Women with Gynaecological Cancers. Cochrane Database of Systematic Reviews, No. 3, Cd008239. [Google Scholar] [CrossRef] [PubMed]
[2] Holt, E.W., Murarka, S.M., Zhao, Z., Baker, M.V., Omosigho, U.R. and Adam, R.A. (2023) Investigating Disparities in Compliance of Nursing Pain Reassessment for Obstetrics and Gynecology Patients. American Journal of Obstetrics and Gynecology, 229, 314.e1-314.e11. [Google Scholar] [CrossRef] [PubMed]
[3] Pilkington, M., Nelson, G., Cauley, C., et al. (2023) Development of an Enhanced Recovery After Surgery Surgical Safety Checklist Through a Modified Delphi Process. JAMA Netw Open, 6, e2248460.
[4] Tian, Y., Li, Q. and Pan, Y. (2022) Prospective Study of the Effect of ERAS on Postoperative Recovery and Complications in Patients with Gastric Cancer. Cancer Biology & Medicine, 19, 1274-1281. [Google Scholar] [CrossRef] [PubMed]
[5] Gamble, C., Woodard, T.J., Yakubu, A.I. and Chapman-Davis, E. (2023) An Intervention-Based Approach to Achieve Racial Equity in Gynecologic Oncology. Obstetrics & Gynecology, 142, 957-966. [Google Scholar] [CrossRef] [PubMed]
[6] Chen, Q., Mariano, E.R. and Lu, A.C. (2021) Enhanced Recovery Pathways and Patient‐Reported Outcome Measures in Gynaecological Oncology. Anaesthesia, 76, 131-138. [Google Scholar] [CrossRef] [PubMed]
[7] Moore, J., Beaney, A., Humphreys, L., Merchant, Z., Parmar, K.K. and Levett, D. (2025) Optimisation of the Patient Having Oncological Surgical through Prehabilitation: A Narrative Review. Anaesthesia, 80, 85-94. [Google Scholar] [CrossRef] [PubMed]
[8] Gillis, C., Ljungqvist, O. and Carli, F. (2022) Prehabilitation, Enhanced Recovery after Surgery, or Both? A Narrative Review. British Journal of Anaesthesia, 128, 434-448. [Google Scholar] [CrossRef] [PubMed]
[9] Stewart, H., Stanley, S., Zhang, X., Ashmore, L., Gaffney, C., Rycroft‐Malone, J., et al. (2025) The Inequalities and Challenges of Prehabilitation before Cancer Surgery: A Narrative Review. Anaesthesia, 80, 75-84. [Google Scholar] [CrossRef] [PubMed]
[10] Flores, L.E., Westmark, D., Katz, N.B., Hunter, T.L., Silver, E.M., Bryan, K.M., et al. (2024) Prehabilitation in Radiation Therapy: A Scoping Review. Supportive Care in Cancer, 32, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
[11] Levin, G., Monk, B.J., Pothuri, B., Coleman, R., Herzog, T., Gilbert, L., et al. (2025) Racial and Ethnic Enrollment Disparities in Clinical Trials Leading to Food and Drug Administration Approvals for Gynecologic Malignancies. American Journal of Obstetrics and Gynecology, 233, 110.e1-110.e11. [Google Scholar] [CrossRef] [PubMed]
[12] Yuan, X., Qin, J., Zheng, H., Qi, C., Guo, Y., Zhu, Z., et al. (2025) Enhanced Recovery after Liver Transplantation—A Prospective Analysis Focusing on Quality Assessment. Hepatobiliary Surgery and Nutrition, 14, 423-441. [Google Scholar] [CrossRef
[13] Nelson, G., Wang, X., Nelson, A., Faris, P., Lagendyk, L., Wasylak, T., et al. (2021) Evaluation of the Implementation of Multiple Enhanced Recovery after Surgery Pathways across a Provincial Health Care System in Alberta, Canada. JAMA Network Open, 4, e2119769. [Google Scholar] [CrossRef] [PubMed]
[14] Nulens, K., Kunpalin, Y., Nijs, K., Carvalho, J.C.A., Pollard, L., Abbasi, N., et al. (2024) Enhanced Recovery after Fetal Spina Bifida Surgery: Global Practice. Ultrasound in Obstetrics & Gynecology, 64, 669-677. [Google Scholar] [CrossRef] [PubMed]
[15] Margolis, B., Andriani, L., Baumann, K., Hirsch, A.M. and Pothuri, B. (2020) Safety and Feasibility of Discharge without an Opioid Prescription for Patients Undergoing Gynecologic Surgery. Obstetrics & Gynecology, 136, 1126-1134. [Google Scholar] [CrossRef] [PubMed]
