|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2017) Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut, 66, 683-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Brown, K.F., Rumgay, H., Dunlop, C., Ryan, M., Quartly, F., Cox, A., et al. (2018) The Fraction of Cancer Attributable to Modifiable Risk Factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. British Journal of Cancer, 118, 1130-1141. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Albert, K., Rani, A. and Sela, D.A. (2018) The Comparative Genomics of Bifidobacterium Callitrichos Reflects Dietary Carbohydrate Utilization within the Common Marmoset Gut. Microbial Genomics, 4, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rijkers, G.T., Andriessen, S.Q. and van Overveld, F.J. (2019) Death and the Miser: Microbiota Regulate the Outcome of Checkpoint Inhibition Immunotherapy. Expert Review of Anticancer Therapy, 19, 831-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, S.H., Sun, X.H., Wang, M.L., et al. (2014) A MicroRNA 221and 222 Mediated Feedback Loop Maintains Constitutive Activation of NF-κB and STAT3 in Colorectal Cancer Cells. Gastroenterology, 147, 847-859.e11.
|
|
[7]
|
Tsoi, H., Chu, E.S.H., Zhang, X., Sheng, J., Nakatsu, G., Ng, S.C., et al. (2017) Peptostreptococcus Anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice. Gastroenterology, 152, 1419-1433.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Orberg, E.T., Fan, H., Tam, A.J., et al. (2017) The Myeloid Immune Signature of Enterotoxigenic Bacteroides Fragilis-Induced Murine Colon Tumorigenesis. Mucosal Immunology, 10, 421-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Guo, P., Tian, Z.B., Kong, X.J., et al. (2020) FadA Promotes DNA Damage and Progression of Fusobacterium nucleatum-Induced Colorectal Cancer through Up-Regulation of chk2. Journal of Experimental & Clinical Cancer Research, 39, Article No. 202. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Abu-Ghazaleh, N., Chua, W.J. and Gopalan, V. (2021) Intestinal Microbiota and Its Association with Colon Cancer and Red/processed Meat Consumption. Journal of Gastroenterology and Hepatology, 36, 75-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fan, X., Jin, Y., Chen, G., Ma, X. and Zhang, L. (2021) Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion, 102, 508-515. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gethings-Behncke, C., Coleman, H.G., Jordao, H.W.T., Longley, D.B., Crawford, N., Murray, L.J., et al. (2020) Fusobacterium nucleatum in the Colorectum and Its Association with Cancer Risk and Survival: A Systematic Review and Meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 29, 539-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, S., Yang, Y.Z., Weng, W.H., et al. (2019) Fusobacterium nucleatum Promotes Chemoresistance to 5-Fluorouracil by Upregulation of BIRC3 Expression in Colorectal Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
谢玲林. 肠道菌群与疾病关系的研究进展[J]. 基因组学与应用生学, 2017, 36(11): 4570-4573.
|
|
[15]
|
张威, 姜可伟. 肠道菌群在结直肠癌发生发展及治疗中的作用[J] . 中华胃肠外科杂志, 2020, 23(5): 516-520.
|
|
[16]
|
陈丹, 逯茂洋. 肠道菌群与阿尔茨海默病的关系研究进展[J]. 世界最新医学信息文摘(连续型电子期刊), 2018, 18(6):105-106+109.
|
|
[17]
|
Cavaillon, J.M. and Legout, S. (2016) Centenary of the Death of Elie Metchnikoff: A Visionary and an Outstanding Team Leader. Microbes and Infection, 18, 577-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ambalam, P., Raman, M., Purama, R.K. and Doble, M. (2016) Probiotics, Prebiotics and Colorectal Cancer Prevention. Best Practice & Research Clinical Gastroenterology, 30, 119-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
张倩, 熊利霞, 张红星, 等. 藏灵菇源干酪乳杆菌微胶囊喷雾干燥工艺条件的优化[J]. 食品工业科技, 2016, 37(13): 210-214.
