尤文氏肉瘤诊疗进展及预后研究
Ewing Sarcoma: Current Advances in Therapy and Prognostic Assessment
DOI: 10.12677/acm.2025.15123544, PDF, HTML, XML,   
作者: 张 葆, 李长春*:重庆医科大学附属儿童医院肿瘤外科,儿童少年健康与疾病国家临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 尤文氏肉瘤诊断技术治疗进展预后研究Ewing’s Sarcoma Diagnostic Techniques Therapeutic Advances Prognostic Studies
摘要: 尤文氏肉瘤(ES)是一种主要发生于儿童和青少年的高度恶性骨与软组织肿瘤。近年来,随着诊断技术和治疗方法的进步,ES的诊疗取得了显著进展。影像学检查(如MRI和PET-CT)联合分子检测(EWSR1-ETS融合基因)大大提高了诊断准确性。治疗方面,多学科综合治疗策略(化疗联合手术/放疗)使局部ES患者的5年生存率提升至70%以上。然而,转移性患者的预后仍然较差,5年生存率不足30%。靶向治疗和免疫治疗等新型疗法显示出潜在应用价值,但仍需进一步研究。预后评估需综合考虑临床和分子特征,未来研究应致力于开发更有效的个体化治疗方案。
Abstract: Ewing’s sarcoma (ES) is a highly malignant bone and soft tissue tumor primarily affecting children and adolescents. In recent years, significant progress has been made in ES diagnosis and treatment through advancements in diagnostic technologies and therapeutic approaches. The combination of imaging examinations (e.g., MRI and PET-CT) with molecular testing (EWSR1-ETS fusion gene detection) has substantially improved diagnostic accuracy. In terms of treatment, multidisciplinary comprehensive treatment strategies (chemotherapy combined with surgery/radiotherapy) have increased the 5-year survival rate for localized ES patients to over 70%. However, the prognosis for metastatic patients remains poor, with a 5-year survival rate below 30%. Novel therapies such as targeted therapy and immunotherapy have demonstrated potential clinical value but require further investigation. Prognostic assessment necessitates comprehensive consideration of both clinical and molecular characteristics, and future research should focus on developing more effective personalized treatment regimens.
文章引用:张葆, 李长春. 尤文氏肉瘤诊疗进展及预后研究[J]. 临床医学进展, 2025, 15(12): 1390-1398. https://doi.org/10.12677/acm.2025.15123544

1. 引言

尤文氏肉瘤(Ewing’s sarcoma, ES)是尤文氏肉瘤家族中的一员。ES主要侵袭儿童和青少年群体,男女性别比约为3:2。现有研究显示,ES可发生在任何年龄层,但高峰期集中在生命的前20年,平均发病年龄为15岁[1]。据统计,儿童ES的年发病率约为3/100万[2],其中亚洲人群的发病率低于欧美,我国发病率约为2.4% [3]。该病在骨和软组织中均可发生,骨骼中常见于股骨、胫骨和骨盆,软组织则多见于胸壁、臀肌和颈部肌肉。四肢长骨中段为常见发病部位,影像学表现为骨骼斑点及“葱皮样”骨膜反应,约占60% [4],其中股骨最为常见(约占20%),其次为骨盆[5]

针对尤文氏肉瘤的深入研究,不仅有助于揭示其复杂的病理机制,更为临床诊断和治疗提供了科学依据。在后续篇章中,我们将进一步探讨尤文氏肉瘤的诊疗进展、预后评估以及当前研究领域所面临的挑战和未来展望。

2. 临床诊断

2.1. 首诊症状及临床表现

在临床实践中,ES患者最常见的局部症状为疼痛或肿胀。据统计,大约有80%的患者会出现病变部位的肿胀或间歇性疼痛[6]。除了局部症状,与其他恶性肿瘤相似,ES患者也可能出现发热、乏力、体重减轻等全身性症状。

辅助检查对于ES的诊断及病情严重程度的评估至关重要。尽管实验室检测指标对ES的诊断缺乏特异性,但贫血、白细胞计数升高和血沉加快等指标仍可在一定程度上提示恶性肿瘤的存在。此外,血清乳酸脱氢酶水平的升高目前被认为是ES相对特异的指标,且常常预示着不良预后[7]。相较于实验室检测结果,影像学检查在ES的诊断中具有更高的价值[8]。对于起源于骨组织或发生骨侵犯的ES,X线平片通常作为首选检查方法,其特征性表现为“葱皮样”改变。此外,X线平片可观察到溶骨性破坏和骨组织的异常增生,少数患者可能出现类似骨肉瘤的影像学征象——“Codman三角”。CT扫描有助于进一步明确ES患者是否在原发部位之外存在转移;MRI检查则能更准确地反映肿瘤的病变范围,并在判断肿瘤与周围神经、血管及脏器位置关系方面具有优势[9]

