对贝达喹啉、异烟肼、利福平、乙胺丁醇和吡嗪酰胺耐药的初治肺结核合并糖尿病一例
A Case of Newly Diagnosed Pulmonary Tuberculosis with Diabetes Mellitus Resistant to Bedaquiline, Isoniazid, Rifampicin, Ethambutol, and Pyrazinamide
摘要: 目的:异烟肼、利福平、乙胺丁醇和吡嗪酰胺是治疗结核病的一线药物,而贝达喹啉是治疗耐多药结核病的关键药物。贝达喹啉耐药性的出现对结核病治疗效果构成严重威胁,但其在初治肺结核患者中的报道仍较为罕见。此外,糖尿病是结核病的重要共病,二者可相互影响、相互作用。方法:收集并整理1例因“慢性咳嗽、胸部不适”就诊的患者的基本信息、病史、实验室检查、影像学资料(胸部CT平扫)以及诊疗经过,进行综合分析。结果:该患者以慢性咳嗽、胸部不适为主诉,近半年体重下降约7.5 kg,其胸部CT平扫提示“双肺多发感染灶,肺结核可能”,痰液检测确诊为利福平耐药肺结核。进一步基因检测证实该菌株对异烟肼、利福平、乙胺丁醇、吡嗪酰胺及贝达喹啉均耐药。实验室检查发现患者空腹血糖为14.87 mmol/L,糖化血红蛋白(HbA1c)为10.8%,诊断为2型糖尿病。经个体化抗结核方案(丙硫异烟胺、氯法齐明、环丝氨酸、利奈唑胺和左氧氟沙星)联合胰岛素控制血糖治疗后,患者症状改善,顺利出院。本案例提示,应警惕初治肺结核患者出现广泛耐药的可能性,并强调快速分子药物敏感性检测在早期诊断中的重要性。此外,本文也探讨了糖尿病与结核病耐药之间的潜在关联。
Abstract: Objective: Isoniazid, rifampicin, ethambutol, and pyrazinamide are first-line drugs for treating tuberculosis, while bedaquiline is a key medication for multidrug-resistant tuberculosis. The emergence of bedaquiline resistance poses a serious threat to tuberculosis treatment outcomes, yet its occurrence remains relatively rare among treatment-naive pulmonary tuberculosis patients. Furthermore, diabetes is a significant comorbid condition in tuberculosis, with both conditions capable of influencing and interacting with each other. Method: Collect and organize the basic information, medical history, laboratory tests, imaging data (plain chest CT scan), and clinical course of one patient presenting with “chronic cough and chest discomfort,” then conduct a comprehensive analysis. Results: The patient presented with chronic cough and chest discomfort as chief complaints, accompanied by weight loss of approximately 7.5 kg over the past six months. A plain chest CT scan revealed “multiple infectious foci in both lungs, suggestive of pulmonary tuberculosis.” Sputum testing confirmed the diagnosis as rifampicin-resistant pulmonary tuberculosis. Further genetic testing confirmed the strain’s resistance to isoniazid, rifampicin, ethambutol, pyrazinamide, and bedaquiline. Laboratory tests revealed a fasting blood glucose level of 14.87 mmol/L and a glycated hemoglobin (HbA1c) of 10.8%, leading to a diagnosis of type 2 diabetes mellitus. Following treatment with an individualized anti-tuberculosis regimen (pyrazinamide, clofazimine, cycloserine, linezolid, and levofloxacin) combined with insulin for glycemic control, the patient’s symptoms improved, and he was successfully discharged. This case highlights the need for vigilance regarding the potential for extensive drug resistance in treatment-naive pulmonary tuberculosis patients and underscores the importance of rapid molecular drug susceptibility testing in early diagnosis. Furthermore, this report explores the potential association between diabetes and tuberculosis drug resistance.
文章引用:王小红, 朱茜茜, 黄富礼. 对贝达喹啉、异烟肼、利福平、乙胺丁醇和吡嗪酰胺耐药的初治肺结核合并糖尿病一例[J]. 临床医学进展, 2025, 15(12): 1479-1484. https://doi.org/10.12677/acm.2025.15123555