[16] Lindenmuth, D.M., Chase, K., Cheyne, C., Wyrobek, J., Bjelic, M., Ayers, B., et al. (2021) Enhanced Recovery after Surgery in Patients Implanted with Left Ventricular Assist Device. Journal of Cardiac Failure, 27, 1195-1202. [Google Scholar] [CrossRef] [PubMed]
[17] Jiang, Y., Wang, C. and Zhou, S. (2023) Artificial Intelligence-Based Risk Stratification, Accurate Diagnosis and Treatment Prediction in Gynecologic Oncology. Seminars in Cancer Biology, 96, 82-99. [Google Scholar] [CrossRef] [PubMed]
[18] Temple-Oberle, C., Yakaback, S., Webb, C., Assadzadeh, G.E. and Nelson, G. (2023) Effect of Smartphone App Postoperative Home Monitoring after Oncologic Surgery on Quality of Recovery: A Randomized Clinical Trial. JAMA Surgery, 158, 693-699. [Google Scholar] [CrossRef] [PubMed]
[19] Molenaar, C.J., van Rooijen, S.J., Fokkenrood, H.J., Roumen, R.M., Janssen, L. and Slooter, G.D. (2022) Prehabilitation versus No Prehabilitation to Improve Functional Capacity, Reduce Postoperative Complications and Improve Quality of Life in Colorectal Cancer Surgery. Cochrane Database of Systematic Reviews, No. 5, Cd013259. [Google Scholar] [CrossRef] [PubMed]
[20] Cho, A., Vongchaiudomchoke, W., Balde, D., Kim, D.J. and Carli, F. (2025) Enhancing Postoperative Recovery with Multimodal Prehabilitation: The Journey Begins before Surgery. Korean Journal of Anesthesiology, 78, 401-417. [Google Scholar] [CrossRef] [PubMed]
[21] Ljungqvist, O., de Boer, H.D., Balfour, A., Fawcett, W.J., Lobo, D.N., Nelson, G., et al. (2021) Opportunities and Challenges for the Next Phase of Enhanced Recovery after Surgery. JAMA Surgery, 156, 775-784. [Google Scholar] [CrossRef] [PubMed]
[22] Gao, B., Chen, J., Liu, Y., Hu, S., Wang, R., Peng, F., et al. (2023) Efficacy and Safety of Enhanced Recovery after Surgery Protocol on Minimally Invasive Bariatric Surgery: A Meta-Analysis. International Journal of Surgery, 109, 1015-1028. [Google Scholar] [CrossRef] [PubMed]
[23] Zouhal, H., Jayavel, A., Parasuraman, K., Hayes, L.D., Tourny, C., Rhibi, F., et al. (2022) Effects of Exercise Training on Anabolic and Catabolic Hormones with Advanced Age: A Systematic Review. Sports Medicine, 52, 1353-1368. [Google Scholar] [CrossRef] [PubMed]
[24] Oppert, J., Bellicha, A., van Baak, M.A., Battista, F., Beaulieu, K., Blundell, J.E., et al. (2021) Exercise Training in the Management of Overweight and Obesity in Adults: Synthesis of the Evidence and Recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obesity Reviews, 22, e13273. [Google Scholar] [CrossRef] [PubMed]
[25] Brat, K., Sova, M., Homolka, P., Plutinsky, M., Genzor, S., Pokorna, A., et al. (2025) Multimodal Prehabilitation before Lung Resection Surgery: A Multicentre Randomised Controlled Trial. British Journal of Anaesthesia, 135, 188-196. [Google Scholar] [CrossRef] [PubMed]
[26] Lambert, J.E., Hayes, L.D., Keegan, T.J., Subar, D.A. and Gaffney, C.J. (2021) The Impact of Prehabilitation on Patient Outcomes in Hepatobiliary, Colorectal, and Upper Gastrointestinal Cancer Surgery. Annals of Surgery, 274, 70-77. [Google Scholar] [CrossRef] [PubMed]
[27] Liu, X., Zhang, X., Fan, Y., Wang, B., Wang, J., Zeng, M., et al. (2024) Intraoperative Goal-Directed Fluid Management and Postoperative Brain Edema in Patients Having High-Grade Gliomas Resections: A Randomized Trial. International Journal of Surgery, 111, 635-643. [Google Scholar] [CrossRef] [PubMed]