关于评估ES骨髓转移的最佳方法,目前尚无统一看法。有学者主张进行骨髓活检;也有人认为可采用氟脱氧葡萄糖–正电子发射断层扫描(FDG-PET)替代;还有观点认为儿童患者均需进行骨髓活检,而成年患者则非必需。一项系统评价表明,18氟–脱氧葡萄糖–正电子发射断层扫描(18FDG-PET)可用于新诊断的ES患者的分期,无需进行骨髓活检[10]。根据2023年美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)的临床指南共识,推荐在新诊断的ES患者的初始工作中纳入PDG-PET检查。在无法进行PET-CT的医疗机构,骨显像可作为一种替代手段,但其效果相对较差。在PDG-PET结果阴性且其他分期评估明确的情况下,初始工作中不进行骨髓活检是合理的[11]

2.2. 病理与分期

截至目前,ES的确切来源尚属未知,间充质干细胞[12]、神经干细胞[13]及成骨软骨祖细胞[14]等被视为潜在的起源细胞。遗传学研究表明,尽管人群中存在遗传易感性的证据,但ES并不被认为是一种家族遗传性肿瘤[15]。关于ES的发病机理,目前尚无明确阐述,但普遍观点认为与染色体的易位导致的融合基因形成有关。通常由22号染色体q12区域的EWS基因(EWSR1)与ETS基因家族中的不同成员(如FLI1、ERG、ETV1、ETV4和FEV)发生融合所致,其中以EWS-FLI1最为常见,约占85%,在约5%~10%的病例中,EWS基因与其他ETS家族成员发生融合[16]。在极少数情况下,FUS基因可替代EWS,产生不含EWS重排的融合转录本,如由t(16; 21)(p11; q24)易位产生的FUS-ERG融合基因,或由t(2; 16)(q35; p11)产生的FUS-FEV融合基因[17]。在组织学上,通过光学显微镜观察,ES细胞呈均匀的小圆形,细胞核泡状,染色质分散,胞质透明,细胞边界多不清晰,表现为片状或小岛状结构,具备特定的病理特征及一定程度的神经分化表现[18]

ES不仅在基因水平上具有特征性的融合基因,其在免疫组化(Immunohistochemistry, IHC)方面也展现出一定的特异性表达。超过95%的肿瘤表达细胞表面蛋白CD99 (亦称为MIC2),该蛋白已成为ES的重要标志物[19]。CD99并非ES的特异性表达,亦可见于某些正常组织及其他间充质肿瘤中,但若CD99免疫原性阴性,则强烈排除ES的诊断。除CD99外,其他标志物如神经元特异性烯醇化酶(NSE)、S-100蛋白、CD57、神经丝蛋白、细胞角蛋白、desmin、caveolin-1、Nkx-2.2等,在CD99检测阴性的病例中也常见表达[20]-[26]

相较于其他实体肿瘤,ES尚未形成一套普遍接受的分期体系。尽管美国癌症联合会(American Joint Committee on Cancer, AJCC)与国际抗癌联盟(International Union Against Cancer, UICC)针对骨与软组织原发性肿瘤,提出了TNM分期方法,但由于该系统未具体界定原发灶位置,故其在临床实践中的应用并不广泛。

目前,ES的诊断主要依据患者的发病年龄、临床表现和影像学特征进行综合判断。当然,确诊ES的黄金标准仍然是肿瘤穿刺活检或肿瘤切除后的病理学诊断结果。若患者及其家属同意,在有条件的医疗机构,可行基因检测,若检测到EWSR1基因断裂点易位阳性,亦可明确诊断。

3. 治疗进展及未来方向

3.1. 传统治疗(手术、放疗、化疗)回顾

3.1.1. 化学治疗

化疗是ES治疗的基石,得益于医学领域的持续发展,局部ES患者的生存率得到了显著提升,目前其生存率已高达80% [27]。然而,对于约20%的早期转移或治疗后复发的ES患者,其五年生存率仍不足30%,其中,肿瘤耐药是主要挑战。我国针对ES患者的标准化诊疗方案主要包括VDC (长春新碱 + 多柔比星 + 环磷酰胺)与IE (异环磷酰胺 + 依托泊苷)方案的交替使用,化疗间隔为2至3周,其中VDC/IE方案已被证实优于VIDE方案[28]

耐药机制的研究揭示了肿瘤耐药的复杂性,有学者提出的互补假说认为化疗效果与肿瘤细胞生长率密切相关。该研究描述了缓慢分裂的肿瘤再生细胞——这些肿瘤细胞亚群(亦称为肿瘤干细胞)因具备干细胞特征的药物外排泵,以及对化疗应激期间的静止能力,而天然具有耐药性[29]。除此之外,肿瘤微环境(Tumor microenvironment, TME)在其中的作用日益受到关注。即肿瘤相关巨噬细胞等基质细胞通过分泌细胞因子,营造免疫抑制环境,并帮助肿瘤细胞抵御化疗杀伤[30]。为克服耐药,研究正在探索新的辅助策略。例如物理低温等离子体(Cold physical plasma, CPP)通过增加细胞膜渗透性,促进化疗药物进入癌细胞与化学药物治疗的联合应用[31],以及化疗辅助药物依洛沙星通过干扰DNA修复等非经典途径增敏化疗[32]