|
|
[20]
|
Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y. and Andoh, A. (2017) Gut Microbiota in the Pathogenesis of Inflammatory Bowel Disease. Clinical Journal of Gastroenterology, 11, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yu, Y.N., Yu, T.C., Zhao, H.J., et al. (2015) Berberine May Rescue Fusobacterium nucleatum-Induced Colorectal Tumorigenesis by Modulating the Tumor Microenvironment. Oncotarget, 6, 32013-32026. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ma, Y., Su, X.Z. and Lu, F. (2020) The Roles of Type I Interferon in Co-Infections with Parasites and Viruses, Bacteria, or Other Parasites. Frontiers in Immunology, 11, Article 1805. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Panwalker, A.P. (1988) Unusual Infections Associated with Colorectal Cancer. Clinical Infectious Diseases, 10, 347-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Krishnan, S. and Eslick, G.D. (2014) Streptococcus bovis Infection and Colorectal Neoplasia: A Meta-Analysis. Colorectal Disease, 16, 672-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wassenaar, T.M. (2018) E. coli and Colorectal Cancer: A Complex Relationship That Deserves a Critical Mindset. Critical Reviews in Microbiology, 44, 619-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Grobbee, E.J., Lam, S.Y., Fuhler, G.M., Blakaj, B., Konstantinov, S.R., Bruno, M.J., et al. (2020) First Steps Towards Combining Faecal Immunochemical Testing with the Gut Microbiome in Colorectal Cancer Screening. United European Gastroenterology Journal, 8, 293-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L.A. and Feizabadi, M.M. (2020) Enterotoxigenic Bacteroides Fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Frontiers in Cellular and Infection Microbiology, 9, Article 449. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, K. and Jiang, B. (2017) Analysis of Mucosa-Associated Microbiota in Colorectal Cancer. Medical Science Monitor, 23, 4422-4430. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bolte, L.A., Vich Vila, A., Imhann, F., Collij, V., Gacesa, R., Peters, V., et al. (2021) Long-Term Dietary Patterns Are Associated with Pro-Inflammatory and Anti-Inflammatory Features of the Gut Microbiome. Gut, 70, 1287-1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Piekarska, J., Miśta, D., Houszka, M., Króliczewska, B., Zawadzki, W. and Gorczykowski, M. (2011) Trichinella Spiralis: The Influence of Short Chain Fatty Acids on the Proliferation of Lymphocytes, the Goblet Cell Count and Apoptosis in the Mouse Intestine. Experimental Parasitology, 128, 419-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kurata, N., Tokashiki, N., Fukushima, K., Misao, T., Hasuoka, N., Kitagawa, K., et al. (2019) Short Chain Fatty Acid Butyrate Uptake Reduces Expressions of Prostanoid EP4 Receptors and Their Mediation of Cyclooxygenase-2 Induction in HCA-7 Human Colon Cancer Cells. European Journal of Pharmacology, 853, 308-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zeng, H.W., Umar, S., Rust, B., et al. (2019) Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. International Journal of Molecular Sciences, 20, Article 1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sánchez, B. (2018) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis: A Role for Bifidobacteria and Lactobacilli? Nature Reviews Gastroenterology & Hepatology, 15, Article 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tariq, R., Pardi, D.S., Bartlett, M.G. and Khanna, S. (2019) Low Cure Rates in Controlled Trials of Fecal Microbiota Transplantation for Recurrent Clostridium Difficile Infection: A Systematic Review and Meta-Analysis. Clinical Infectious Diseases, 68, 1351-1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Paramsothy, S., Nielsen, S., Kamm, M.A., Deshpande, N.P., Faith, J.J., Clemente, J.C., et al. (2019) Specific Bacteria and Metabolites Associated with Response to Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Gastroenterology, 156, 1440-1454.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
罗勤. 解读粪便菌群移植[J]. 家庭医学, 2016(12): 64-65.
