|
[1]
|
Delattre, O., Zucman, J., Melot, T., Garau, X.S., Zucker, J., Lenoir, G.M., et al. (1994) The Ewing Family of Tumors—A Subgroup of Small-Round-Cell Tumors Defined by Specific Chimeric Transcripts. New England Journal of Medicine, 331, 294-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Brown, J.M., Rakoczy, K., Tokson, J.H., Jones, K.B. and Groundland, J.S. (2022) Ewing Sarcoma of the Pelvis: Clinical Features and Overall Survival. Cancer Treatment and Research Communications, 33, Article 100634. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, Y., Nong, W., Ren, Y., Jiang, J., Zhang, H., et al. (2020) Ewing’s Sarcoma of the Cervix: A Case Report and Review of Literature. Histology & Histopathology, 35, 475-480.
|
|
[4]
|
Van Mater, D. and Wagner, L. (2019) Management of Recurrent Ewing Sarcoma: Challenges and Approaches. OncoTargets and Therapy, 12, 2279-2288. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Applebaum, M.A., Worch, J., Matthay, K.K., Goldsby, R., Neuhaus, J., West, D.C., et al. (2011) Clinical Features and Outcomes in Patients with Extraskeletal Ewing Sarcoma. Cancer, 117, 3027-3032. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hashimoto, K., Nishimura, S., Oka, N. and Akagi, M. (2020) Clinical Features and Outcomes of Primary Bone and Soft Tissue Sarcomas in Adolescents and Young Adults. Molecular and Clinical Oncology, 12, 358-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cao, L.L., Yang, L., Chen, Z., Yue, Z., Pei, L., Jia, M., et al. (2020) A New Classifier Based on Laboratory Indicators for Early Diagnosis and Prognosis Prediction of Ewing’s Sarcoma. Clinical Laboratory, 66, No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Babapour, S., Mohseni, I., Piri, R. and Basi, A. (2020) Left Renal Ewing’s Sarcoma: A Case Study and a Review of Imaging Literature. Radiology Case Reports, 15, 391-395.
|
|
[9]
|
Behzadi, A.H., Raza, S.I., Carrino, J.A., Kosmas, C., Gholamrezanezhad, A., Basques, K., et al. (2018) Applications of PET/CT and PET/MR Imaging in Primary Bone Malignancies. PET Clinics, 13, 623-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tal, A.L., Doshi, H., Parkar, F., Abraham, T., Love, C., Ye, K., et al. (2021) The Utility of 18FDG PET/CT versus Bone Scan for Identification of Bone Metastases in a Pediatric Sarcoma Population and a Review of the Literature. Journal of Pediatric Hematology/Oncology, 43, 52-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gupta, A., Riedel, R.F., Shah, C., Borinstein, S.C., Isakoff, M.S., Chugh, R., et al. (2023) Consensus Recommendations in the Management of Ewing Sarcoma from the National Ewing Sarcoma Tumor Board. Cancer, 129, 3363-3371. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lin, P.P., Wang, Y. and Lozano, G. (2011) Mesenchymal Stem Cells and the Origin of Ewing’s Sarcoma. Sarcoma, 2011, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
von Levetzow, C., Jiang, X., Gwye, Y., von Levetzow, G., Hung, L., Cooper, A., et al. (2011) Modeling Initiation of Ewing Sarcoma in Human Neural Crest Cells. PLOS ONE, 6, e19305. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tanaka, M., Yamazaki, Y., Kanno, Y., Igarashi, K., Aisaki, K., Kanno, J., et al. (2014) Ewing’s Sarcoma Precursors Are Highly Enriched in Embryonic Osteochondrogenic Progenitors. Journal of Clinical Investigation, 124, 3061-3074. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Grünewald, T.G.P., Bernard, V., Gilardi-Hebenstreit, P., Raynal, V., Surdez, D., Aynaud, M., et al. (2015) Chimeric EWSR1-FLI1 Regulates the Ewing Sarcoma Susceptibility Gene EGR2 via a GGAA Microsatellite. Nature Genetics, 47, 1073-1078. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Forscher, C., Mita, M. and Figlin, R. (2014) Targeted Therapy for Sarcomas. Biologics, 8, 91-105.