对于高危患者,高剂量化疗(High Dose Chemotherapy, HDCT)及自体干细胞移植(Autologous Stem Cell Transplantation, ASCT)是另一重要方向。回顾性研究显示其可能改善复发或难治性患者的生存[33],但该方案伴随着显著毒性,且缺乏大规模随机试验证实其绝对获益,因此其确切地位仍需进一步明确。

3.1.2. 手术治疗和放射治疗

手术切除病变是ES综合治疗的核心环节,一般情况下,体积较小、位置偏外的肿瘤倾向于优先选择手术切除,而体积较大、接近中心的肿瘤则可能需接受化疗后手术及/或放射治疗。相较于放疗,手术在降低第二原发癌及发育迟缓风险方面具有优势[34]。此外,手术还可为肿瘤研究提供更多信息,特别是关于肿瘤坏死组织的情况。术后残留肿瘤细胞的病人,其预后较完全坏死的病人差[35]。一旦决定施行手术切除,应力求达到阴性手术切缘,因为手术切缘状态与术后复发存在显著相关性[36] [37]。若病理检查发现切缘阳性,则需进行二次手术切除。对于这类切缘阳性患者,放射治疗亦被推荐,但放疗后再次进行手术切除并不能提升生存率,故应避免。对于无法手术切除的患者,建议采用放射治疗以缩小肿瘤并明确界限。推荐的照射范围应包括治疗前肿瘤体积并预留适当余地。常规剂量为45 Gy,针对起源于骨外软组织且无骨骼侵犯的ES,剂量可达50.4 Gy,具体分次依据患者情况而定。

此外,针对ES放化疗引起的慢性疼痛,有案例显示可通过葡萄糖增生疗法(Dextrose Prolotherapy, DPT)进行缓解[38]。DPT作为唯一已知非手术疗法,用于修复结缔组织/韧带及肌腱在急性或过度使用损伤后的功能不全,通常采用葡萄糖、富血小板血浆或干细胞进行治疗[39]。然而,国内尚缺乏相关统计数据或研究支持该观点,且该疼痛缓解治疗方案在国内尚未全面推广。

3.2. 新兴治疗策略

经过传统治疗,ES患者的五年生存率已有显著提高。然而,治疗后复发率仍较高。对于早期转移或治疗后复发的患者,其五年生存率不超过30%。鉴于此,开发新的ES治疗方案刻不容缓。目前,新兴的治疗策略主要聚焦于靶向治疗和免疫治疗。

3.2.1. 靶向治疗

研究显示,由FET基因与编码ETS家族转录因子的基因融合而成的EWSR1:FLI1基因表达与ES发病密切相关,是理想的靶向治疗靶点。遗憾的是,直接靶向该转录因子极具挑战,使其长期被视为“不可成药”靶点。故当前策略应聚焦于干预其下游效应网络。文献回顾发现,在EWSR1:FLI1表达过程中,有七个潜在靶点可作为ES靶向治疗的突破口,包括IGF-1R,DAX-1 (NR0B1),NKX2.2,GLI1,EZH2,FOXO1及FOXM1 [40]

其中,IGF-1R对调节肿瘤细胞生长、存活及转移扮演着关键角色[41] [42],靶向IGF-1R曾是最有前景的方向之一。IGF1R通过激活PI3K-Akt [43]和Ras-Raf-MAPK [44] [45]等信号通路,促进细胞增殖,抑制凋亡,并增强肿瘤细胞的迁移能力。但令人遗憾的是,目前一项由儿童肿瘤学组(Children’s Oncology Group, COG)进行的大型临床随机试验显示,针对IGF-1R通路的靶向药物加尼妥单抗联合化疗未能改善转移患者的生存[46]。这一失败深刻揭示了ES信号网络的冗余与代偿能力,提示单一靶向路径易被旁路激活所绕过。

为突破此瓶颈,当前研究应沿两个方向深入:第一,开发颠覆性技术。例如,蛋白水解靶向嵌合体(Proteolysis-targeting chimera, PROTAC)技术有望直接降解EWSR1:FLI1蛋白,为攻克“不可成药”靶点带来全新希望;第二,探索合理的联合疗法。鉴于EZH2等蛋白是EWSR1:FLI1的关键表观遗传协同因子,靶向这些节点(如EZH2抑制剂联合化疗)在临床前模型中展现出协同抗肿瘤活性,是当前转化研究的热点。

3.2.2. 免疫治疗

近几十年来,肿瘤免疫治疗成为多学科研究之焦点,新型免疫治疗策略亦不断涌现,如免疫检查点抑制剂、治疗性癌症疫苗等[47] [48]。尽管在实体瘤中屡获突破,但在ES仍举步维艰,其核心在于ES的“免疫冷肿瘤”特性——T细胞浸润不足且免疫抑制微环境盛行。