|
|
[38]
|
Assimakopoulos, S.F., Papadopoulou, I., Bantouna, D., de Lastic, A., Rodi, M., Mouzaki, A., et al. (2021) Fecal Microbiota Transplantation and Hydrocortisone Ameliorate Intestinal Barrier Dysfunction and Improve Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis. Shock, 55, 666-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kamada, N., Sakamoto, K., Seo, S., Zeng, M.Y., Kim, Y., Cascalho, M., et al. (2015) Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host & Microbe, 17, 617-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lenoir, M., Carmen, S.D., Cortes-Perez, N.G., et al. (2016) Lactobacillus casei BL23 Regulates Treg and Th17 T-Cell Populations and Reduces DMH-Associated Colorectal Cancer. Journal of Gastroenterology, 51, 862-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yazdi, M.H., Soltan Dallal, M.M., Hassan, Z.M., Holakuyee, M., Agha Amiri, S., Abolhassani, M., et al. (2010) Oral Administration Oflactobacillus Acidophilusinduces IL-12 Production in Spleen Cell Culture of BALB/c Mice Bearing Transplanted Breast Tumour. British Journal of Nutrition, 104, 227-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, Y., Xiao, L., Zhou, M. and Zhang, H. (2024) The Microbiota: A Crucial Mediator in Gut Homeostasis and Colonization Resistance. Frontiers in Microbiology, 15, Article 1417864. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Horrocks, V., King, O.G., Yip, A.Y.G., Marques, I.M. and McDonald, J.A.K. (2023) Role of the Gut Microbiota in Nutrient Competition and Protection against Intestinal Pathogen Colonization. Microbiology, 169, Article 1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ghadimi, D., Vrese, M.d., Heller, K.J. and Schrezenmeir, J. (2010) Effect of Natural Commensal-Origin DNA on Toll-Like Receptor 9 (TLR9) Signaling Cascade, Chemokine IL-8 Expression, and Barrier Integrity of Polarized Intestinal Epithelial Cells. Inflammatory Bowel Diseases, 16, 410-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Park, J.S., Choi, J.W., Jhun, J., Kwon, J.Y., Lee, B., Yang, C.W., et al. (2018) Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development. Journal of Medicinal Food, 21, 215-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Alvarez, C.S., Giménez, R., Cañas, M.A., Vera, R., Díaz-Garrido, N., Badia, J., et al. (2019) Extracellular Vesicles and Soluble Factors Secreted by Escherichia coli Nissle 1917 and ECOR63 Protect against Enteropathogenic E. coli-Induced Intestinal Epithelial Barrier Dysfunction. BMC Microbiology, 19, Article No. 166. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Laval, L., Martin, R., Natividad, J., Chain, F., Miquel, S., de Maredsous, C.D., et al. (2015) Lactobacillus rhamnosus CNCM I-3690 and the Commensal Bacterium faecalis Bacterium Prausnitziia2-165 Exhibit Similar Protective Effects to Induced Barrier Hyper-Permeability in Mice. Gut Microbes, 6, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, L., Wang, R., Wei, G., Wang, S. and Du, G. (2020) Dihydrotanshinone Attenuates Chemotherapy-Induced Intestinal Mucositis and Alters Fecal Microbiota in Mice. Biomedicine & Pharmacotherapy, 128, Article 110262. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Huang, L., Chiang Chiau, J., Cheng, M., Chan, W., Jiang, C., Chang, S., et al. (2019) SCID/NOD Mice Model for 5-FU Induced Intestinal Mucositis: Safety and Effects of Probiotics as Therapy. Pediatrics & Neonatology, 60, 252-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wei, L., Wen, X.S. and Xian, C.J. (2021) Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-Like Receptor Signaling Pathways. International Journal of Molecular Sciences, 22, Article 9474. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Song, D.S., Shi, B., Xue, H., et al. (2006) Confirmation and Prevention of Intestinal Barrier Dysfunction and Bacterial Translocation Caused by Methotrexate. Digestive Diseases and Sciences, 51, 1549-1556. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chen, K.J., Chen, Y.L., Ueng, S.H., et al. (2021) Neutrophil Elastase Inhibitor (MPH-966) Improves Intestinal Mucosal Damage and Gut Microbiota in a Mouse Model of 5-Fluorouracil-Induced Intestinal Mucositis. Biomedicine & Pharmacotherapy, 134, Article 111152. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
McFarland, L.V., Ship, N., Auclair, J. and Millette, M. (2018) Primary Prevention of Clostridium Difficile Infections with a Specific Probiotic Combining Lactobacillus acidophilus, L. Casei, and L. Rhamnosus Strains: Assessing the Evidence. Journal of Hospital Infection, 99, 443-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Santacroce, L., Di Domenico, M., Montagnani, M. and Jirillo, E. (2023) Antibiotic Resistance and Microbiota Response. Current Pharmaceutical Design, 29, 356-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Long, X.H., Wong, C.C., Tong, L., Chu, E.S.H., Ho Szeto, C., Go, M.Y.Y., et al. (2019) Peptostreptococcus anaerobius Promotes Colorectal Carcinogenesis and Modulates Tumour Immunity. Nature Microbiology, 4, 2319-2330. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kump, P. and Högenauer, C. (2016) Any Future for Fecal Microbiota Transplantation as Treatment Strategy for Inflammatory Bowel Diseases? Digestive Diseases, 34, 74-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Brandt, L.J. (2013) FMT: First Step in a Long Journey. American Journal of Gastroenterology, 108, 1367-1368. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., et al. (2017) The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed]
|