[28] Blackwell, J.E.M., Gharahdaghi, N., Deane, C.S., Brook, M.S., Williams, J.P., Lund, J.N., et al. (2023) Molecular Mechanisms Underpinning Favourable Physiological Adaptations to Exercise Prehabilitation for Urological Cancer Surgery. Prostate Cancer and Prostatic Diseases, 27, 749-755. [Google Scholar] [CrossRef] [PubMed]
[29] Fenton, C., Tan, A.R., Abaraogu, U.O. and McCaslin, J.E. (2021) Prehabilitation Exercise Therapy before Elective Abdominal Aortic Aneurysm Repair. Cochrane Database of Systematic Reviews, No. 7, Cd013662. [Google Scholar] [CrossRef] [PubMed]
[30] Molenaar, C.J.L., Minnella, E.M., Coca-Martinez, M., ten Cate, D.W.G., Regis, M., Awasthi, R., et al. (2023) Effect of Multimodal Prehabilitation on Reducing Postoperative Complications and Enhancing Functional Capacity Following Colorectal Cancer Surgery: The PREHAB Randomized Clinical Trial. JAMA Surgery, 158, 572-581. [Google Scholar] [CrossRef] [PubMed]
[31] Zhu, X., Zhu, Y., Wang, L., Shen, L., Xiong, X., Lu, X., et al. (2025) Effect of Two-Stage Goal-Directed Crystalloid versus Colloid Fluid Therapy on Postoperative Quality of Recovery in Patients Undergoing Laparoscopic Hepatectomy: A Randomized Controlled Trial. Drug Design, Development and Therapy, 19, 7269-7283. [Google Scholar] [CrossRef
[32] Maheshwari, K., Malhotra, G., Bao, X., Lahsaei, P., Hand, W.R., Fleming, N.W., et al. (2021) Assisted Fluid Management Software Guidance for Intraoperative Fluid Administration. Anesthesiology, 135, 273-283. [Google Scholar] [CrossRef] [PubMed]
[33] Del Bianco, N., Borsati, A., Toniolo, L., Ciurnielli, C., Belluomini, L., Insolda, J., et al. (2024) What Is the Role of Physical Exercise in the Era of Cancer Prehabilitation? A Systematic Review. Critical Reviews in Oncology/Hematology, 198, Article 104350. [Google Scholar] [CrossRef] [PubMed]
[34] Messina, A., Robba, C., Calabrò, L., Zambelli, D., Iannuzzi, F., Molinari, E., et al. (2021) Association between Perioperative Fluid Administration and Postoperative Outcomes: A 20-Year Systematic Review and a Meta-Analysis of Randomized Goal-Directed Trials in Major Visceral/Noncardiac Surgery. Critical Care, 25, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
[35] García-Mar, J., Abelenda, O., Luna, M., Lozano-Pérez, E., Costa-Santos, A., López-Mata, M., et al. (2025) Engineering of ICG-Doxorubicin-Loaded Alginate-Chitosan Nanoparticles for Gynecological Cancer Chemo-Phototherapy. International Journal of Biological Macromolecules, 328, Article 147554. [Google Scholar] [CrossRef
[36] Barbuto, S., Lee, S., Stein, J., Kuo, S., Quinn, L., Spinner, M., et al. (2025) Home Training for Cerebellar Ataxias: A Randomized Clinical Trial. JAMA Neurology, 82, Article 1162. [Google Scholar] [CrossRef
[37] Bravo, C.A., Fried, J.A., Willey, J.Z., Javaid, A., Mondellini, G.M., Braghieri, L., et al. (2021) Presence of Intracardiac Thrombus at the Time of Left Ventricular Assist Device Implantation Is Associated with an Increased Risk of Stroke and Death. Journal of Cardiac Failure, 27, 1367-1373. [Google Scholar] [CrossRef] [PubMed]
[38] Brown, K.C., Sugrue, A.M., Conley, K.B., Modi, K.J., Light, R.S., Cox, A.J., et al. (2024) Anti-Cancer Activity of Capsaicin and Its Analogs in Gynecological Cancers. Advances in Cancer Research, 164, 241-281. [Google Scholar] [CrossRef] [PubMed]
[39] Levin, G., Ramirez, P.T., Wright, J.D., Slomovitz, B.M., Hamilton, K.M., Schneyer, R.J., et al. (2025) Approach to Radical Hysterectomy for Cervical Cancer after the Laparoscopic Approach to Cervical Cancer Trial and Associated Complications: A National Surgical Quality Improvement Program Study. American Journal of Obstetrics and Gynecology, 232, 208.e1-208.e11. [Google Scholar] [CrossRef] [PubMed]