1. 前言

结核病(TB)是全球最常见的感染性疾病之一,也是导致死亡的主要病因之一。根据世界卫生组织报告,2022年全球约有1060万人罹患结核病,其中约130万人死亡,耐药结核病(DR-TB)的防治形势尤为严峻[1]。耐多药结核病(MDR-TB,即对异烟肼和利福平耐药)和广泛耐药结核病(XDR-TB,即对氟喹诺酮类和二线注射类药物耐药)的发病率持续上升,2022年全球约有45万人患上MDR/RR-TB (利福平耐药结核病),但仅有不到40%的患者成功获得治疗[1]。贝达喹啉(Bedaquiline)作为一种新型ATP合成酶抑制剂,自2012年获得FDA批准以来,已成为MDR-TB核心治疗方案的重要组成部分,其疗效与安全性已在多项临床试验中得到验证[2]。然而,随着贝达喹啉的广泛应用,全球已报道部分病例出现获得性耐药,而在初治患者中原发性耐药仍较为罕见,提示需要加强耐药监测[3]。糖尿病(DM)是结核病发病及不良治疗结局的重要危险因素,全球约15%的结核病病例与糖尿病相关[4]。高血糖环境可能通过抑制巨噬细胞功能和促炎细胞因子(如IFN-γ、TNF-α)的分泌,削弱宿主免疫应答;同时,它也可能通过改变利福平、异烟肼等药物的吸收与代谢,降低抗结核药物浓度,从而增加耐药风险[4]-[6]。目前国际共识建议,对结核病合并糖尿病患者应优先进行药物敏感性检测,并根据血糖控制水平和药物相互作用个体化调整抗结核方案[2] [7]。本文报告一例罕见的初治肺结核合并糖尿病患者,其菌株对一线抗结核药物(异烟肼、利福平、乙胺丁醇、吡嗪酰胺)及贝达喹啉均耐药。该病例对当前耐药结核病的流行病学认知提出了挑战,并支持糖尿病可能加速耐药突变积累的假说[8]

2. 病例资料

患者为38岁中国男性,因慢性咳嗽及胸部不适于2024年10月21日入院。患者于3个多月前无明显诱因出现轻度咳嗽,偶伴咳痰,症状持续40余天后自行服用止咳糖浆缓解。9天前患者左侧胸部受门框撞击后出现吸气时隐痛,伴有间断性咳嗽、咳痰,无其他明显伴随症状。近半年体重下降约7.5 kg,提示可能存在慢性消耗性疾病过程。患者职业为农业种植员,有长期大量饮酒(30余年,每日约350 g),无其他慢性病史。2024年10月19日门诊胸部CT平扫提示“双肺多发感染灶,肺结核可能性大”,遂以“肺部感染”收治入院。胸部CT平扫显示(见图1),右肺上叶后段见一厚壁空洞影伴少许钙化,内壁较光滑;同肺段部分支气管扩张伴管壁增厚,周围可见散在斑点影及斑片影;双肺其余肺野散在多发结节影、斑片影及索条影,最大者位于左肺下叶背段,形态欠规则,其内见气体影。

入院后实验室检查显示炎症指标升高:超敏C反应蛋白(hs-CRP)为8.19 mg/L,红细胞沉降率(ESR)为38 mm/h。血糖显著增高:空腹血糖(GLU)为14.87 mmol/L,糖化血红蛋白(HbA1c)为10.8%。经内分泌科会诊后,诊断为2型糖尿病,并予以胰岛素治疗。痰液病原学检查结果确诊肺结核:利福平耐药基因检测提示结核分枝杆菌复合群阳性且利福平耐药;自动离心法抗酸染色找到抗酸杆菌(1+);结核分枝杆菌PCR检测阳性;结核感染T细胞斑点试验(TB-IGRA)显示IFN-γ释放水平显著升高(964.10 pg/mL)。2024年10月26日抗结核药物耐药基因检测结果显示,检出结核分枝杆菌复合群,且对贝达喹啉、异烟肼、利福平、乙胺丁醇及吡嗪酰胺耐药。2024年10月31日复测结果与首次一致,从而确诊为耐多药肺结核(MDR-TB)。其抗结核药物耐药基因检测结果显示:异烟肼katG、利福平rpoB、乙胺丁醇embB、吡嗪酰胺pncA、贝达喹啉Rv0678突变频率依次为1、0.9871、1、0.9579、0.1577。

