肠道菌群移植在结直肠肿瘤防治中的作用及其研究进展
The Role of Intestinal Microbiota Transplantation in the Prevention and Treatment of Colorectal Tumors and Related Research Advances
DOI: 10.12677/acm.2025.15123583, PDF, HTML, XML,   
作者: 张天泽, 王兆伦*:滨州医学院附属医院急诊外科,山东 滨州
关键词: 肠道菌群结直肠癌预防治疗Intestinal Flora Colorectal Cancer Prevention Treatment
摘要: 肠道菌群在结肠直肠癌(CRC)发生、发展以及防治中的理论研究是一个新兴的研究领域。肠道菌群与机体肠道上皮细胞紧密合作,并通过介导免疫调节、胆固醇代谢以及分泌基因毒素等多种手段调控CRC的恶性生物学行为。目前,通过包括益生菌、益生元、抗生素和肠道菌群移植(FMT)等在内的多种方式来调控肠道菌群的失调,被认为是CRC防治的一种新思路。通过纠正菌群构成、调节先天免疫系统、增强肠道屏障功能、防止病原体定植和对肿瘤细胞发挥选择性细胞毒性等机制,显示出良好的治疗效果,同时,也伴随着风险和争议,比如伦理问题以及可能会带来临床不良反应。从临床前研究到临床应用的转化过程中,我们应仔细评估风险和效益比,以及患者的选择。此外,鉴于宿主对肠道菌群移植的个体化反应,开发个性化的菌群移植疗法可能是临床治疗成功的关键。
Abstract: Theoretical research regarding the role of gut microbes in the development, progression and treatment of colorectal cancer (CRC) is an emerging area of research. Intestinal flora cooperates closely with intestinal epithelial cells, and regulates the malignant biological behavior of CRC by mediating immune regulation, cholesterol metabolism and gene toxin secretion. Modulation of intestinal flora through various modalities including probiotics, prebiotics, antibiotics and intestinal flora transplantation (FMT) to reverse existing dysbiosis is considered a new avenue for the prevention and treatment of CRC. These modalities have shown promising results through mechanisms such as correcting flora composition, modulating the innate immune system, enhancing intestinal barrier function, preventing pathogen colonization and exerting selective cytotoxicity on tumor cells, and are accompanied by risks and controversies, such as ethical issues and the possibility of clinical adverse effects. The risk-benefit ratio and patient selection should be carefully evaluated during the translation from preclinical studies to clinical applications. Given the individualized response of the host to intestinal flora transplantation, the development of personalized flora transplantation therapies may be key to the success of clinical treatment.
文章引用:张天泽, 王兆伦. 肠道菌群移植在结直肠肿瘤防治中的作用及其研究进展[J]. 临床医学进展, 2025, 15(12): 1699-1706. https://doi.org/10.12677/acm.2025.15123583

1. 引言

结直肠肿瘤(CRC)是肠道上皮的异质性疾病,2020年全球约有190万CRC新发病例和93.5万死亡病例,是全球发病率第三、死亡率第二的恶性肿瘤[1]。早期结肠镜筛查和不断完善的治疗方案大大降低了CRC在欧美等发达国家的发病率和死亡率,但包括中国在内的很多发展中国家仍观察到发病率和死亡率的上升趋势[2]。癌症是由涉及基因、表观遗传和环境等多因素累积改变而造成的结果,环境因素在其中扮演了重要角色,饮食中的致癌物、缺乏运动和吸烟等已被明确证实在CRC的发生和发展中起着最重要的作用[3],为了进一步了解环境因素对CRC的影响,由细菌、真菌、原生动物和病毒等组成的复杂的肠道菌群成为了一个新出现但又很重要的研究领域[4]。同时随着菌群测序技术的突破,使得全面而独立于培养的菌群分析成为可能,这进一步促进科研人员们在肠道菌群、宿主生理学、代谢、免疫和恶性肿瘤之间拓展新的研究思路[5]。随着对肠道菌群平衡与宿主健康之间关系的认知,由此其也被人们亲切的比喻为“被遗忘的器官”。近年来随着临床前及临床研究的不断深入,有越来越多的证据支持肠道菌群失调与CRC发病机制之间存在因果关系的说法。一方面,肠道中包括具核梭杆菌[6]、厌氧消化链球菌和肠毒性脆弱拟杆菌[7]在内的几种细菌的富集已被确认通过诱导肿瘤增殖[6] [7]、促进炎症[8]、造成DNA损伤[9]和保护肿瘤免受免疫攻击[7]等机制而促进结直肠癌的发生。另一方面,如毛螺旋菌、双歧杆菌[10]和嗜热链球菌[11]等对预防CRC有保护作用的益生菌被发现在CRC患者中减少甚至遗失。近来有研究还报道了共生微生物对癌症患者预后存在潜移默化的影响。在一项大数据临床研究中发现具核梭杆菌的丰富度与患者生存期呈负相关[12],随后的机制研究进一步提示核梭杆菌通过激活细胞自噬促进CRC病人的化疗抵抗[13],从而导致治疗失败或疾病复发。随着人们对肠道菌群影响肿瘤进展的认识不断提高,肠道菌群调控成为预防和治疗CRC的潜在策略。现结合国内外相关文献对肠道菌群在结直肠癌的研究进展以及FMT从实验室到临床的转化的一些最新情况作一综述。

