|
[1]
|
Ostrom, Q.T., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., et al. (2022) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro-Oncology, 24, v1-v95. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Goldbrunner, R., Stavrinou, P., Jenkinson, M.D., Sahm, F., Mawrin, C., Weber, D.C., et al. (2021) EANO Guideline on the Diagnosis and Management of Meningiomas. Neuro-Oncology, 23, 1821-1834. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nowak-Choi, K., Palmer, J.D., Casey, J., Chitale, A., Kalchman, I., Buss, E., et al. (2021) Resected WHO Grade I Meningioma and Predictors of Local Control. Journal of Neuro-Oncology, 152, 145-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, J., Zhang, G., Cao, Y., Ren, J., Zhao, Z., Han, T., et al. (2022) A Magnetic Resonance Imaging-Based Radiomic Model for the Noninvasive Preoperative Differentiation between Transitional and Atypical Meningiomas. Frontiers in Oncology, 12, Article ID: 811767. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Roser, F., Nakamura, M., Bellinzona, M., Rosahl, S.K., Ostertag, H. and Samii, M. (2004) The Prognostic Value of Progesterone Receptor Status in Meningiomas. Journal of Clinical Pathology, 57, 1033-1037. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mestrum, S.G.C., Cremers, E.M.P., de Wit, N.C.J., Drent, R.J.M., Ramaekers, F.C.S., Hopman, A.H.N., et al. (2022) Integration of the Ki-67 Proliferation Index into the Ogata Score Improves Its Diagnostic Sensitivity for Low-Grade Myelodysplastic Syndromes. Leukemia Research, 113, Article ID: 106789. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bozdağ, M., Er, A. and Ekmekçi, S. (2020) Association of Apparent Diffusion Coefficient with Ki-67 Proliferation Index, Progesterone-Receptor Status and Various Histopathological Parameters, and Its Utility in Predicting the High Grade in Meningiomas. Acta Radiologica, 62, 401-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shinya, Y., Hasegawa, H., Shin, M., Kawashima, M., Umekawa, M., Katano, A., et al. (2023) Long-Term Outcomes of Stereotactic Radiosurgery for Postoperative World Health Organization Grade I Skull Base Meningioma: Utility of Ki-67 Labeling Index as a Prognostic Indicator. Neurosurgery, 93, 1144-1153. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Oya, S., Kawai, K., Nakatomi, H. and Saito, N. (2012) Significance of Simpson Grading System in Modern Meningioma Surgery: Integration of the Grade with MIB-1 Labeling Index as a Key to Predict the Recurrence of WHO Grade I Meningiomas. Journal of Neurosurgery, 117, 121-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Alghamdi, M., Li, H., Olivotto, I., Easaw, J., Kelly, J., Nordal, R., et al. (2017) Atypical Meningioma: Referral Patterns, Treatment and Adherence to Guidelines. Canadian Journal of Neurological Sciences, 44, 283-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, Z., Zhang, J., Yuan, S., Zhang, H., Yin, H., Wang, G., et al. (2024) The Value of Whole Tumor Apparent Diffusion Coefficient Histogram Parameters in Predicting Meningiomas Progesterone Receptor Expression. Neurosurgical Review, 47, Article No. 235. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Abdelzaher, E., El-Gendi, S.M., Yehya, A. and Gowil, A.G. (2010) Recurrence of Benign Meningiomas: Predictive Value of Proliferative Index, BCL2, p53, Hormonal Receptors and HER2 Expression. British Journal of Neurosurgery, 25, 707-713. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Maiuri, F., De Caro, M.D.B., Esposito, F., Cappabianca, P., Strazzullo, V., Pettinato, G., et al. (2007) Recurrences of Meningiomas: Predictive Value of Pathological Features and Hormonal and Growth Factors. Journal of Neuro-Oncology, 82, 63-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fewings, P.E., Battersby, R.D.E. and Timperley, W.R. (2000) Long-Term Follow up of Progesterone Receptor Status in Benign Meningioma: A Prognostic Indicator of Recurrence? Journal of Neurosurgery, 92, 401-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tangen, I.L., Werner, H.M.J., Berg, A., Halle, M.K., Kusonmano, K., Trovik, J., et al. (2014) Loss of Progesterone Receptor Links to High Proliferation and Increases from Primary to Metastatic Endometrial Cancer Lesions. European Journal of Cancer, 50, 3003-3010. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhao, Y., Xu, J., Chen, B., Cao, L. and Chen, C. (2022) Efficient Prediction of Ki-67 Proliferation Index in Meningiomas on MRI: From Traditional Radiological Findings to a Machine Learning Approach. Cancers, 14, Article No. 3637. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
温艳鲁, 莫展豪, 程斯文, 等. 基于多参数MRI影像组学术前预测脑膜瘤Ki67表达的研究[J]. 中国实验诊断学, 2024, 28(4): 416-421.
|
|
[18]
|
Ouyang, Z., He, S., Zeng, Y., Zhu, Y., Ling, B., Sun, X., et al. (2023) Contrast Enhanced Magnetic Resonance Imaging-Based Radiomics Nomogram for Preoperatively Predicting Expression Status of Ki-67 in Meningioma: A Two-Center Study. Quantitative Imaging in Medicine and Surgery, 13, 1100-1114. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Moon, C., Lee, Y.Y., Kim, D., Yoon, W., Baek, B.H., Park, J., et al. (2023) Preoperative Prediction of Ki-67 and P53 Status in Meningioma Using a Multiparametric MRI-Based Clinical-Radiomic Model. Frontiers in Oncology, 13, Article ID: 1138069. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Apra, C., Peyre, M. and Kalamarides, M. (2018) Current Treatment Options for Meningioma. Expert Review of Neurotherapeutics, 18, 241-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, R., Wang, Z., Zheng, H., Chen, X., Chen, H., Song, Y., et al. (2024) The Value of Diffusion-Weighted Imaging in the Natural History of Meningiomas: A Predictor of Tumor Growth. Journal of Neurosurgery, 140, 377-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
方磊, 方慧, 耿源源, 等. 表观弥散系数预测脑膜瘤病理学分级及其与Ki-67增殖指数的相关性[J]. 肿瘤影像学, 2024, 33(2): 136-142.