嵌合抗原受体(Chimeric Antigen Receptor, CAR)-T细胞疗法是研究焦点之一。该疗法的基本原理在于将具备抗肿瘤活性的CAR-T细胞引入患者体内,移植后,这些细胞可大量增殖并展现持久的抗肿瘤效果[49]。CAR-T细胞的成功应用依赖于其对肿瘤细胞的特异性识别以及对转移瘤的杀伤能力[50]。目前已筛选出多个潜在靶点,如VEGFR2、IGF1R、GD2等,并在临床前模型中证实了可行性[51]-[56]。然而,肿瘤异质性与靶点表达不均导致单一CAR-T疗法易引发免疫逃逸。同时,抑制性肿瘤微环境会使得输入的CAR-T细胞迅速耗竭。

因此,未来的免疫治疗策略必须超越单纯的“细胞注射”,转而采用组合拳式的综合干预。这包括:开发靶向TME中免疫抑制细胞(如巨噬细胞)的药物;将CAR-T与免疫检查点抑制剂联用,以逆转T细胞功能;以及探索双靶点或多靶点CAR-T,以应对抗原丢失逃逸。这些策略旨在将“冷肿瘤”转化为“热肿瘤”,是免疫治疗在ES中取得成功的关键。

此外,有研究提出了基因治疗在ES治疗中的潜在应用,该研究概述了基因治疗中病毒与非病毒递送系统的可能性,以及旨在调节基因表达或直接编辑基因组的治疗因子设计[57]。尽管传统治疗对ES具有一定疗效,但新兴治疗策略(如靶向治疗和免疫治疗)无疑已成为未来研究的重点,并承载着治愈的希望。这些新兴治疗手段有望为ES患者带来更为精准、高效的疗法,改善其预后,值得科研人员及临床医生的持续关注与深入研究。

4. 预后研究

关于ES患者的预后情况,前文已有论述。虽然近年来其预后已取得显著进步,但转移及复发患儿的预后仍不容乐观。ES患者的生存率受众多因素影响,包括患者年龄、原发肿瘤部位、肿瘤体积、是否存在远处转移、手术治疗、放射治疗以及其他与临床预后相关的因素[58]-[62]。然而,尽管已有研究明确了影响ES患者生存的独立预后因素,但尚无单一因素能够准确预测ES患者的生存情况。

此外,上述可能影响预后的指标大多与肿瘤负荷相关,缺乏临床实验室检测指标的研究。但有研究指出,血清C反应蛋白、乳酸脱氢酶水平及血沉等也可能对ES预后产生影响[63]。随着实验室检测技术的进步,肿瘤标志物的测定已成为肿瘤患者初诊常规,因此初诊时肿瘤标志物水平对ES预后的影响亦不容忽视。鉴于此,当前迫切需要全面整合ES患者的各项指标,确立预后的独立相关风险因素,并构建精确预测生存率的预后模型。对确诊为ES的患者进行综合评估,实现风险分层、早期干预和个性化治疗,以期提高治疗效果。

5. 展望

随着科技进步,ES的诊断水平有很大的提升,通过病理基本都可以确诊。然而在治疗领域,却尚存较大的提升空间。传统的治疗手段,如手术、放疗与化疗,虽在一定程度上能够控制病情,但对于局部肿瘤患儿的整体预后及存活率仍不够理想,且伴随诸多并发症与转移风险;对于约80%已发生转移的ES患儿,传统治疗手段难以带来显著的疗效改善。然而,随着生物靶向治疗技术的不断发展,一些晚期ES患儿开始看到康复的曙光。不同靶点间存在着紧密的内在联系,靶向药物的联合应用已展现出显著的协同治疗效果。

展望未来,为实现ES治疗范式的突破,后续研究应聚焦于以下几个核心方向:第一,利用单细胞测序等前沿技术,深入解析ES的瘤内异质性及肿瘤微环境演变,阐明其驱动化疗耐药与免疫逃逸的关键细胞亚群与分子通路;第二,开发针对ES循环肿瘤DNA (ctDNA)的高灵敏度液态活检技术,使其能够用于微小残留病(MRD)监测与疗效评估,为实现治疗方案的动态调整提供依据;第三,致力于攻克核心致癌驱动因子EWSR1-FLI1,重点探索其下游关键表观遗传调控因子(如EZH2、LSD1等),并系统评估靶向这些节点的联合用药策略的疗效与安全性。这些具体路径的突破,将有望为ES患者带来实质性的生存改善。

6. 结语

本文综述旨在全方位展现尤文氏肉瘤的理解视角,从分子层面的作用机制至治疗手段的探讨,希望能构筑一个为临床医师、科研工作者及学子们深入认识该疾病的平台。通过全面分析,我们得以深刻理解这一疾病的复杂性与挑战性,并为患者带来更加有效的治疗策略。