Figure 1. A plain chest CT scan reveals a thick-walled cavitary lesion with minimal calcification in the posterior segment of the right upper lobe, exhibiting relatively smooth inner walls. Concurrent bronchiectasis with wall thickening is observed in the same segment, surrounded by scattered patchy and nodular shadows. Multiple nodular, patchy, and linear shadows are scattered throughout the remaining lung fields bilaterally. The largest lesion is located in the dorsal segment of the left lower lobe, presenting an irregular shape with gas shadows visible within

1. 胸部CT平扫显示右肺上叶后段见一厚壁空洞影伴少许钙化,内壁较光滑;同肺段部分支气管扩张伴管壁增厚,周围可见散在斑点影及斑片影;双肺其余肺野散在多发结节影、斑片影及索条影,最大者位于左肺下叶背段,形态欠规则,其内见气体影

据此采用个体化二线抗结核方案:丙硫异烟胺(0.25 g bid)、氯法齐明(200 mg qd,2月后减量为100 mg qd)、环丝氨酸(0.25 g bid)、利奈唑胺(0.6 g qd)、左氧氟沙星(0.5 g qd)。同时辅以维生素B6预防环丝氨酸的神经毒性,并应用保肝药物。血糖控制方案为:门冬胰岛素(三餐前4 IU)联合甘精胰岛素(睡前10 IU)皮下注射。经上述治疗后,患者临床症状改善,2024年10月31日复查血常规及肝肾功能未见显著异常,于2024年11月1日出院并安排门诊随访。具体随访计划:1. 注意休息,增强营养,避免受凉、劳累,戒烟酒,避免接触烟尘;2. 院外继续上述抗结核治疗方案,同时预防环丝氨酸的神经毒性,并辅以保肝治疗;3. 随访频率:出院第1月每周复查血常规、肝肾功;第2月每两周复查血常规、肝肾功;如无异常,以后每月复查1次血常规、肝肾功;至少每3个月复查胸部CT;必要时复查自身抗体谱、甲功、听力、视力;4. 内分泌科门诊长期随访,院外继续使用上述降糖方案,动态监测血糖,根据血糖调整胰岛素剂量。本病例的突出特点在于,一名初治肺结核患者即对一线及关键二线抗结核药物广泛耐药,同时合并未控制的糖尿病,显著增加了治疗难度。此案例提示,需警惕初治患者中出现广泛耐药的可能性,并深入探讨糖尿病与结核病耐药之间的潜在关联。

3. 讨论

本文报告了一例罕见的初治、广泛耐药肺结核合并2型糖尿病的病例。其结核分枝杆菌菌株对一线抗结核药物(异烟肼、利福平、乙胺丁醇、吡嗪酰胺)及核心二线药物贝达喹啉同时耐药。这一发现在流行病学与临床管理方面均具有重要意义。

在结核病治疗领域,贝达喹啉是WHO推荐的耐多药结核病核心治疗药物,其耐药性通常与既往抗结核药物暴露史相关[9]。根据WHO报告,结核病患者中MDR-TB的发生率约为3%~4% [1]。另有研究显示,贝达喹啉的耐药率约为3.8% [10]

本病例中,一名无任何抗结核治疗史的患者,其菌株同时存在rpoB、katG、embB、pncA及Rv0678基因位点突变,导致对一线治疗方案(HRZE)及贝达喹啉均产生耐药。在初治患者中同时出现对HRZE方案和贝达喹啉耐药的情况极为罕见。本病例检出了贝达喹啉Rv0678基因突变(频率15.77%),该基因是MmpS5/MmpL5的转录抑制因子,其突变可导致该外排泵的表达增加[11],而MmpS5-MmpL5外排泵过表达则是结核分枝杆菌耐药的重要机制[12] [13]。尽管贝达喹啉原发性耐药在既往有治疗史的耐药结核病患者中已有报道[14],但在初治患者中出现如此复杂的多重耐药谱系极为罕见。这一现象提示,在社区传播链中可能已存在预先具备多重耐药特性的结核分枝杆菌克隆。因此,对于初治肺结核患者,尤其在耐药高负担地区,建议进行包括贝达喹啉在内的快速分子药物敏感性检测。

