|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tessmann, J.W., Rocha, M.R. and Morgado‐Díaz, J.A. (2022) Mechanisms of Radioresistance and the Underlying Signaling Pathways in Colorectal Cancer Cells. Journal of Cellular Biochemistry, 124, 31-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Aparicio, C., Belver, M., Enríquez, L., Espeso, F., Núñez, L., Sánchez, A., et al. (2021) Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. International Journal of Molecular Sciences, 22, Article No. 11781. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Burada, F. (2015) Autophagy in Colorectal Cancer: An Important Switch from Physiology to Pathology. World Journal of Gastrointestinal Oncology, 7, 271-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mathew, R., Karantza-Wadsworth, V. and White, E. (2007) Role of Autophagy in Cancer. Nature Reviews Cancer, 7, 961-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
曾维俊, 多杰. 细胞自噬在肺部疾病的研究进展及发展前景[J]. 临床医药文献电子杂志, 2019, 6(61): 184.
|
|
[7]
|
丁梓鹏, 朱燕娜, 丁晓惠. 糖尿病心肌病心肌自噬活性变化及其分子机制研究进展[J]. 汕头大学医学院学报, 2025, 38(2): 125-128.
|
|
[8]
|
何心瞳, 张金佩, 曹培淇, 等. ATG16复合体不同亚基对复合物结构稳定性及功能的调控研究[J]. 新疆医科大学学报, 2025, 48(5): 621-627.
|
|
[9]
|
姚文静, 王翠峰, 高金亮, 等. 自噬相关蛋白Beclin-1及LC3-Ⅱ在肺癌转移性胸腔积液中的表达研究[J]. 中国全科医学, 2025, 1-8.
|
|
[10]
|
杨龙灿, 张莹, 余曦, 等. 细胞自噬与ULK1蛋白关系的研究进展[J]. 医学综述, 2018, 24(23): 4635-4639+4646.
|
|
[11]
|
万文强, 魏太云, 陈倩. 昆虫/植物的细胞自噬调控病毒侵染的研究进展[J]. 应用昆虫学报, 2025, 62(3): 535-548.
|
|
[12]
|
王月霞, 陈敏. 自噬性细胞死亡及其与细胞凋亡、坏死关系研究进展[J]. 中国公共卫生, 2016, 32(10): 1433-1436.
|
|
[13]
|
张俊, 周欣雨, 万娟, 等. 自噬调节剂在心肌肥厚中的作用[J]. 中国比较医学杂志, 2025, 35(7): 98-108.
|
|
[14]
|
雷兴芬, 李舜, 黄云飞, 等. 自噬在细菌感染中的作用机制研究进展[J]. 中国畜牧兽医, 2025, 52(9): 4505-4514.
|
|
[15]
|
Xiong, Q., Li, X., Li, W., Chen, G., Xiao, H., Li, P., et al. (2021) WDR45 Mutation Impairs the Autophagic Degradation of Transferrin Receptor and Promotes Ferroptosis. Frontiers in Molecular Biosciences, 8, Article ID: 645831. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, X., Zhou, Y., Ning, L., Chen, J., Chen, H. and Li, X. (2023) Knockdown of ANXA10 Induces Ferroptosis by Inhibiting Autophagy-Mediated TFRC Degradation in Colorectal Cancer. Cell Death & Disease, 14, Article No. 588. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lai, J., Zhao, L., Hong, C., Zou, Q., Su, J., Li, S., et al. (2024) Baicalein Triggers Ferroptosis in Colorectal Cancer Cells via Blocking the JAK2/STAT3/GPX4 Axis. Acta Pharmacologica Sinica, 45, 1715-1726. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, G., Qin, S., Chen, L., Geng, H., Zheng, Y., Xia, C., et al. (2023) Butyrate Dictates Ferroptosis Sensitivity through FFAR2-Mtor Signaling. Cell Death & Disease, 14, Article No. 292. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, Y., Swanda, R.V., Nie, L., Liu, X., Wang, C., Lee, H., et al. (2021) mTORC1 Couples Cyst(e)ine Availability with GPX4 Protein Synthesis and Ferroptosis Regulation. Nature Communications, 12, Article No. 1589. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fan, S., Zhang, B., Luan, P., Gu, B., Wan, Q., Huang, X., et al. (2015) PI3K/AKT/mTOR/p70S6K Pathway Is Involved in Aβ25-35-Induced Autophagy. BioMed Research International, 2015, Article ID: 161020. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yu, X., Fan, H., Jiang, X., Zheng, W., Yang, Y., Jin, M., et al. (2020) Apatinib Induces Apoptosis and Autophagy via the PI3K/AKT/mTOR and MAPK/ERK Signaling Pathways in Neuroblastoma. Oncology Letters, 20, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, J., Sun, H., Jiang, X., Chen, Y., Zhang, Z., Wang, Y., et al. (2022) Polyphyllin II Induces Protective Autophagy and Apoptosis via Inhibiting PI3K/AKT/mTOR and STAT3 Signaling in Colorectal Cancer Cells. International Journal of Molecular Sciences, 23, Article No. 11890. