|
[1]
|
Joham, A.E., Norman, R.J., Stener-Victorin, E., Legro, R.S., Franks, S., Moran, L.J., et al. (2022) Polycystic ovary syndrome. The Lancet Diabetes & Endocrinology, 10, 668-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
吕镁, 徐泽均, 孙任任, 等. 高雄激素相关的慢性炎症与多囊卵巢综合征的研究进展[J]. 生物化学与生物物理进展, 2022, 49(4): 767-774.
|
|
[3]
|
柏佳丽, 周平, 李蓉. 多囊卵巢综合征妇女线粒体功能障碍研究进展[J]. 生物医学转化, 2023, 4(1): 39-45.
|
|
[4]
|
胡俊, 马智, 张洪英, 等. 白藜芦醇改善多囊卵巢综合征模型大鼠卵巢颗粒细胞线粒体功能和抑制凋亡的作用[J]. 重庆医科大学学报, 2024, 49(3): 264-269.
|
|
[5]
|
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
|
|
[6]
|
Morgante, G., Darino, I., Spanò, A., Luisi, S., Luddi, A., Piomboni, P., et al. (2022) PCOS Physiopathology and Vitamin D Deficiency: Biological Insights and Perspectives for Treatment. Journal of Clinical Medicine, 11, Article 4509. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Goodarzi, M.O., Dumesic, D.A., Chazenbalk, G. and Azziz, R. (2011) Polycystic Ovary Syndrome: Etiology, Pathogenesis and Diagnosis. Nature Reviews Endocrinology, 7, 219-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Escobar-Morreale, H.F., Luque-Ramírez, M. and González, F. (2011) Circulating Inflammatory Markers in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Fertility and Sterility, 95, 1048-1058.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Simic, D., Nikolic Turnic, T., Dimitrijevic, A., Zivadinovic, A., Milosevic-Stevanovic, J., Djuric, D., et al. (2022) Potential Role of D-chiro-Inositol in Reducing Oxidative Stress in the Blood of Nonobese Women with Polycystic Ovary Syndrome. Canadian Journal of Physiology and Pharmacology, 100, 629-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Azhar, A., Alam, S.M., Ashraf, M., et al. (2023) Vitamin D Status and Its Relationship with Oxidative Stress Markers in Infertile Women with Polycystic Ovary Syndrome. Pakistan Journal of Pharmaceutical Sciences, 36, 331-335.
|
|
[11]
|
Zhang, J., Bao, Y., Zhou, X. and Zheng, L. (2019) Polycystic Ovary Syndrome and Mitochondrial Dysfunction. Reproductive Biology and Endocrinology, 17, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dapas, M., Lin, F.T.J., Nadkarni, G.N., Sisk, R., Legro, R.S., Urbanek, M., et al. (2020) Distinct Subtypes of Polycystic Ovary Syndrome with Novel Genetic Associations: An Unsupervised, Phenotypic Clustering Analysis. PLOS Medicine, 17, e1003132. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Aquino Carlos, P. and Hernández Valencia, M. (1998) [Insulin Resistance in Polycystic Ovary Syndrome]. Ginecologia y Obstetricia de Mexico, 66, 446-451.
|
|
[14]
|
Zeber-Lubecka, N., Ciebiera, M. and Hennig, E.E. (2023) Polycystic Ovary Syndrome and Oxidative Stress—From Bench to Bedside. International Journal of Molecular Sciences, 24, Article 14126. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Łagowska, K., Bajerska, J. and Jamka, M. (2018) The Role of Vitamin D Oral Supplementation in Insulin Resistance in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 10, Article 1637. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Szymczak-Pajor, I., Drzewoski, J. and Śliwińska, A. (2020) The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. International Journal of Molecular Sciences, 21, Article 6644. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Boström, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., et al. (2012) A PGC1-α-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dellino, M., Cascardi, E., Leoni, C., Fortunato, F., Fusco, A., Tinelli, R., et al. (2022) Effects of Oral Supplementation with Myo-Inositol and D-Chiro-Inositol on Ovarian Functions in Female Long-Term Survivors of Lymphoma: Results from a Prospective Case-Control Analysis. Journal of Personalized Medicine, 12, Article 1536. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Etrusco, A., Laganà, A.S., Chiantera, V., Buzzaccarini, G. and Unfer, V. (2024) Myo-Inositol in Assisted Reproductive Technology from Bench to Bedside. Trends in Endocrinology & Metabolism, 35, 74-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Naoi, M., Wu, Y., Shamoto-Nagai, M. and Maruyama, W. (2019) Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. International Journal of Molecular Sciences, 20, Article 2451. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Q., Ren, J., Wang, F., Pan, M., Cui, L., Li, M., et al. (2022) Mitochondrial and Glucose Metabolic Dysfunctions in Granulosa Cells Induce Impaired Oocytes of Polycystic Ovary Syndrome through Sirtuin 3. Free Radical Biology and Medicine, 187, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nayak, D., Adiga, D., Khan, N.G., Rai, P.S., Dsouza, H.S., Chakrabarty, S., et al. (2022) Impact of Bisphenol a on Structure and Function of Mitochondria: A Critical Review. Reviews of Environmental Contamination and Toxicology, 260, Article No. 10. [Google Scholar] [CrossRef]
|
|
[23]
|
Wang, Y., Zhu, Q., Dang, X., He, Y., Li, X. and Sun, Y. (2016) Local Effect of Bisphenol a on the Estradiol Synthesis of Ovarian Granulosa Cells from PCOS. Gynecological Endocrinology, 33, 21-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tang, L., Du, K., Luo, K., Wang, L. and Hua, F. (2024) Mitigating Bisphenol A-Induced Apoptosis in KGN Cells: The Therapeutic Role of 1, 25-Dihydroxyvitamin D3 through Upregulation of PGC-1α Expression and Inhibition of the Mitochondrial Cytochrome C Pathway. Hormones, 23, 363-374. [Google Scholar] [CrossRef] [PubMed]
|