本病例合并有控制不佳的2型糖尿病(HbA1c 10.8%)。研究表明,糖尿病是结核病发生及治疗失败的已知危险因素[15]。在结核病-糖尿病共病(TB-DM)患者中,糖尿病可通过免疫调节异常显著增加结核病耐药风险。未控制的糖尿病会削弱宿主对结核分枝杆菌的清除能力。其机制可能包括肺泡巨噬细胞吞噬功能受损、T细胞免疫应答延迟以及慢性炎症环境导致的组织修复障碍,这些免疫缺陷共同导致细菌清除效率下降,感染病程延长,从而为耐药突变菌株的筛选与增殖创造条件[16]。本病例中广泛的原发性耐药与未控制的糖尿病并存,为探讨这两种疾病之间的相互作用提供了临床依据。

基于患者的耐药谱,治疗方案采用了全口服的二线药物组合进行治疗,包括丙硫异烟胺、氯法齐明、环丝氨酸、利奈唑胺和左氧氟沙星。该方案遵循WHO指南中关于避免使用已确认耐药药物的原则[2]。同时,本病例采用了胰岛素强化治疗方案以控制血糖。研究表明,严格的血糖管理有助于改善结核病治疗效果,并获得良好预后[17]。本病例提示,对于合并糖尿病的复杂耐药结核病患者,应建立多学科诊疗模式,以实现结核病与代谢紊乱的同步管理。

4. 结论

本文报告了一例罕见的初治肺结核合并糖尿病患者,其结核分枝杆菌菌株对一线抗结核药物(异烟肼、利福平、乙胺丁醇、吡嗪酰胺)及关键二线药物贝达喹啉同时耐药。该病例表明,即使在无既往结核治疗史的患者中,亦可能出现广泛耐药现象,这提示社区中可能已存在具备复杂耐药谱的结核分枝杆菌传播链。此外,患者合并未控制的糖尿病,进一步加剧了治疗难度与耐药风险,支持了糖尿病可能通过免疫抑制途径促进耐药发生的假说。

本文强调,对于初治肺结核患者,尤其在耐药高负担地区或合并糖尿病等共病时,应尽早开展包括贝达喹啉在内的快速分子药物敏感性检测,以指导个体化治疗方案的制定。同时,对于结核病合并糖尿病患者,需采取多学科协作模式,同步进行抗结核治疗与血糖管理,以优化治疗结局并遏制耐药的进一步传播。未来有必要加强结核病与糖尿病共病的机制研究,并完善耐药监测体系,以应对日益复杂的耐药结核病防控挑战。