致 谢

衷心感谢李长春老师在本文撰写过程中给予的悉心指导与宝贵建议。同时感谢重庆医科大学附属儿童医院肿瘤外科所有老师、同行的有益讨论。文责由作者自负。

NOTES

*通讯作者。

参考文献

[1] Delattre, O., Zucman, J., Melot, T., Garau, X.S., Zucker, J., Lenoir, G.M., et al. (1994) The Ewing Family of Tumors—A Subgroup of Small-Round-Cell Tumors Defined by Specific Chimeric Transcripts. New England Journal of Medicine, 331, 294-299. [Google Scholar] [CrossRef] [PubMed]
[2] Brown, J.M., Rakoczy, K., Tokson, J.H., Jones, K.B. and Groundland, J.S. (2022) Ewing Sarcoma of the Pelvis: Clinical Features and Overall Survival. Cancer Treatment and Research Communications, 33, Article 100634. [Google Scholar] [CrossRef] [PubMed]
[3] Zhang, Y., Nong, W., Ren, Y., Jiang, J., Zhang, H., et al. (2020) Ewing’s Sarcoma of the Cervix: A Case Report and Review of Literature. Histology & Histopathology, 35, 475-480.
[4] Van Mater, D. and Wagner, L. (2019) Management of Recurrent Ewing Sarcoma: Challenges and Approaches. OncoTargets and Therapy, 12, 2279-2288. [Google Scholar] [CrossRef] [PubMed]
[5] Applebaum, M.A., Worch, J., Matthay, K.K., Goldsby, R., Neuhaus, J., West, D.C., et al. (2011) Clinical Features and Outcomes in Patients with Extraskeletal Ewing Sarcoma. Cancer, 117, 3027-3032. [Google Scholar] [CrossRef] [PubMed]
[6] Hashimoto, K., Nishimura, S., Oka, N. and Akagi, M. (2020) Clinical Features and Outcomes of Primary Bone and Soft Tissue Sarcomas in Adolescents and Young Adults. Molecular and Clinical Oncology, 12, 358-364. [Google Scholar] [CrossRef] [PubMed]
[7] Cao, L.L., Yang, L., Chen, Z., Yue, Z., Pei, L., Jia, M., et al. (2020) A New Classifier Based on Laboratory Indicators for Early Diagnosis and Prognosis Prediction of Ewing’s Sarcoma. Clinical Laboratory, 66, No. 4. [Google Scholar] [CrossRef] [PubMed]
[8] Babapour, S., Mohseni, I., Piri, R. and Basi, A. (2020) Left Renal Ewing’s Sarcoma: A Case Study and a Review of Imaging Literature. Radiology Case Reports, 15, 391-395.
[9] Behzadi, A.H., Raza, S.I., Carrino, J.A., Kosmas, C., Gholamrezanezhad, A., Basques, K., et al. (2018) Applications of PET/CT and PET/MR Imaging in Primary Bone Malignancies. PET Clinics, 13, 623-634. [Google Scholar] [CrossRef] [PubMed]
[10] Tal, A.L., Doshi, H., Parkar, F., Abraham, T., Love, C., Ye, K., et al. (2021) The Utility of 18FDG PET/CT versus Bone Scan for Identification of Bone Metastases in a Pediatric Sarcoma Population and a Review of the Literature. Journal of Pediatric Hematology/Oncology, 43, 52-58. [Google Scholar] [CrossRef] [PubMed]
[11] Gupta, A., Riedel, R.F., Shah, C., Borinstein, S.C., Isakoff, M.S., Chugh, R., et al. (2023) Consensus Recommendations in the Management of Ewing Sarcoma from the National Ewing Sarcoma Tumor Board. Cancer, 129, 3363-3371. [Google Scholar] [CrossRef] [PubMed]
[12] Lin, P.P., Wang, Y. and Lozano, G. (2011) Mesenchymal Stem Cells and the Origin of Ewing’s Sarcoma. Sarcoma, 2011, 1-8. [Google Scholar] [CrossRef] [PubMed]
[13] von Levetzow, C., Jiang, X., Gwye, Y., von Levetzow, G., Hung, L., Cooper, A., et al. (2011) Modeling Initiation of Ewing Sarcoma in Human Neural Crest Cells. PLOS ONE, 6, e19305. [Google Scholar] [CrossRef] [PubMed]
[14] Tanaka, M., Yamazaki, Y., Kanno, Y., Igarashi, K., Aisaki, K., Kanno, J., et al. (2014) Ewing’s Sarcoma Precursors Are Highly Enriched in Embryonic Osteochondrogenic Progenitors. Journal of Clinical Investigation, 124, 3061-3074. [Google Scholar] [CrossRef] [PubMed]
[15] Grünewald, T.G.P., Bernard, V., Gilardi-Hebenstreit, P., Raynal, V., Surdez, D., Aynaud, M., et al. (2015) Chimeric EWSR1-FLI1 Regulates the Ewing Sarcoma Susceptibility Gene EGR2 via a GGAA Microsatellite. Nature Genetics, 47, 1073-1078. [Google Scholar] [CrossRef] [PubMed]
[16] Forscher, C., Mita, M. and Figlin, R. (2014) Targeted Therapy for Sarcomas. Biologics, 8, 91-105.