|
|
[17]
|
Shing, D.C., McMullan, D.J., Roberts, P., Smith, K., et al. (2003) FUS/ERG Gene Fusions in Ewing’s Tumors. Cancer Research, 63, 4568-4576.
|
|
[18]
|
Wang, J., Jiang, W., Yan, Y., Chen, C., Yu, Y., Wang, B., et al. (2016) Knockdown of EWSR1/FLI1 Expression Alters the Transcriptome of Ewing Sarcoma Cells in Vitro. Journal of Bone Oncology, 5, 153-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Marcilla, D., Machado, I., Grünewald, T.G.P., Llombart-Bosch, A. and de Álava, E. (2021) (Immuno)histological Analysis of Ewing Sarcoma. In: Methods in Molecular Biology, Springer, 49-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tomar, A. and Kaushal Jain, H. (2024) Extraskeletal Ewing’s Sarcoma on Hard Palate Biltaerally: A Rare Case Report. Oral Oncology, 156, Article 106916. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Collini, P., Mezzelani, A., Modena, P., Dagrada, P., Tamborini, E., Luksch, R., et al. (2003) Evidence of Neural Differentiation in a Case of Post-Therapy Primitive Neuroectodermal Tumor/Ewing Sarcoma of Bone. The American Journal of Surgical Pathology, 27, 1161-1166. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Amann, G., Zoubek, A., Salzer-Kuntschik, M., Windhager, R. and Kovar, H. (1999) Relation of Neuroglial Marker Expression and EWS Gene Fusion Types in MIC2/CD99-Positive Tumors of the Ewing Family. Human Pathology, 30, 1058-1064. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Shi, X., Zheng, Y., Jiang, L., Zhou, B., Yang, W., Li, L., et al. (2020) EWS-FLI1 Regulates and Cooperates with Core Regulatory Circuitry in Ewing Sarcoma. Nucleic Acids Research, 48, 11434-11451. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Boulay, G., Volorio, A., Iyer, S., Broye, L.C., Stamenkovic, I., Riggi, N., et al. (2018) Epigenome Editing of Microsatellite Repeats Defines Tumor-Specific Enhancer Functions and Dependencies. Genes & Development, 32, 1008-1019. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Boro, A., Prêtre, K., Rechfeld, F., Thalhammer, V., Oesch, S., Wachtel, M., et al. (2012) Small‐Molecule Screen Identifies Modulators of EWS/FLI1 Target Gene Expression and Cell Survival in Ewing’s Sarcoma. International Journal of Cancer, 131, 2153-2164. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jully, B., Vijayalakshmi, R., Gopal, G., Sabitha, K. and Rajkumar, T. (2012) Junction Region of EWS-FLI1 Fusion Protein Has a Dominant Negative Effect in Ewing’s Sarcoma in Vitro. BMC Cancer, 12, Article No. 513. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Park, H.R., Jung, W.W., Kim, H.S. and Park, Y.K. (2014) Microarray-Based DNA Methylation Study of Ewing’s Sarcoma of the Bone. Oncology Letters, 8, 1613-1617. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liebner, D.A. (2015) The Indications and Efficacy of Conventional Chemotherapy in Primary and Recurrent Sarcoma. Journal of Surgical Oncology, 111, 622-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shibue, T. and Weinberg, R.A. (2017) EMT, CSCs, and Drug Resistance: The Mechanistic Link and Clinical Implications. Nature Reviews Clinical Oncology, 14, 611-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Moreno Ayala, M.A., Campbell, T.F., Zhang, C., Dahan, N., Bockman, A., Prakash, V., et al. (2023) CXCR3 Expression in Regulatory T Cells Drives Interactions with Type I Dendritic Cells in Tumors to Restrict CD8+ T Cell Antitumor Immunity. Immunity, 56, 1613-1630.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jacoby, J.M., Strakeljahn, S., Nitsch, A., Bekeschus, S., Hinz, P., Mustea, A., et al. (2020) An Innovative Therapeutic Option for the Treatment of Skeletal Sarcomas: Elimination of Osteo-and Ewing’s Sarcoma Cells Using Physical Gas Plasma. International Journal of Molecular Sciences, 21, Article 4460. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kim, J.A., Crawford, K.A., Spada, P.A., Martin, L.R., et al. (2023) Non-Chemotherapy Adjuvant Agents in TP53 Mutant Ewing Sarcoma. Scientific Reports, 13, Article No. 14360. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ramamurthy, A., Connolly, E.A., Mar, J., Lewin, J., Bhadri, V.A., Phillips, M.B., et al. (2024) High-Dose Chemotherapy for Ewing Sarcoma and Rhabdomyosarcoma: A Systematic Review by the Australia and New Zealand Sarcoma Association Clinical Practice Guidelines Working Party. Cancer Treatment Reviews, 124, Article 102694. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Paulino, A.C. (2004) Late Effects of Radiotherapy for Pediatric Extremity Sarcomas. International Journal of Radiation Oncology, Biology, Physics, 60, 265-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Oberlin, O., Deley, M.C.L., Bui, B.N., Gentet, J.C., Philip, T., Terrier, P., et al. (2001) Prognostic Factors in Localized Ewing’s Tumours and Peripheral Neuroectodermal Tumours: The Third Study of the French Society of Paediatric Oncology (EW88 Study). British Journal of Cancer, 85, 1646-1654. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sluga, M., Windhager, R., Lang, S., Heinzl, H., Krepler, P., Mittermayer, F., et al. (2001) The Role of Surgery and Resection Margins in the Treatment of Ewing’s Sarcoma. Clinical Orthopaedics and Related Research, 392, 394-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ozaki, T., Hillmann, A., Hoffmann, C., Rübe, C., Blasius, S., Dunst, J., et al. (1996) Significance of Surgical Margin on the Prognosis of Patients with Ewing’s Sarcoma: A Report from the Cooperative Ewing’s Sarcoma Study. Cancer, 78, 892-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Panagos, A. (2021) Dextrose Prolotherapy to Treat Pain, Improve Activities of Daily Living, and Improve Quality of Life in an Ewing’s Sarcoma Patient Following Radiation and Chemotherapy Treatment. Cureus, 13, e13549. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
West, W.H., Beutler, A.I. and Gordon, C.R. (2020) Regenerative Injectable Therapies: Current Evidence. Current Sports Medicine Reports, 19, 353-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yasir, M., Park, J. and Chun, W. (2023) EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. International Journal of Molecular Sciences, 24, Article 15173. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Galifi, C.A. and Wood, T.L. (2023) Insulin-Like Growth Factor-1 Receptor Crosstalk with Integrins, Cadherins, and the Tumor Microenvironment: Sticking Points in Understanding IGF1R Function in Cancer. Endocrine-Related Cancer, 30, e230031. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Loganathan, S.N., Tang, N., Holler, A.E., Wang, N. and Wang, J. (2019) Targeting the IGF1R/PI3K/AKT Pathway Sensitizes Ewing Sarcoma to BET Bromodomain Inhibitors. Molecular Cancer Therapeutics, 18, 929-936. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Guan, J., Borenäs, M., Xiong, J., Lai, W.Y., Palmer, R.H. and Hallberg, B. (2023) IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers, 15, Article No. 4252. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Nagao, H., Cai, W., Brandão, B.B., Wewer Albrechtsen, N.J., Steger, M., Gattu, A.K., et al. (2023) Leucine-973 Is a Crucial Residue Differentiating Insulin and IGF-1 Receptor Signaling. Journal of Clinical Investigation, 133, e161472.