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Qureshi-Baig, K., Kuhn, D., Viry, E., Pozdeev, V.I., Schmitz, M., Rodriguez, F., et al. (2019) Hypoxia-Induced Autophagy Drives Colorectal Cancer Initiation and Progression by Activating the PRKC/PKC-EZR (Ezrin) Pathway. Autophagy, 16, 1436-1452. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Poillet-Perez, L., Despouy, G., Delage-Mourroux, R. and Boyer-Guittaut, M. (2015) Interplay between ROS and Autophagy in Cancer Cells, from Tumor Initiation to Cancer Therapy. Redox Biology, 4, 184-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Huang, Z., Gan, S., Zhuang, X., Chen, Y., Lu, L., Wang, Y., et al. (2022) Artesunate Inhibits the Cell Growth in Colorectal Cancer by Promoting ROS-Dependent Cell Senescence and Autophagy. Cells, 11, Article No. 2472. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, Q., Yi, H., Yao, H., Lu, L., He, G., Wu, M., et al. (2021) Artemisinin Derivatives Inhibit Non-Small Cell Lung Cancer Cells through Induction of Ros-Dependent Apoptosis/Ferroptosis. Journal of Cancer, 12, 4075-4085. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, M., Sun, T., Li, N., Peng, J., Fu, D., Li, W., et al. (2019) BRG1 Attenuates Colonic Inflammation and Tumorigenesis through Autophagy-Dependent Oxidative Stress Sequestration. Nature Communications, 10, Article No. 4614. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Codogno, P. and Meijer, A.J. (2010) Autophagy: A Potential Link between Obesity and Insulin Resistance. Cell Metabolism, 11, 449-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, P., Chen, Y., Sharma, A., Gonzalez-Carmona Maria, A. and Schmidt-Wolf, I.G.H. (2025) Inhibition of ERO1L Induces Autophagy and Apoptosis via Endoplasmic Reticulum Stress in Colorectal Cancer. Cellular Signalling, 127, Article ID: 111560. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, C., Zhang, K., Pan, G., Ji, H., Li, C., Wang, X., et al. (2023) Correction: Dehydrodiisoeugenol Inhibits Colorectal Cancer Growth by Endoplasmic Reticulum Stress-Induced Autophagic Pathways. Journal of Experimental & Clinical Cancer Research, 42, Article No. 153. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lascaux, P., Hoslett, G., Tribble, S., Trugenberger, C., Antičević, I., Otten, C., et al. (2024) TEX264 Drives Selective Autophagy of DNA Lesions to Promote DNA Repair and Cell Survival. Cell, 187, 5698-5718.e26. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ma, T., Fan, Y., Zhao, Y. and Liu, B. (2023) Emerging Role of Autophagy in Colorectal Cancer: Progress and Prospects for Clinical Intervention. World Journal of Gastrointestinal Oncology, 15, 979-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Mahgoub, E., Taneera, J., Sulaiman, N. and Saber-Ayad, M. (2022) The Role of Autophagy in Colorectal Cancer: Impact on Pathogenesis and Implications in Therapy. Frontiers in Medicine, 9, Article ID: 959348. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, Y., Lei, Y., Yao, N., Wang, C., Hu, N., Ye, W., et al. (2017) Autophagy and Multidrug Resistance in Cancer. Chinese Journal of Cancer, 36, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yun, C.W., Jeon, J., Go, G., Lee, J.H. and Lee, S.H. (2020) The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. International Journal of Molecular Sciences, 22, Article No. 179. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Manzoor, S., Muhammad, J.S., Maghazachi, A.A. and Hamid, Q. (2022) Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Frontiers in Oncology, 12, Article ID: 924290. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Paillas, S., Causse, A., Marzi, L., de Medina, P., Poirot, M., Denis, V., et al. (2012) MAPK14/p38alpha Confers Irinotecan Resistance to Tp53-Defective Cells by Inducing Survival Autophagy. Autophagy, 8, 1098-1112. [Google Scholar] [CrossRef] [PubMed]
|