[17] Shing, D.C., McMullan, D.J., Roberts, P., Smith, K., et al. (2003) FUS/ERG Gene Fusions in Ewing’s Tumors. Cancer Research, 63, 4568-4576.
[18] Wang, J., Jiang, W., Yan, Y., Chen, C., Yu, Y., Wang, B., et al. (2016) Knockdown of EWSR1/FLI1 Expression Alters the Transcriptome of Ewing Sarcoma Cells in Vitro. Journal of Bone Oncology, 5, 153-158. [Google Scholar] [CrossRef] [PubMed]
[19] Marcilla, D., Machado, I., Grünewald, T.G.P., Llombart-Bosch, A. and de Álava, E. (2021) (Immuno)histological Analysis of Ewing Sarcoma. In: Methods in Molecular Biology, Springer, 49-64. [Google Scholar] [CrossRef] [PubMed]
[20] Tomar, A. and Kaushal Jain, H. (2024) Extraskeletal Ewing’s Sarcoma on Hard Palate Biltaerally: A Rare Case Report. Oral Oncology, 156, Article 106916. [Google Scholar] [CrossRef] [PubMed]
[21] Collini, P., Mezzelani, A., Modena, P., Dagrada, P., Tamborini, E., Luksch, R., et al. (2003) Evidence of Neural Differentiation in a Case of Post-Therapy Primitive Neuroectodermal Tumor/Ewing Sarcoma of Bone. The American Journal of Surgical Pathology, 27, 1161-1166. [Google Scholar] [CrossRef] [PubMed]
[22] Amann, G., Zoubek, A., Salzer-Kuntschik, M., Windhager, R. and Kovar, H. (1999) Relation of Neuroglial Marker Expression and EWS Gene Fusion Types in MIC2/CD99-Positive Tumors of the Ewing Family. Human Pathology, 30, 1058-1064. [Google Scholar] [CrossRef] [PubMed]
[23] Shi, X., Zheng, Y., Jiang, L., Zhou, B., Yang, W., Li, L., et al. (2020) EWS-FLI1 Regulates and Cooperates with Core Regulatory Circuitry in Ewing Sarcoma. Nucleic Acids Research, 48, 11434-11451. [Google Scholar] [CrossRef] [PubMed]
[24] Boulay, G., Volorio, A., Iyer, S., Broye, L.C., Stamenkovic, I., Riggi, N., et al. (2018) Epigenome Editing of Microsatellite Repeats Defines Tumor-Specific Enhancer Functions and Dependencies. Genes & Development, 32, 1008-1019. [Google Scholar] [CrossRef] [PubMed]
[25] Boro, A., Prêtre, K., Rechfeld, F., Thalhammer, V., Oesch, S., Wachtel, M., et al. (2012) Small‐Molecule Screen Identifies Modulators of EWS/FLI1 Target Gene Expression and Cell Survival in Ewing’s Sarcoma. International Journal of Cancer, 131, 2153-2164. [Google Scholar] [CrossRef] [PubMed]
[26] Jully, B., Vijayalakshmi, R., Gopal, G., Sabitha, K. and Rajkumar, T. (2012) Junction Region of EWS-FLI1 Fusion Protein Has a Dominant Negative Effect in Ewing’s Sarcoma in Vitro. BMC Cancer, 12, Article No. 513. [Google Scholar] [CrossRef] [PubMed]
[27] Park, H.R., Jung, W.W., Kim, H.S. and Park, Y.K. (2014) Microarray-Based DNA Methylation Study of Ewing’s Sarcoma of the Bone. Oncology Letters, 8, 1613-1617. [Google Scholar] [CrossRef] [PubMed]
[28] Liebner, D.A. (2015) The Indications and Efficacy of Conventional Chemotherapy in Primary and Recurrent Sarcoma. Journal of Surgical Oncology, 111, 622-631. [Google Scholar] [CrossRef] [PubMed]
[29] Shibue, T. and Weinberg, R.A. (2017) EMT, CSCs, and Drug Resistance: The Mechanistic Link and Clinical Implications. Nature Reviews Clinical Oncology, 14, 611-629. [Google Scholar] [CrossRef] [PubMed]
[30] Moreno Ayala, M.A., Campbell, T.F., Zhang, C., Dahan, N., Bockman, A., Prakash, V., et al. (2023) CXCR3 Expression in Regulatory T Cells Drives Interactions with Type I Dendritic Cells in Tumors to Restrict CD8+ T Cell Antitumor Immunity. Immunity, 56, 1613-1630.e5. [Google Scholar] [CrossRef] [PubMed]
[31] Jacoby, J.M., Strakeljahn, S., Nitsch, A., Bekeschus, S., Hinz, P., Mustea, A., et al. (2020) An Innovative Therapeutic Option for the Treatment of Skeletal Sarcomas: Elimination of Osteo-and Ewing’s Sarcoma Cells Using Physical Gas Plasma. International Journal of Molecular Sciences, 21, Article 4460. [Google Scholar] [CrossRef] [PubMed]
[32] Kim, J.A., Crawford, K.A., Spada, P.A., Martin, L.R., et al. (2023) Non-Chemotherapy Adjuvant Agents in TP53 Mutant Ewing Sarcoma. Scientific Reports, 13, Article No. 14360. [Google Scholar] [CrossRef] [PubMed]