|
|
[23]
|
Cao, T., Jiang, R., Zheng, L., Zhang, R., Chen, X., Wang, Z., et al. (2022) T1 and ADC Histogram Parameters May Be an in Vivo Biomarker for Predicting the Grade, Subtype, and Proliferative Activity of Meningioma. European Radiology, 33, 258-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhou, J., Payen, J., Wilson, D.A., Traystman, R.J. and van Zijl, P.C.M. (2003) Using the Amide Proton Signals of Intracellular Proteins and Peptides to Detect pH Effects in MRI. Nature Medicine, 9, 1085-1090. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Joo, B., Han, K., Choi, Y.S., Lee, S., Ahn, S.S., Chang, J.H., et al. (2017) Amide Proton Transfer Imaging for Differentiation of Benign and Atypical Meningiomas. European Radiology, 28, 331-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, H., Wen, X., Wu, P., Chen, Y., Zou, T., Wang, X., et al. (2019) Can Amide Proton Transfer-weighted Imaging Differentiate Tumor Grade and Predict Ki-67 Proliferation Status of Meningioma? European Radiology, 29, 5298-5306. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, M., Liu, L., Qi, J., Qiao, Y., Zeng, H., Jiang, W., et al. (2023) MRI-Based Machine Learning Models Predict the Malignant Biological Behavior of Meningioma. BMC Medical Imaging, 23, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Khanna, O., Fathi Kazerooni, A., Arif, S., Mahtabfar, A., Momin, A.A., Andrews, C.E., et al. (2023) Radiomic Signatures of Meningiomas Using the Ki-67 Proliferation Index as a Prognostic Marker of Clinical Outcomes. Neurosurgical Focus, 54, E17. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Khanna, O., Fathi Kazerooni, A., Farrell, C.J., Baldassari, M.P., Alexander, T.D., Karsy, M., et al. (2021) Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas. Neurosurgery, 89, 928-936. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, J., Xue, Y., Ren, L., Lv, K., Du, P., Cheng, H., et al. (2023) Predicting Meningioma Grades and Pathologic Marker Expression via Deep Learning. European Radiology, 34, 2997-3008. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, C., Zhao, Y., Cai, L., Jiang, H., Teng, Y., Zhang, Y., et al. (2025) A Multi-Modal Deep Learning Model for Prediction of Ki-67 for Meningiomas Using Pretreatment MR Images. NPJ Precision Oncology, 9, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Maiuri, F., Mariniello, G., Guadagno, E., Barbato, M., Corvino, S. and Del Basso De Caro, M. (2019) WHO Grade, Proliferation Index, and Progesterone Receptor Expression Are Different According to the Location of Meningioma. Acta Neurochirurgica, 161, 2553-2561. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Carbone, L., Somma, T., Iorio, G.G., Vitulli, F., Conforti, A., Raffone, A., et al. (2021) Meningioma during Pregnancy: What Can Influence the Management? A Case Series and Review of the Literature. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 8767-8777. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Miyagishima, D.F., Sundaresan, V., Gutierrez, A.G., Barak, T., Yeung, J., Moliterno, J., et al. (2023) A Systematic Review and Individual Participant Data Meta-Analysis of Gonadal Steroid Hormone Receptors in Meningioma. Journal of Neurosurgery, 139, 1638-1647. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
李政晓, 薛彩强, 李昇霖, 等. 基于MRI特征预测脑膜瘤PR表达状态的价值[J]. 磁共振成像, 2022, 13(7): 1-5.
|
|
[36]
|
Mnango, L., Mwakimonga, A., Ngaiza, A.I., Yahaya, J.J., Vuhahula, E. and Mwakigonja, A.R. (2021) Expression of Progesterone Receptor and Its Association with Clinicopathological Characteristics in Meningiomas: A Cross-Sectional Study. World Neurosurgery: X, 12, Article ID: 100111. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
阳丹萍, 杨一风, 李佳津, 等. 多参数磁共振成像对老年患者脑膜瘤分级和PR表达的预测[J]. 老年医学与保健, 2025, 31(1): 20-24, 31.
|
|
[38]
|
Gihr, G.A., Horvath-Rizea, D., Garnov, N., Kohlhof-Meinecke, P., Ganslandt, O., Henkes, H., et al. (2018) Diffusion Profiling via a Histogram Approach Distinguishes Low-Grade from High-Grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status. Molecular Imaging and Biology, 20, 632-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Duan, C., Li, N., Li, Y., Cui, J., Xu, W. and Liu, X. (2023) Prediction of Progesterone Receptor Expression in High-Grade Meningioma by Using Radiomics Based on Enhanced T1WI. Clinical Radiology, 78, e752-e757. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lin, G., Chen, W., Chen, Y., Shi, C., Cao, Q., Jing, Y., et al. (2025) Development and Validation of a Machine Learning Radiomics Model Based on Multiparametric MRI for Predicting Progesterone Receptor Expression in Meningioma: A Multicenter Study. Academic Radiology, 32, 2182-2196. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gao, S., Zhao, L., Li, N., Zhou, X. and Duan, C. (2025) MRI-Based Deep Transfer Learning Models for Predicting Progesterone Receptor Expression in Meningioma. Frontiers in Oncology, 15, Article ID: 1517205. [Google Scholar] [CrossRef] [PubMed]
|