|
|
[45]
|
Werner, H. and LeRoith, D. (2022) Hallmarks of Cancer: The Insulin-Like Growth Factors Perspective. Frontiers in Oncology, 12, Article 1055589. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
DuBois, S.G., Krailo, M.D., Glade-Bender, J., Buxton, A., Laack, N., Randall, R.L., et al. (2023) Randomized Phase III Trial of Ganitumab with Interval-Compressed Chemotherapy for Patients with Newly Diagnosed Metastatic Ewing Sarcoma: A Report from the Children’s Oncology Group. Journal of Clinical Oncology, 41, 2098-2107. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Saxena, M., van der Burg, S.H., Melief, C.J.M. and Bhardwaj, N. (2021) Therapeutic Cancer Vaccines. Nature Reviews Cancer, 21, 360-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kennedy, L.B. and Salama, A.K.S. (2020) A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians, 70, 86-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Rosenberg, S.A. and Restifo, N.P. (2015) Adoptive Cell Transfer as Personalized Immunotherapy for Human Cancer. Science, 348, 62-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Köksal, H., Müller, E., Inderberg, E.M., Bruland, Ø. and Wälchli, S. (2019) Treating Osteosarcoma with CAR T Cells. Scandinavian Journal of Immunology, 89, e12741. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Huang, X., Park, H., Greene, J., Pao, J., Mulvey, E., Zhou, S.X., et al. (2015) IGF1R-and Ror1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas. PLOS ONE, 10, e0133152. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Englisch, A., Altvater, B., Kailayangiri, S., Hartmann, W. and Rossig, C. (2020) VEGFR2 as a Target for CAR T Cell Therapy of Ewing Sarcoma. Pediatric Blood & Cancer, 67, e28313. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Charan, M., Dravid, P., Cam, M., Audino, A., Gross, A.C., Arnold, M.A., et al. (2020) GD2-Directed CAR-T Cells in Combination with HGF-Targeted Neutralizing Antibody (AMG102) Prevent Primary Tumor Growth and Metastasis in Ewing Sarcoma. International Journal of Cancer, 146, 3184-3195. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Majzner, R.G., Theruvath, J.L., Nellan, A., Heitzeneder, S., Cui, Y., Mount, C.W., et al. (2019) CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 25, 2560-2574. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hsu, K., Middlemiss, S., Saletta, F., Gottschalk, S., McCowage, G.B. and Kramer, B. (2021) Chimeric Antigen Receptor-Modified T Cells Targeting Epha2 for the Immunotherapy of Paediatric Bone Tumours. Cancer Gene Therapy, 28, 321-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Lehner, M., Götz, G., Proff, J., Schaft, N., Dörrie, J., Full, F., et al. (2012) Redirecting T Cells to Ewing’s Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection. PLOS ONE, 7, e31210. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Tsibulnikov, S., Fayzullina, D., Karlina, I., Schroeder, B.A., Karpova, O., Timashev, P., et al. (2023) Ewing Sarcoma Treatment: A Gene Therapy Approach. Cancer Gene Therapy, 30, 1066-1071. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Lee, J., Hoang, B.H., Ziogas, A. and Zell, J.A. (2010) Analysis of Prognostic Factors in Ewing Sarcoma Using a Population-Based Cancer Registry. Cancer, 116, 1964-1973. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhang, L., Xiong, L., Wu, L.M., Shen, W.H., et al. (2021) The Patterns of Distant Metastasis and Prognostic Factors in Patients with Primary Metastatic Ewing Sarcoma of the Bone. Journal of Bone Oncology, 30, Article 100385. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Bosma, S.E., Lancia, C., Rueten-Budde, A.J., Ranft, A., Gelderblom, H., Fiocco, M., et al. (2019) Easy-to-Use Clinical Tool for Survival Estimation in Ewing Sarcoma at Diagnosis and after Surgery. Scientific Reports, 9, Article No. 11000. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Miller, B.J., Gao, Y. and Duchman, K.R. (2017) Does Surgery or Radiation Provide the Best Overall Survival in Ewing’s Sarcoma? A Review of the National Cancer Data Base. Journal of Surgical Oncology, 116, 384-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Verma, V., Denniston, K.A., Lin, C.J. and Lin, C. (2017) A Comparison of Pediatric Vs. Adult Patients with the Ewing Sarcoma Family of Tumors. Frontiers in Oncology, 7, Article 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Consalvo, S., Hinterwimmer, F., Harrasser, N., Lenze, U., Matziolis, G., von Eisenhart-Rothe, R., et al. (2022) C-Reactive Protein Pretreatment-Level Evaluation for Ewing’s Sarcoma Prognosis Assessment—A 15-Year Retrospective Single-Centre Study. Cancers, 14, Article No. 5898. [Google Scholar] [CrossRef] [PubMed]
|