[33] Ramamurthy, A., Connolly, E.A., Mar, J., Lewin, J., Bhadri, V.A., Phillips, M.B., et al. (2024) High-Dose Chemotherapy for Ewing Sarcoma and Rhabdomyosarcoma: A Systematic Review by the Australia and New Zealand Sarcoma Association Clinical Practice Guidelines Working Party. Cancer Treatment Reviews, 124, Article 102694. [Google Scholar] [CrossRef] [PubMed]
[34] Paulino, A.C. (2004) Late Effects of Radiotherapy for Pediatric Extremity Sarcomas. International Journal of Radiation Oncology, Biology, Physics, 60, 265-274. [Google Scholar] [CrossRef] [PubMed]
[35] Oberlin, O., Deley, M.C.L., Bui, B.N., Gentet, J.C., Philip, T., Terrier, P., et al. (2001) Prognostic Factors in Localized Ewing’s Tumours and Peripheral Neuroectodermal Tumours: The Third Study of the French Society of Paediatric Oncology (EW88 Study). British Journal of Cancer, 85, 1646-1654. [Google Scholar] [CrossRef] [PubMed]
[36] Sluga, M., Windhager, R., Lang, S., Heinzl, H., Krepler, P., Mittermayer, F., et al. (2001) The Role of Surgery and Resection Margins in the Treatment of Ewing’s Sarcoma. Clinical Orthopaedics and Related Research, 392, 394-399. [Google Scholar] [CrossRef] [PubMed]
[37] Ozaki, T., Hillmann, A., Hoffmann, C., Rübe, C., Blasius, S., Dunst, J., et al. (1996) Significance of Surgical Margin on the Prognosis of Patients with Ewing’s Sarcoma: A Report from the Cooperative Ewing’s Sarcoma Study. Cancer, 78, 892-900. [Google Scholar] [CrossRef] [PubMed]
[38] Panagos, A. (2021) Dextrose Prolotherapy to Treat Pain, Improve Activities of Daily Living, and Improve Quality of Life in an Ewing’s Sarcoma Patient Following Radiation and Chemotherapy Treatment. Cureus, 13, e13549. [Google Scholar] [CrossRef] [PubMed]
[39] West, W.H., Beutler, A.I. and Gordon, C.R. (2020) Regenerative Injectable Therapies: Current Evidence. Current Sports Medicine Reports, 19, 353-359. [Google Scholar] [CrossRef] [PubMed]
[40] Yasir, M., Park, J. and Chun, W. (2023) EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. International Journal of Molecular Sciences, 24, Article 15173. [Google Scholar] [CrossRef] [PubMed]
[41] Galifi, C.A. and Wood, T.L. (2023) Insulin-Like Growth Factor-1 Receptor Crosstalk with Integrins, Cadherins, and the Tumor Microenvironment: Sticking Points in Understanding IGF1R Function in Cancer. Endocrine-Related Cancer, 30, e230031. [Google Scholar] [CrossRef] [PubMed]
[42] Loganathan, S.N., Tang, N., Holler, A.E., Wang, N. and Wang, J. (2019) Targeting the IGF1R/PI3K/AKT Pathway Sensitizes Ewing Sarcoma to BET Bromodomain Inhibitors. Molecular Cancer Therapeutics, 18, 929-936. [Google Scholar] [CrossRef] [PubMed]
[43] Guan, J., Borenäs, M., Xiong, J., Lai, W.Y., Palmer, R.H. and Hallberg, B. (2023) IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers, 15, Article No. 4252. [Google Scholar] [CrossRef] [PubMed]
[44] Nagao, H., Cai, W., Brandão, B.B., Wewer Albrechtsen, N.J., Steger, M., Gattu, A.K., et al. (2023) Leucine-973 Is a Crucial Residue Differentiating Insulin and IGF-1 Receptor Signaling. Journal of Clinical Investigation, 133, e161472.
[45] Werner, H. and LeRoith, D. (2022) Hallmarks of Cancer: The Insulin-Like Growth Factors Perspective. Frontiers in Oncology, 12, Article 1055589. [Google Scholar] [CrossRef] [PubMed]
[46] DuBois, S.G., Krailo, M.D., Glade-Bender, J., Buxton, A., Laack, N., Randall, R.L., et al. (2023) Randomized Phase III Trial of Ganitumab with Interval-Compressed Chemotherapy for Patients with Newly Diagnosed Metastatic Ewing Sarcoma: A Report from the Children’s Oncology Group. Journal of Clinical Oncology, 41, 2098-2107. [Google Scholar] [CrossRef] [PubMed]
[47] Saxena, M., van der Burg, S.H., Melief, C.J.M. and Bhardwaj, N. (2021) Therapeutic Cancer Vaccines. Nature Reviews Cancer, 21, 360-378. [Google Scholar] [CrossRef] [PubMed]
