|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
王少明, 郑荣寿, 韩冰峰, 等. 2022年中国人群恶性肿瘤发病与死亡年龄特征分析[J]. 中国肿瘤, 2024, 33(3): 165-174.
|
|
[3]
|
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., et al. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 86, 148-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Loeb, S., Vellekoop, A., Ahmed, H.U., Catto, J., Emberton, M., Nam, R., et al. (2013) Systematic Review of Complications of Prostate Biopsy. European Urology, 64, 876-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Turkbey, B., Mani, H., Shah, V., Rastinehad, A.R., Bernardo, M., Pohida, T., et al. (2011) Multiparametric 3T Prostate Magnetic Resonance Imaging to Detect Cancer: Histopathological Correlation Using Prostatectomy Specimens Processed in Customized Magnetic Resonance Imaging Based Molds. Journal of Urology, 186, 1818-1824. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
赵莹莹, 方陈, 吴声连, 等. 基于Bp-MRI影像组学预测前列腺病变良恶性的效能及风险评估[J]. 磁共振成像, 2022, 13(8): 43-47.
|
|
[8]
|
Solari, E.L., Gafita, A., Schachoff, S., Bogdanović, B., Villagrán Asiares, A., Amiel, T., et al. (2021) The Added Value of PSMA PET/MR Radiomics for Prostate Cancer Staging. European Journal of Nuclear Medicine and Molecular Imaging, 49, 527-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhao, L., Liu, Z., Xie, W., Shao, L., Lu, J., Tian, J., et al. (2023) What Benefit Can Be Obtained from Magnetic Resonance Imaging Diagnosis with Artificial Intelligence in Prostate Cancer Compared with Clinical Assessments? Military Medical Research, 10, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Twilt, J.J., Saha, A., Bosma, J.S., Padhani, A.R., Bonekamp, D., Giannarini, G., et al. (2025) AI-Assisted vs Unassisted Identification of Prostate Cancer in Magnetic Resonance Images. JAMA Network Open, 8, e2515672. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhu, X., Shao, L., Liu, Z., Liu, Z., He, J., Liu, J., et al. (2023) MRI-Derived Radiomics Models for Diagnosis, Aggressiveness, and Prognosis Evaluation in Prostate Cancer. Journal of Zhejiang University-SCIENCE B, 24, 663-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhao, W., Hou, M., Wang, J., Song, D. and Niu, Y. (2024) Interpretable Machine Learning Model for Predicting Clinically Significant Prostate Cancer: Integrating Intratumoral and Peritumoral Radiomics with Clinical and Metabolic Features. BMC Medical Imaging, 24, Article No. 353. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Padhani, A.R., Barentsz, J., Villeirs, G., Rosenkrantz, A.B., Margolis, D.J., Turkbey, B., et al. (2019) PI-RADS Steering Committee: The PI-RADS Multiparametric MRI and MRI-Directed Biopsy Pathway. Radiology, 292, 464-474. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zeng, X., Liu, C., Liu, S., Wang, Z., Yu, K., Feng, C., et al. (2018) Using the Prostate Imaging Reporting and Data System Version 2 (PI-RIDS V2) to Detect Prostate Cancer Can Prevent Unnecessary Biopsies and Invasive Treatment. Asian Journal of Andrology, 20, 459-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lu, Y., Li, B., Huang, H., Leng, Q., Wang, Q., Zhong, R., et al. (2022) Biparametric MRI-Based Radiomics Classifiers for the Detection of Prostate Cancer in Patients with PSA Serum Levels of 4-10 ng/ml. Frontiers in Oncology, 12, Article 1020317. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Qi, Y., Zhang, S., Wei, J., Zhang, G., Lei, J., Yan, W., et al. (2019) Multiparametric MRI‐Based Radiomics for Prostate Cancer Screening with PSA in 4-10 ng/ml to Reduce Unnecessary Biopsies. Journal of Magnetic Resonance Imaging, 51, 1890-1899. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cai, J.C., Nakai, H., Kuanar, S., Froemming, A.T., Bolan, C.W., Kawashima, A., et al. (2024) Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology, 312, e232635. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Saha, A., Bosma, J.S., Twilt, J.J., van Ginneken, B., Bjartell, A., Padhani, A.R., et al. (2024) Artificial Intelligence and Radiologists in Prostate Cancer Detection on MRI (PI-CAI): An International, Paired, Non-Inferiority, Confirmatory Study. The Lancet Oncology, 25, 879-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, Y.J., Moon, H.W., Choi, M.H., Eun Jung, S., Park, Y.H., Lee, J.Y., et al. (2025) MRI-Based Deep Learning Algorithm for Assisting Clinically Significant Prostate Cancer Detection: A Bicenter Prospective Study. Radiology, 314, e232788. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhuang, H., Chatterjee, A., Fan, X., Qi, S., Qian, W. and He, D. (2023) A Radiomics Based Method for Prediction of Prostate Cancer Gleason Score Using Enlarged Region of Interest. BMC Medical Imaging, 23, Article No. 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Qiao, X., Gu, X., Liu, Y., Shu, X., Ai, G., Qian, S., et al. (2023) MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer. Cancers, 15, Article 4536. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, Y., Zheng, B., Zou, B., Liu, R., Yang, R., Chen, Q., et al. (2025) MRI Radiomics and Automated Habitat Analysis Enhance Machine Learning Prediction of Bone Metastasis and High-Grade Gleason Scores in Prostate Cancer. Academic Radiology, 32, 5303-5316. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shao, L., Liang, C., Yan, Y., Zhu, H., Jiang, X., Bao, M., et al. (2025) An MRI-Pathology Foundation Model for Noninvasive Diagnosis and Grading of Prostate Cancer. Nature Cancer, 6, 1621-1637. [Google Scholar] [CrossRef]
|
|
[25]
|
He, D., Wang, X., Fu, C., Wei, X., Bao, J., Ji, X., et al. (2021) MRI-Based Radiomics Models to Assess Prostate Cancer, Extracapsular Extension and Positive Surgical Margins. Cancer Imaging, 21, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bai, H., Xia, W., Ji, X., He, D., Zhao, X., Bao, J., et al. (2021) Multiparametric Magnetic Resonance Imaging‐Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension with Prostate Cancer. Journal of Magnetic Resonance Imaging, 54, 1222-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cuocolo, R., Stanzione, A., Faletti, R., Gatti, M., Calleris, G., Fornari, A., et al. (2021) MRI Index Lesion Radiomics and Machine Learning for Detection of Extraprostatic Extension of Disease: A Multicenter Study. European Radiology, 31, 7575-7583. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Moroianu, Ş.L., Bhattacharya, I., Seetharaman, A., Shao, W., Kunder, C.A., Sharma, A., et al. (2022) Computational Detection of Extraprostatic Extension of Prostate Cancer on Multiparametric MRI Using Deep Learning. Cancers, 14, Article 2821. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Khosravi, P., Saikali, S., Alipour, A., Mohammadi, S., Boger, M., Diallo, D.M., et al. (2025) AutoRadAI: A Versatile Artificial Intelligence Framework Validated for Detecting Extracapsular Extension in Prostate Cancer. Biology Methods and Protocols, 10, bpaf032. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zheng, H., Miao, Q., Liu, Y., Mirak, S.A., Hosseiny, M., Scalzo, F., et al. (2022) Multiparametric MRI-Based Radiomics Model to Predict Pelvic Lymph Node Invasion for Patients with Prostate Cancer. European Radiology, 32, 5688-5699. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bourbonne, V., Jaouen, V., Nguyen, T.A., Tissot, V., Doucet, L., Hatt, M., et al. (2021) Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients. Cancers, 13, Article 5672. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
姬健智, 张倩, 牛猛, 等. 联合临床、MRT2WI及表观弥散系数图影像组学特征列线图预测初发前列腺癌骨转移[J]. 中国医学影像技术, 2022, 38(7): 1050-1055.
|
|
[33]
|
李克建, 张濬韬, 任凯旋, 等. 基于MRI影像组学的机器学习模型预测前列腺癌骨转移的价值[J]. 磁共振成像, 2023, 14(1): 100-104, 115.
|
|
[34]
|
Xinyang, S., Tianci, S., Xiangyu, H., Shuang, Z., Yangyang, W., Mengying, D., et al. (2024) A Semi-Automatic Deep Learning Model Based on Biparametric MRI Scanning Strategy to Predict Bone Metastases in Newly Diagnosed Prostate Cancer Patients. Frontiers in Oncology, 14, Article 1298516. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shiradkar, R., Ghose, S., Jambor, I., Taimen, P., Ettala, O., Purysko, A.S., et al. (2018) Radiomic Features from Pretreatment Biparametric MRI Predict Prostate Cancer Biochemical Recurrence: Preliminary Findings. Journal of Magnetic Resonance Imaging, 48, 1626-1636. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, H.W., Kim, E., Na, I., Kim, C.K., Seo, S.I. and Park, H. (2023) Novel Multiparametric Magnetic Resonance Imaging-Based Deep Learning and Clinical Parameter Integration for the Prediction of Long-Term Biochemical Recurrence-Free Survival in Prostate Cancer after Radical Prostatectomy. Cancers, 15, Article 3416. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gu, W., Liu, Z., Yang, Y., Zhang, X., Chen, L., Wan, F., et al. (2023) A Deep Learning Model, NAFNet, Predicts Adverse Pathology and Recurrence in Prostate Cancer Using MRIs. npj Precision Oncology, 7, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
|