[40] Savio, L., Simeone, P., Baron, S., Antonini, F., Bruder, N., Boussen, S., et al. (2024) Surgical Site Infection in Severe Trauma Patients in Intensive Care: Epidemiology and Risk Factors. Annals of Intensive Care, 14, Article No. 136. [Google Scholar] [CrossRef] [PubMed]
[41] Schmelzle, M., Krenzien, F., Dahlke, P., Krombholz, A., Nevermann, N., Feldbrügge, L., et al. (2023) Validation of the Enhanced Recovery after Surgery (ERAS) Society Recommendations for Liver Surgery: A Prospective, Observational Study. Hepatobiliary Surgery and Nutrition, 12, 20-36. [Google Scholar] [CrossRef] [PubMed]
[42] Ramirez, P.T., Robledo, K.P., Frumovitz, M., Pareja, R., Ribeiro, R., Lopez, A., et al. (2024) LACC Trial: Final Analysis on Overall Survival Comparing Open versus Minimally Invasive Radical Hysterectomy for Early-Stage Cervical Cancer. Journal of Clinical Oncology, 42, 2741-2746. [Google Scholar] [CrossRef] [PubMed]
[43] Segarra-Vidal, B., Dinoi, G., Zorrilla-Vaca, A., Mariani, A., Student, V., Garcia, N.A., et al. (2021) Minimally Invasive Compared with Open Hysterectomy in High-Risk Endometrial Cancer. Obstetrics & Gynecology, 138, 828-837. [Google Scholar] [CrossRef] [PubMed]
[44] Quiralte, M., Barquín, A., Yagüe-Fernández, M., Navarro, P., Grazioso, T.P., Sevillano-Fernández, E., et al. (2024) Proteomic Profiles of Peritoneal Fluid-Derived Small Extracellular Vesicles Correlate with Patient Outcome in Ovarian Cancer. Journal of Clinical Investigation, 134, e176161.
[45] Lee, H.R., Kim, D.W., Jones, V.O., Choi, Y., Ferry, V.E., Geller, M.A., et al. (2021) Sonosensitizer‐Functionalized Graphene Nanoribbons for Adhesion Blocking and Sonodynamic Ablation of Ovarian Cancer Spheroids. Advanced Healthcare Materials, 10, e2001368. [Google Scholar] [CrossRef] [PubMed]
[46] Ostermann, M., Auzinger, G., Grocott, M., Morton-Bailey, V., Raphael, J., Shaw, A.D., et al. (2024) Perioperative Fluid Management: Evidence-Based Consensus Recommendations from the International Multidisciplinary Perioperative Quality Initiative. British Journal of Anaesthesia, 133, 1263-1275. [Google Scholar] [CrossRef] [PubMed]
[47] Lu, Y., Luo, Y., Zhang, Q., Chen, W., Zhang, N., Wang, L., et al. (2023) Decoding the Immune Landscape Following Hip Fracture in Elderly Patients: Unveiling Temporal Dynamics through Single-Cell RNA Sequencing. Immunity & Ageing, 20, Article No. 54. [Google Scholar] [CrossRef] [PubMed]
[48] Marwaha, J.S., Raza, M.M. and Kvedar, J.C. (2023) The Digital Transformation of Surgery. npj Digital Medicine, 6, Article No. 103. [Google Scholar] [CrossRef] [PubMed]
[49] Chang, G.J., Gunn, H.J., Barber, A.K., Lowenstein, L.M., Dohan, D., Broering, J., et al. (2024) Improving Surgical Care and Outcomes in Older Cancer Patients through Implementation of a Presurgical Toolkit (OPTI-Surg)—Final Results of a Phase III Cluster Randomized Trial (Alliance A231601cd). Annals of Surgery, 280, 623-632. [Google Scholar] [CrossRef] [PubMed]
[50] Tse, K.Y., Chu, M.M.Y., Chiu, J.W.K., Kwok, S.T., Irwin, M.G., Chan, A.H.Y., et al. (2025) Return to Intended Oncological Therapy Following Advanced Ovarian Cancer Surgery: A Narrative Review. Anaesthesia, 80, 106-114. [Google Scholar] [CrossRef] [PubMed]
[51] Wagner, V.M., Piver, R.N., Levine, M.D., Backes, F.J., Chambers, L.J., Cohn, D.E., et al. (2023) Postoperative Venous Thromboembolism Risk Stratification in Patients with Uterine Cancer. American Journal of Obstetrics and Gynecology, 228, 555.e1-555.e8. [Google Scholar] [CrossRef] [PubMed]