声 明

该病例报道已获得病人的知情同意。

NOTES

*通讯作者。

参考文献

[1] World Health Organization (2023) Global Tuberculosis Report 2023.
https://iris.who.int/handle/10665/373828
[2] World Health Organization (2022) WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment: Drug-Resistant Tuberculosis Treatment, 2022 Update.
https://iris.who.int/handle/10665/365308
[3] Pai, H., Ndjeka, N., Mbuagbaw, L., Kaniga, K., Birmingham, E., Mao, G., et al. (2022) Bedaquiline Safety, Efficacy, Utilization and Emergence of Resistance Following Treatment of Multidrug-Resistant Tuberculosis Patients in South Africa: A Retrospective Cohort Analysis. BMC Infectious Diseases, 22, Article No. 870. [Google Scholar] [CrossRef] [PubMed]
[4] Kumar, N.P. and Babu, S. (2023) Impact of Diabetes Mellitus on Immunity to Latent Tuberculosis Infection. Frontiers in Clinical Diabetes and Healthcare, 4, Article 1095467. [Google Scholar] [CrossRef] [PubMed]
[5] Boadu, A.A., Yeboah-Manu, M., Osei-Wusu, S. and Yeboah-Manu, D. (2024) Tuberculosis and Diabetes Mellitus: The Complexity of the Comorbid Interactions. International Journal of Infectious Diseases, 146, Article ID: 107140. [Google Scholar] [CrossRef] [PubMed]
[6] Ruslami, R., Nijland, H.M.J., Adhiarta, I.G.N., Kariadi, S.H.K.S., Alisjahbana, B., Aarnoutse, R.E., et al. (2010) Pharmacokinetics of Antituberculosis Drugs in Pulmonary Tuberculosis Patients with Type 2 Diabetes. Antimicrobial Agents and Chemotherapy, 54, 1068-1074. [Google Scholar] [CrossRef] [PubMed]
[7] Niazi, A.K. and Kalra, S. (2012) Diabetes and Tuberculosis: A Review of the Role of Optimal Glycemic Control. Journal of Diabetes & Metabolic Disorders, 11, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
[8] Cornejo-Báez, A.A., Zenteno-Cuevas, R. and Luna-Herrera, J. (2024) Association between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance. Microorganisms, 12, Article 2649. [Google Scholar] [CrossRef] [PubMed]
[9] Nguyen, T.V.A., Anthony, R.M., Bañuls, A., Nguyen, T.V.A., Vu, D.H. and Alffenaar, J.C. (2017) Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clinical Infectious Diseases, 66, 1625-1630. [Google Scholar] [CrossRef] [PubMed]
[10] Ismail, N.A., Omar, S.V., Moultrie, H., Bhyat, Z., Conradie, F., Enwerem, M., et al. (2022) Assessment of Epidemiological and Genetic Characteristics and Clinical Outcomes of Resistance to Bedaquiline in Patients Treated for Rifampicin-Resistant Tuberculosis: A Cross-Sectional and Longitudinal Study. The Lancet Infectious Diseases, 22, 496-506. [Google Scholar] [CrossRef] [PubMed]
[11] Milano, A., Pasca, M.R., Provvedi, R., Lucarelli, A.P., Manina, G., Luisa de Jesus Lopes Ribeiro, A., et al. (2009) Azole Resistance in Mycobacterium tuberculosis Is Mediated by the MmpS5-MmpL5 Efflux System. Tuberculosis, 89, 84-90. [Google Scholar] [CrossRef] [PubMed]
[12] da Silva, P.E.A., Von Groll, A., Martin, A. and Palomino, J.C. (2011) Efflux as a Mechanism for Drug Resistance in Mycobacterium tuberculosis: Table 1. FEMS Immunology & Medical Microbiology, 63, 1-9. [Google Scholar] [CrossRef] [PubMed]
[13] Andries, K., Villellas, C., Coeck, N., Thys, K., Gevers, T., Vranckx, L., et al. (2014) Acquired Resistance of Mycobacterium tuberculosis to Bedaquiline. PLOS ONE, 9, e102135. [Google Scholar] [CrossRef] [PubMed]
[14] Nimmo, C., Millard, J., van Dorp, L., Brien, K., Moodley, S., Wolf, A., et al. (2020) Population-Level Emergence of Bedaquiline and Clofazimine Resistance-Associated Variants among Patients with Drug-Resistant Tuberculosis in Southern Africa: A Phenotypic and Phylogenetic Analysis. The Lancet Microbe, 1, e165-e174. [Google Scholar] [CrossRef] [PubMed]
[15] Khattak, M., Rehman, A.U., Muqaddas, T., Hussain, R., Rasool, M.F., Saleem, Z., et al. (2024) Tuberculosis (TB) Treatment Challenges in TB-Diabetes Comorbid Patients: A Systematic Review and Meta-Analysis. Annals of Medicine, 56, Article ID: 2313683. [Google Scholar] [CrossRef] [PubMed]
[16] Thong, P.M., Wong, Y.H., Kornfeld, H., Goletti, D. and Ong, C.W.M. (2025) Immune Dysregulation of Diabetes in Tuberculosis. Seminars in Immunology, 78, Article ID: 101959. [Google Scholar] [CrossRef] [PubMed]
[17] Xu, G., Hu, X., Lian, Y. and Li, X. (2023) Diabetes Mellitus Affects the Treatment Outcomes of Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. BMC Infectious Diseases, 23, Article No. 813. [Google Scholar] [CrossRef] [PubMed]