|
[1]
|
Schlenk, R.F. (2023) Acute Myeloid Leukemia: Introduction to a Series Highlighting Progress and Ongoing Challenges. Haematologica, 108, 306-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Horibata, S., Gui, G., Lack, J., DeStefano, C.B., Gottesman, M.M. and Hourigan, C.S. (2019) Heterogeneity in Refractory Acute Myeloid Leukemia. Proceedings of the National Academy of Sciences, 116, 10494-10503. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kaufman, R.E., Haynes, B.F., Sempowski, G.D. and Lee, D.M. (1999) Structure and Function of the CD7 Molecule. Critical Reviews in Immunology, 19, 18. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, J., Zhang, Y., Guo, R., Zhao, Y., Sun, R., Guo, S., et al. (2023) Targeted CD7 CAR T-Cells for Treatment of T-Lymphocyte Leukemia and Lymphoma and Acute Myeloid Leukemia: Recent Advances. Frontiers in Immunology, 14, Article 1170968. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gomes-Silva, D., Atilla, E., Atilla, P.A., Mo, F., Tashiro, H., Srinivasan, M., et al. (2019) CD7 CAR T Cells for the Therapy of Acute Myeloid Leukemia. Molecular Therapy, 27, 272-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
胡超杰, 邬志伟, 李庆, 等. CD7阳性急性髓系白血病患者细胞遗传学及临床特征分析[J]. 白血病·淋巴瘤, 2018, 27(9): 513-516.
|
|
[7]
|
Raza, H., Fatima, M., Noor, T., Umer, S., Imran, A. and Malik, N.A. (2022) The Frequency of Aberrant CD7 Antigen Expression in Acute Myeloid Leukaemia Patients. Cureus, 14, e29317. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
季素芳;丁韧烨;郭晓珺. 不同剂量阿糖胞苷的DA方案治疗CD7抗原阳性急性髓系白血病疗效分析[J]. 实用肿瘤杂志, 2009, 24(4): 378-380.
|
|
[9]
|
孟君霞, 武永强, 唐广, 等. CD7抗原表达与急性髓系白血病临床特征、细胞遗传学特点及预后的关系[J]. 新乡医学院学报, 2016, 33(6): 508-510+514.
|
|
[10]
|
方汉波, 王晔恺, 周吉航, 等. CD7、CD56共表达对急性髓系白血病侵袭性的影响[J]. 放射免疫学杂志, 2012, 25(2): 197-199.
|
|
[11]
|
Bai, Y., Sun, X., Li, M., Niu, X., Cao, W., Niu, J., et al. (2024) CD7-Positive Leukemic Blasts with DNMT3A Mutations Predict Poor Prognosis in Patients with Acute Myeloid Leukemia. Frontiers in Oncology, 14, Article 1342998. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhu, M.Y., Zhu, Y., Chen, R.R., et al. (2020) CD7 Expression and Its Prognostic Significance in Acute Myeloid Leukemia Patients with Wild-Type or Mutant CEBPA. Chinese Journal of Hematology, 41, 100-105.
|
|
[13]
|
Kaheled, O., Aref, S., El Menshawy, N., Aref, M. and Ayed, M. (2023) Frequency and Prognostic Impact of Aberrant Antigens Expression among Egyptian Adult Acute Leukemia. Asian Pacific Journal of Cancer Prevention, 24, 4301-4307. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hoch, R.E.E., Cóser, V.M., Santos, I.S. and de Souza, A.P.D. (2021) Lymphoid Markers Predict Prognosis of Pediatric and Adolescent Acute Myeloid Leukemia. Leukemia Research, 107, Article 106603. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lu, P., Zhang, X., Yang, J., Li, J., Qiu, L., Gong, M., et al. (2025) Nanobody-Based Naturally Selected CD7-Targeted CAR-T Therapy for Acute Myeloid Leukemia. Blood, 145, 1022-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yamada, S., Kaneko, M.K., Sayama, Y., Asano, T., Sano, M., Yanaka, M., et al. (2020) Development of Novel Mouse Monoclonal Antibodies against Human CD19. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 39, 45-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fujimoto, M. and Sato, S. (2007) B Cell Signaling and Autoimmune Diseases: CD19/CD22 Loop as a B Cell Signaling Device to Regulate the Balance of Autoimmunity. Journal of Dermatological Science, 46, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ma, G., Wang, Y., Ahmed, T., Zaslav, A., Hogan, L., Avila, C., et al. (2018) Anti-CD19 Chimeric Antigen Receptor Targeting of CD19 + Acute Myeloid Leukemia. Leukemia Research Reports, 9, 42-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
王晚霞, 李敬东. 淋系抗原表达对急性髓系白血病预后的价值[J]. 现代肿瘤医学, 2022, 30(9): 1667-1671.
|
|
[20]
|
Zhang, X., Wang, L., Qiao, J., Wang, S., Wang, L., Liu, L., et al. (2025) Anti-CD19 CAR-T Cell Therapy in Relapsed/Refractory T(8;21) Acute Myeloid Leukemia with Aberrant CD19 Expression. Frontiers in Immunology, 16, Article 1617589. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Danylesko, I., Shem-Tov, N., Yerushalmi, R., Jacoby, E., Toren, A., Shouval, R., et al. (2024) Point of Care CD19 Chimeric Antigen Receptor (CAR) T-Cells for Relapsed/Refractory Acute Myeloid Leukemia (AML) with Aberrant CD19 Antigen Expression. Current Research in Translational Medicine, 72, Article 103471. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kita, K., Nakase, K., Miwa, H., Masuya, M., Nishii, K., Morita, N., et al. (1992) Phenotypical Characteristics of Acute Myelocytic Leukemia Associated with the T (8; 21) (q22; q22) Chromosomal Abnormality: Frequent Expression of Immature B-Cell Antigen CD19 Together with Stem Cell Antigen CD34. Blood, 80, 470-477. [Google Scholar] [CrossRef]
|
|
[23]
|
胡忠利, 张凤, 黄保军, 等. CD19、CD56在急性髓系白血病RUNX1-RUNX1T1+突变患者中的表达及其临床意义[J]. 中国实验血液学杂志, 2018, 26(3): 727-732.