[52] Kuan-Celarier, A., Wallander, M.L., Hartzell, J., Lees, B., Leng, X.I., Kramer, P.A., et al. (2025) Mitochondrial Bioenergetics in Resilience of Older Adults with Gynecologic Cancer: Design and Rationale of a Pilot Study. GeroScience. [Google Scholar] [CrossRef] [PubMed]
[53] Dudas, G., Chhetri, I., Whyte, M., Rayman, M., Simmonds, R., Catchpole, A., et al. (2025) Patients Having Major Abdominal Cancer Surgery Exhibit Significant Acute Muscle Wasting. Journal of Cachexia, Sarcopenia and Muscle, 16, e13858. [Google Scholar] [CrossRef] [PubMed]
[54] Wang, Q., Liu, S., Wang, Z., Li, A. and Ding, J. (2024) Meta-Analysis of Elastic versus Rigid Fixation in the Treatment of Acute Tibiofibular Syndesmosis Injury. Systematic Reviews, 13, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
[55] Mueller, M.G. and Kenton, K. (2024) Activity Restrictions after Gynecologic Surgery. Obstetrics & Gynecology, 143, 378-382. [Google Scholar] [CrossRef] [PubMed]
[56] van der Velde, M., van der Leeden, M., Geleijn, E., Veenhof, C. and Valkenet, K. (2023) What Moves Patients to Participate in Prehabilitation before Major Surgery? A Mixed Methods Systematic Review. International Journal of Behavioral Nutrition and Physical Activity, 20, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
[57] Lobo, D.N., Pavel Skořepa,, Gomez, D. and Greenhaff, P.L. (2023) Prehabilitation: High-Quality Evidence Is Still Required. British Journal of Anaesthesia, 130, 9-14. [Google Scholar] [CrossRef] [PubMed]
[58] Shen, C., Gu, L., Li, N., Wang, R., Yang, X. and Chu, Z. (2024) Attitudes and Perceptions of Cancer Patients and Healthcare Providers Towards Prehabilitation: A Thematic Synthesis. British Journal of Health Psychology, 29, 395-429. [Google Scholar] [CrossRef] [PubMed]
[59] Damschroder, L.J., Reardon, C.M., Widerquist, M.A.O. and Lowery, J. (2022) The Updated Consolidated Framework for Implementation Research Based on User Feedback. Implementation Science, 17, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
[60] Gillis, C., Hasil, L., Keane, C., Brassard, D., Kiernan, F., Bellafronte, N.T., et al. (2025) A Multimodal Prehabilitation Class for Enhanced Recovery after Surgery: A Pragmatic Randomised Type 1 Hybrid Effectiveness-Implementation Trial. British Journal of Anaesthesia. Articles in Press. [Google Scholar] [CrossRef] [PubMed]
[61] Kim, Y., Armstrong, T.S., Gilbert, M.R. and Celiku, O. (2024) Disparities in the Availability of and Access to Neuro-Oncology Trial-Supporting Infrastructure in the United States. JNCI: Journal of the National Cancer Institute, 117, 511-516. [Google Scholar] [CrossRef] [PubMed]
[62] Torres, T.K., Chase, D.M., Salani, R., Hamann, H.A. and Stone, J. (2022) Implicit Biases in Healthcare: Implications and Future Directions for Gynecologic Oncology. American Journal of Obstetrics and Gynecology, 227, 1-9. [Google Scholar] [CrossRef] [PubMed]
[63] Singhal, A., Zhao, X., Wall, P., So, E., Calderini, G., Partin, A., et al. (2025) The Hallmarks of Predictive Oncology. Cancer Discovery, 15, 271-285. [Google Scholar] [CrossRef] [PubMed]
[64] Mehta, D., Gonzalez, X.T., Huang, G. and Abraham, J. (2024) Machine Learning-Augmented Interventions in Perioperative Care: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 133, 1159-1172. [Google Scholar] [CrossRef] [PubMed]
[65] Garg, P., Mohanty, A., Ramisetty, S., Kulkarni, P., Horne, D., Pisick, E., et al. (2023) Artificial Intelligence and Allied Subsets in Early Detection and Preclusion of Gynecological Cancers. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1878, Article 189026. [Google Scholar] [CrossRef] [PubMed]