[48] Kennedy, L.B. and Salama, A.K.S. (2020) A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians, 70, 86-104. [Google Scholar] [CrossRef] [PubMed]
[49] Rosenberg, S.A. and Restifo, N.P. (2015) Adoptive Cell Transfer as Personalized Immunotherapy for Human Cancer. Science, 348, 62-68. [Google Scholar] [CrossRef] [PubMed]
[50] Köksal, H., Müller, E., Inderberg, E.M., Bruland, Ø. and Wälchli, S. (2019) Treating Osteosarcoma with CAR T Cells. Scandinavian Journal of Immunology, 89, e12741. [Google Scholar] [CrossRef] [PubMed]
[51] Huang, X., Park, H., Greene, J., Pao, J., Mulvey, E., Zhou, S.X., et al. (2015) IGF1R-and Ror1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas. PLOS ONE, 10, e0133152. [Google Scholar] [CrossRef] [PubMed]
[52] Englisch, A., Altvater, B., Kailayangiri, S., Hartmann, W. and Rossig, C. (2020) VEGFR2 as a Target for CAR T Cell Therapy of Ewing Sarcoma. Pediatric Blood & Cancer, 67, e28313. [Google Scholar] [CrossRef] [PubMed]
[53] Charan, M., Dravid, P., Cam, M., Audino, A., Gross, A.C., Arnold, M.A., et al. (2020) GD2-Directed CAR-T Cells in Combination with HGF-Targeted Neutralizing Antibody (AMG102) Prevent Primary Tumor Growth and Metastasis in Ewing Sarcoma. International Journal of Cancer, 146, 3184-3195. [Google Scholar] [CrossRef] [PubMed]
[54] Majzner, R.G., Theruvath, J.L., Nellan, A., Heitzeneder, S., Cui, Y., Mount, C.W., et al. (2019) CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 25, 2560-2574. [Google Scholar] [CrossRef] [PubMed]
[55] Hsu, K., Middlemiss, S., Saletta, F., Gottschalk, S., McCowage, G.B. and Kramer, B. (2021) Chimeric Antigen Receptor-Modified T Cells Targeting Epha2 for the Immunotherapy of Paediatric Bone Tumours. Cancer Gene Therapy, 28, 321-334. [Google Scholar] [CrossRef] [PubMed]
[56] Lehner, M., Götz, G., Proff, J., Schaft, N., Dörrie, J., Full, F., et al. (2012) Redirecting T Cells to Ewing’s Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection. PLOS ONE, 7, e31210. [Google Scholar] [CrossRef] [PubMed]
[57] Tsibulnikov, S., Fayzullina, D., Karlina, I., Schroeder, B.A., Karpova, O., Timashev, P., et al. (2023) Ewing Sarcoma Treatment: A Gene Therapy Approach. Cancer Gene Therapy, 30, 1066-1071. [Google Scholar] [CrossRef] [PubMed]
[58] Lee, J., Hoang, B.H., Ziogas, A. and Zell, J.A. (2010) Analysis of Prognostic Factors in Ewing Sarcoma Using a Population-Based Cancer Registry. Cancer, 116, 1964-1973. [Google Scholar] [CrossRef] [PubMed]
[59] Zhang, L., Xiong, L., Wu, L.M., Shen, W.H., et al. (2021) The Patterns of Distant Metastasis and Prognostic Factors in Patients with Primary Metastatic Ewing Sarcoma of the Bone. Journal of Bone Oncology, 30, Article 100385. [Google Scholar] [CrossRef] [PubMed]
[60] Bosma, S.E., Lancia, C., Rueten-Budde, A.J., Ranft, A., Gelderblom, H., Fiocco, M., et al. (2019) Easy-to-Use Clinical Tool for Survival Estimation in Ewing Sarcoma at Diagnosis and after Surgery. Scientific Reports, 9, Article No. 11000. [Google Scholar] [CrossRef] [PubMed]
[61] Miller, B.J., Gao, Y. and Duchman, K.R. (2017) Does Surgery or Radiation Provide the Best Overall Survival in Ewing’s Sarcoma? A Review of the National Cancer Data Base. Journal of Surgical Oncology, 116, 384-390. [Google Scholar] [CrossRef] [PubMed]
[62] Verma, V., Denniston, K.A., Lin, C.J. and Lin, C. (2017) A Comparison of Pediatric Vs. Adult Patients with the Ewing Sarcoma Family of Tumors. Frontiers in Oncology, 7, Article 82. [Google Scholar] [CrossRef] [PubMed]
[63] Consalvo, S., Hinterwimmer, F., Harrasser, N., Lenze, U., Matziolis, G., von Eisenhart-Rothe, R., et al. (2022) C-Reactive Protein Pretreatment-Level Evaluation for Ewing’s Sarcoma Prognosis Assessment—A 15-Year Retrospective Single-Centre Study. Cancers, 14, Article No. 5898. [Google Scholar] [CrossRef] [PubMed]