|
|
[24]
|
Plesa, A., Labussière-Wallet, H., Hayette, S., Salles, G., Thomas, X. and Sujobert, P. (2019) Efficiency of Blinatumomab in a T (8; 21) Acute Myeloid Leukemia Expressing CD19. Haematologica, 104, e487-e488. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sakamoto, K., Shiba, N., Deguchi, T., Kiyokawa, N., Hashii, Y., Moriya-Saito, A., et al. (2019) Negative CD19 Expression Is Associated with Inferior Relapse-Free Survival in Children with RUNX1-Runx1t1-Positive Acute Myeloid Leukaemia: Results from the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 Study. British Journal of Haematology, 187, 372-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Iriyama, N., Hatta, Y., Takeuchi, J., Ogawa, Y., Ohtake, S., Sakura, T., et al. (2013) CD56 Expression Is an Independent Prognostic Factor for Relapse in Acute Myeloid Leukemia with T(8;21). Leukemia Research, 37, 1021-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jahedi, M., Shamsasenjan, K., Sanaat, Z., et al. (2014) Aberrant Phenotype in Iranian Patients with Acute Myeloid Leukemia. Advanced Pharmaceutical Bulletin, 4, 175-180.
|
|
[28]
|
Wang, B., Yang, B., Ling, Y., Zhang, J., Hua, X., Gu, W., et al. (2021) Role of CD19 and Specific KIT-D816 on Risk Stratification Refinement in T (8; 21) Acute Myeloid Leukemia Induced with Different Cytarabine Intensities. Cancer Medicine, 10, 1091-1102. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Picard, L.K., Claus, M., Fasbender, F. and Watzl, C. (2022) Human NK Cells Responses Are Enhanced by CD56 Engagement. European Journal of Immunology, 52, 1441-1451. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liang, T., Peng, Z., Li, C., Huang, J., Wang, H., Bu, C., et al. (2022) Evaluating the Prognostic Value of CD56 in Pediatric Acute Myeloid Leukemia. BMC Cancer, 22, Article No. 1339. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Alegretti, A.P., Bittar, C.M., Bittencourt, R., Piccoli, A.K., Schneider, L., Silla, L.M., et al. (2011) The Expression of CD56 Antigen Is Associated with Poor Prognosis in Patients with Acute Myeloid Leukemia. Revista Brasileira de Hematologia e Hemoterapia, 33, 202-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gattenloehner, S., Chuvpilo, S., Langebrake, C., Reinhardt, D., Müller-Hermelink, H., Serfling, E., et al. (2007) Novel RUNX1 Isoforms Determine the Fate of Acute Myeloid Leukemia Cells by Controlling CD56 Expression. Blood, 110, 2027-2033. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shikami, M., Miwa, H., Nishii, K., Takahashi, T., Shiku, H., Tsutani, H., et al. (1999) Myeloid Differentiation Antigen and Cytokine Receptor Expression on Acute Myelocytic Leukaemia Cells with T (16; 21) (p11; q22): Frequent Expression of CD56 and Interleukin-2 Receptor α Chain. British Journal of Haematology, 105, 711-719. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jekarl, D.W., Kim, M., Lim, J., Kim, Y., Han, K., Lee, A., et al. (2010) CD56 Antigen Expression and Hemophagocytosis of Leukemic Cells in Acute Myeloid Leukemia with T (16; 21) (p11; q22). International Journal of Hematology, 92, 306-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chang, H., Salma, F., Yi, Q., Patterson, B., Brien, B. and Minden, M.D. (2004) Prognostic Relevance of Immunophenotyping in 379 Patients with Acute Myeloid Leukemia. Leukemia Research, 28, 43-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kushwaha, A.C., Mrunalini, B., Malhotra, P. and Roy Choudhury, S. (2024) CD56-Targeted in Vivo Genetic Engineering of Natural Killer Cells Mediates Immunotherapy for Acute Myeloid Leukemia. Nanoscale, 16, 19743-19755. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cuneo, A., Michaux, J.L., Ferrant, A., Van Hove, L., Bosly, A., Stul, M., et al. (1992) Correlation of Cytogenetic Patterns and Clinicobiological Features in Adult Acute Myeloid Leukemia Expressing Lymphoid Markers. Blood, 79, 720-727. [Google Scholar] [CrossRef]
|
|
[38]
|
Wang, W. and Xu, Y. (2020) Analysis of Immunophenotypes and Expressions of Non-Myeloid Antigens in Acute Myeloid Leukemia. Journal of Southern Medical University, 40, 1639-1644.
|
|
[39]
|
Legrand, O., Perrot, J.Y., Baudard, M., Cordier, A., Lautier, R., Simonin, G., et al. (2000) The Immunophenotype of 177 Adults with Acute Myeloid Leukemia: Proposal of a Prognostic Score. Blood, 96, 870-877. [Google Scholar] [CrossRef]
|