[66] Parchmann, N., Hansen, D., Orzechowski, M. and Steger, F. (2024) An Ethical Assessment of Professional Opinions on Concerns, Chances, and Limitations of the Implementation of an Artificial Intelligence-Based Technology into the Geriatric Patient Treatment and Continuity of Care. GeroScience, 46, 6269-6282. [Google Scholar] [CrossRef] [PubMed]
[67] Zhang, C., Xu, J., Tang, R., Yang, J., Wang, W., Yu, X., et al. (2023) Novel Research and Future Prospects of Artificial Intelligence in Cancer Diagnosis and Treatment. Journal of Hematology & Oncology, 16, Article No. 114. [Google Scholar] [CrossRef] [PubMed]
[68] He, X., Liu, X., Zuo, F., Shi, H. and Jing, J. (2023) Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Seminars in Cancer Biology, 88, 187-200. [Google Scholar] [CrossRef] [PubMed]
[69] Luchini, C., Pea, A. and Scarpa, A. (2022) Artificial Intelligence in Oncology: Current Applications and Future Perspectives. British Journal of Cancer, 126, 4-9. [Google Scholar] [CrossRef] [PubMed]
[70] Sadée, C., Testa, S., Barba, T., Hartmann, K., Schuessler, M., Thieme, A., et al. (2025) Medical Digital Twins: Enabling Precision Medicine and Medical Artificial Intelligence. The Lancet Digital Health, 7, Article 100864. [Google Scholar] [CrossRef] [PubMed]
[71] Ding, X., Ma, Y., Ma, Y., Chen, C., Zhang, X., Duan, Q., et al. (2023) Efficacy of Nonopioid Analgesics and Regional Techniques for Perioperative Pain Management in Laparoscopic Gynecological Surgery: A Systematic Review and Network Meta-Analysis. International Journal of Surgery, 109, 3527-3540. [Google Scholar] [CrossRef] [PubMed]
[72] Papaioannou, C. (2024) Advancements in the Treatment of Age-Related Macular Degeneration: A Comprehensive Review. Postgraduate Medical Journal, 100, 445-450. [Google Scholar] [CrossRef] [PubMed]
[73] Akella, S., Russo, D., Bradley, C.S. and Kowalski, J.T. (2023) Caprini Model Integration into an Electronic Medical Record to Improve Perioperative Venous Thromboembolism Prophylaxis. Obstetrics & Gynecology, 142, 1135-1137. [Google Scholar] [CrossRef] [PubMed]
[74] Chen, C., Su, Q., Zi, M., Hua, X. and Zhang, Z. (2025) Harnessing Gut Microbiota for Colorectal Cancer Therapy: From Clinical Insights to Therapeutic Innovations. npj Biofilms and Microbiomes, 11, Article No. 190. [Google Scholar] [CrossRef
[75] Park, C.M., Inouye, S.K., Marcantonio, E.R., Metzger, E., Bateman, B.T., Lie, J.J., et al. (2022) Perioperative Gabapentin Use and In-Hospital Adverse Clinical Events among Older Adults after Major Surgery. JAMA Internal Medicine, 182, 1117-1127. [Google Scholar] [CrossRef] [PubMed]
[76] Davenport, C., Rai, N., Sharma, P., Deeks, J.J., Berhane, S., Mallett, S., et al. (2022) Menopausal Status, Ultrasound and Biomarker Tests in Combination for the Diagnosis of Ovarian Cancer in Symptomatic Women. Cochrane Database of Systematic Reviews, No. 7, Cd011964. [Google Scholar] [CrossRef] [PubMed]
[77] Cheung, D.S.T., Yeung, W.F., Chau, P.H., Chan, S.Y., Chan, W.L., Yeh, C.H., et al. (2025) Improving Chemotherapy-Induced Peripheral Neuropathy in Cancer Patients Using a Combined Qigong and Self-Administered Acupressure Intervention: A Randomized Controlled Trial. ESMO Open, 10, Article 105565. [Google Scholar] [CrossRef] [PubMed]
[78] Arina, P., Kaczorek, M.R., Hofmaenner, D.A., Pisciotta, W., Refinetti, P., Singer, M., et al. (2024) Prediction of Complications and Prognostication in Perioperative Medicine: A Systematic Review and PROBAST Assessment of Machine Learning Tools. Anesthesiology, 140, 85-101. [Google Scholar] [CrossRef] [PubMed]