|
[1]
|
Clark Jr, L.C. and Lyons, C. (1962) Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Annals of the New York Academy of Sciences, 102, 29-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tothill, I.E. (2009) Biosensors for Cancer Markers Diagnosis. Seminars in Cell & Developmental Biology, 20, 55-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ligler, F.S., Taitt, C.R., Shriver-Lake, L.C., Sapsford, K.E., Shubin, Y. and Golden, J.P. (2003) Array Biosensor for Detection of Toxins. Analytical and Bioanalytical Chemistry, 377, 469-477. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Litwin, M.S. and Tan, H. (2017) The Diagnosis and Treatment of Prostate Cancer: A Review. Journal of the American Medical Association, 317, 2532-2542. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., et al. (2013) Biomedical Applications of Graphene and Graphene Oxide. Accounts of Chemical Research, 46, 2211-2224. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Vu, C.A. and Chen, W.Y. (2019) Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Sensors, 19, Article 4214. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Thriveni, G. and Ghosh, K. (2022) Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors, 12, Article 647. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dyrskjøt, L., Hansel, D.E., Efstathiou, J.A., Knowles, M.A., Galsky, M.D., Teoh, J., et al. (2023) Bladder Cancer. Nature Reviews Disease Primers, 9, Article No. 58. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Holzbeierlein, J.M., Bixler, B.R., Buckley, D.I., Chang, S.S., Holmes, R., James, A.C., et al. (2024) Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline: 2024 Amendment. Journal of Urology, 211, 533-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tran, V.V. (2022) Conjugated Polymers-Based Biosensors for Virus Detection: Lessons from COVID-19. Biosensors, 12, Article 748. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Johnson, B.N. and Mutharasan, R. (2014) Biosensor-Based MicroRNA Detection: Techniques, Design, Performance, and Challenges. The Analyst, 139, 1576-1588. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Adamaki, M. and Zoumpourlis, V. (2021) Prostate Cancer Biomarkers: From Diagnosis to Prognosis and Precision-Guided Therapeutics. Pharmacology & Therapeutics, 228, Article 107932. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dahiya, V., Hans, S., Kumari, R. and Bagchi, G. (2024) Prostate Cancer Biomarkers: From Early Diagnosis to Precision Treatment. Clinical and Translational Oncology, 26, 2444-2456. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kim, J., Kim, W.T. and Kim, W. (2020) Advances in Urinary Biomarker Discovery in Urological Research. Investigative and Clinical Urology, 61, S8-S22. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rosado, M., Silva, R., Bexiga, M.G., Jones, J.G., et al. (2019) Advances in Biomarker Detection: Alternative Approaches for Blood-Based Biomarker Detection. Advances in Clinical Chemistry, 92, 141-199.
|
|
[16]
|
Krishnan, S., Kanthaje, S., Punchappady, D.R., Mujeeburahiman, M. and Ratnacaram, C.K. (2023) Circulating Metabolite Biomarkers: A Game Changer in the Human Prostate Cancer Diagnosis. Journal of Cancer Research and Clinical Oncology, 149, 951-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yang, T., Luo, W., Yu, J., Zhang, H., Hu, M. and Tian, J. (2024) Bladder Cancer Immune-Related Markers: Diagnosis, Surveillance, and Prognosis. Frontiers in Immunology, 15, Article 1481296. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, W., Zhang, W., Chen, J., Li, H., Han, L., Li, X., et al. (2024) Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sensors, 9, 2705-2727. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Eswaran, M., Chokkiah, B., Pandit, S., Rahimi, S., Dhanusuraman, R., Aleem, M., et al. (2022) A Road Map toward Field-Effect Transistor Biosensor Technology for Early Stage Cancer Detection. Small Methods, 6, e2200809. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Y., Hu, H., Shu, J. and Zhang, G. (2025) Flexible Field-Effect Transistor Sensors for Next-Generation Health Monitoring: Materials to Advanced Applications. Small, 21, e2504059. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Adzhri, R., Md Arshad, M.K., Gopinath, S.C.B., Ruslinda, A.R., Fathil, M.F.M., Ayub, R.M., et al. (2016) High-Performance Integrated Field-Effect Transistor-Based Sensors. Analytica Chimica Acta, 917, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Magliulo, M., Manoli, K., Macchia, E., Palazzo, G. and Torsi, L. (2015) Tailoring Functional Interlayers in Organic Field-Effect Transistor Biosensors. Advanced Materials, 27, 7528-7551. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Syedmoradi, L., Ahmadi, A., Norton, M.L. and Omidfar, K. (2019) A Review on Nanomaterial-Based Field Effect Transistor Technology for Biomarker Detection. Microchimica Acta, 186, 739. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Miao, J., Zhang, X., Tian, Y. and Zhao, Y. (2022) Recent Progress in Contact Engineering of Field-Effect Transistor Based on Two-Dimensional Materials. Nanomaterials, 12, Article 3845. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shen, M.Y., Li, B.R. and Li, Y.K. (2014) Silicon Nanowire Field-Effect-Transistor Based Biosensors: From Sensitive to Ultra-Sensitive. Biosensors and Bioelectronics, 60, 101-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, H.C., Chen, Y.T., Tsai, R.Y., et al. (2015) A Sensitive and Selective Magnetic Graphene Composite-Modified Polycrystalline-Silicon Nanowire Field-Effect Transistor for Bladder Cancer Diagnosis. Biosensors and Bioelectronics, 66, 198-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, Y., Wang, J., Huang, W., Wan, G., Xia, M., Chen, D., et al. (2022) Integrated Urinalysis Devices Based on Interface‐engineered Field‐Effect Transistor Biosensors Incorporated with Electronic Circuits. Advanced Materials, 34, e2203224. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Park, S., Kang, H., Choi, Y., Yoon, S.G., Park, H.J., Jin, H., et al. (2025) Precision Screening with Sequential Multi-Algorithm Reclassification Technique (SMART): Saving Bladders from Unnecessary Cystectomy. Computers in Biology and Medicine, 189, Article 109980. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Presnova, G.V., Presnov, D.E., Ulyashova, M.M., Tsiniaikin, I.I., Trifonov, A.S., Skorb, E.V., et al. (2024) Ultrasensitive Detection of PSA Using Antibodies in Crowding Polyelectrolyte Multilayers on a Silicon Nanowire Field-Effect Transistor. Polymers, 16, Article 332. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Huang, Y.W., Wu, C.S., Chuang, C.K., Pang, S.T., et al. (2013) Real-Time and Label-Free Detection of the Prostate-Specific Antigen in Human Serum by a Polycrystalline Silicon Nanowire Field-Effect Transistor Biosensor. Analytical Chemistry, 85, 7912-7918. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Turgut, F., Awad, A.S. and Abdel-Rahman, E. (2023) Acute Kidney Injury: Medical Causes and Pathogenesis. Journal of Clinical Medicine, 12, Article 375. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hu, J., Li, Y., Zhang, X., Wang, Y., Zhang, J., Yan, J., et al. (2023) Ultrasensitive Silicon Nanowire Biosensor with Modulated Threshold Voltages and Ultra-Small Diameter for Early Kidney Failure Biomarker Cystatin C. Biosensors, 13, Article 645. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chenoweth, C.E. (2021) Urinary Tract Infections: 2021 Update. Infectious Disease Clinics of North America, 35, 857-870. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, D., Ren, Y., Chen, R., Wu, H., Zhuang, S. and Zhang, M. (2023) Label-Free MXene-Assisted Field Effect Transistor for the Determination of IL-6 in Patients with Kidney Transplantation Infection. Microchimica Acta, 190, Article No. 284. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Javadi, E., But, D.B., Ikamas, K., Zdanevičius, J., Knap, W. and Lisauskas, A. (2021) Sensitivity of Field-Effect Transistor-Based Terahertz Detectors. Sensors, 21, Article 2909. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Cheng, S., Hotani, K., Hideshima, S., Kuroiwa, S., Nakanishi, T., Hashimoto, M., et al. (2014) Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum. Materials, 7, 2490-2500. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Stern, E., Wagner, R., Sigworth, F.J., Breaker, R., Fahmy, T.M. and Reed, M.A. (2007) Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Letters, 7, 3405-3409. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, H., Zhao, X., Xi, Z., Zhang, Y., Li, H., Li, Z., et al. (2019) A New Biosensor Detection System to Overcome the Debye Screening Effect: Dialysis-Silicon Nanowire Field Effect Transistor. International Journal of Nanomedicine, 14, 2985-2993. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ding, Y., Li, C., Tian, M., Wang, J., Wang, Z., Lin, X., et al. (2023) Overcoming Debye Length Limitations: Three-Dimensional Wrinkled Graphene Field-Effect Transistor for Ultra-Sensitive Adenosine Triphosphate Detection. Frontiers of Physics, 18, Article 53301. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Huang, B., Yu, Y., Zhang, F., Liang, Y., Su, S., Zhang, M., et al. (2023) Mechanically Gated Transistor. Advanced Materials, 35, e2305766. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Smaani, B., Nafa, F., Benlatrech, M.S., Mahdi, I., Akroum, H., walid Azizi, M., et al. (2024) Recent Progress on Field-Effect Transistor-Based Biosensors: Device Perspective. Beilstein Journal of Nanotechnology, 15, 977-994. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tran, D., Pham, T., Wolfrum, B., Offenhäusser, A. and Thierry, B. (2018) CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization. Materials, 11, Article 785. [Google Scholar] [CrossRef] [PubMed]
|