2. 肠道菌群

肠道菌群(即肠道微生物群)是指由细菌、真菌、原生动物和病毒等众多的微生物在人体消化系统内构成的复杂体系,伴随近年对其研究的不断深入,证实其在维持健康状态中发挥着举足轻重的作用[14]。其中肠道细菌(大致为专性厌氧菌)不管在数量还是作用上都占主导地位[15],其受人体多种激素的影响,同时也可产生多种物质反作用于人体,如γ-氨基丁酸、如酪氨酸和色氨酸等[16]

益生菌在20世纪初由诺贝尔奖获得者Élie Metchnikoff提出的,其最初被描述为通过用有益的微生物取代“腐败”的微生物达到改变肠道微生态组成的目的[17]。随着我们对益生菌认识的不断深入,现在人们认识到益生菌的功能不仅仅是调解微生物群,还能诱发宿主的生理和代谢变化[18]。目前,关于其最准确的概念是指通过恢复肠道内微生物的生态平衡而恢复健康状态甚至提高人体健康水平的活菌制剂及其代谢产物[19]。过路菌与定植菌(即指正常菌群)概念相反,是指来自外界或人体其他系统的非致病性或潜在致病性细菌,通常由于肠道屏障功能和定植菌的存在,其仅在消化系统中短暂停留,如果定植菌发生紊乱,其可在短时间内大量增殖而引起疾病[20]。肠道菌群有一定的构成比例,各菌群间在制约和共生的复杂关系中达到某种动态平衡。由于会受到饮食结构、环境因素、疾病状态等各种因素的影响,导致其质和量并不是一成不变的,这种平衡一旦被打破,就会引起人体患病,如无法被及时纠正会使病情进一步恶化同时增加恶性肿瘤发生的机率[21]

3. 肠道菌群与结直肠癌

微生物长期以来一直是癌症发展的一个重要原因,随着癌症生物学的进步,人们对其参与的了解也在不断增加。到目前为止,人们认识到全世界大约20%的癌症是由感染性病原体引起的,例如:鼠伤寒沙门菌感染导致胆囊癌、肺炎衣原体感染导致肺癌、人乳头瘤病毒和沙眼衣原体感染导致宫颈癌、幽门螺杆菌感染导致胃癌、乙型和丙型肝炎病毒感染导致肝癌、淋病奈瑟菌感染导致膀胱癌和前列腺癌[22]。1951年有报道首次将细菌感染与CRC发生–发展联系起来,随后G T Keusch等于1974年证实牛链球菌与结肠直肠癌之间的关联[23]。随后S Krishnan等研究强烈支持牛链球菌心内膜炎以及败血症与CRC发生发展之间存在关联[24]。最近Trudy M Wassenaar等研究发现由聚酮化合物基因位点控制合成大肠杆菌素的菌株可能促进癌变的发生,因技术限制目前这种大肠杆菌素尚未被分离出来,其真实性仍需进一步验证,但这个假说的提出足以颠覆人们对大肠杆菌菌属的认识[25]。Iradj Sobhani等研究发现与邻近的正常组织相比,人类结肠腺瘤和结直肠癌中的具核梭杆菌水平明显升高,后进一步证实其与结直肠癌明显相关,并促进结直肠肿瘤的发展[26]。Annemarie Boleij等研究证实肠毒性脆弱拟杆菌可能是导致结肠癌发生的微生物群的成员之一,并发现bft基因阳性率在结直肠癌中明显升高,特别是在晚期CRC中,由此推测人类结直肠中肠毒性脆弱拟杆菌的感染可能会诱发慢性的、局灶性的粘膜炎症,从而易发生DNA突变和致癌[27]。在上述等人研究的基础上,Kehan Xu等研究发现CRC患者粪便菌群中具核梭杆菌(14.52%)、拟杆菌(17.31%)和链球菌(8.69%)所占比例明显升高[28];Claire Duvallet等研究发现与CRC相关的菌群失调导致具核梭杆菌、卟啉单胞菌、消化链球菌和肠杆菌等菌属的流行率增加[29]。与炎症性肠病、肠易激综合征等疾病不同的是,其常伴有益生菌的丢失,而结直肠癌患者常伴有大量的致病菌的入侵。

肠道菌群代谢产物是食物残渣及宿主体内其他物质被肠道菌通过厌氧发酵转化而来的,主要包括:短链脂肪氨基酸(short-chain fatty acids, SCFAs)、氧化三甲胺、胆汁酸、乙醇、维生素、乙醇及某些含有硫、氢、碳元素的物质[30]。SCFAs浓度降低、胆汁酸代谢紊乱引发肠道黏膜稳态失衡,进而导致肠上皮细胞增殖以及对致癌物质的敏感性增加。丁酸盐作为组蛋白去乙酰活化酶抑制剂可抑制原癌基因c-Myc,从而抑制miR-92a的转录,促进肿瘤细胞的分化及凋亡[31]。当丁酸盐吸收转化不足时,有可能导致前列腺素EP4受体(prostaglandin E2 receptor 4, EP4)及环氧合酶2的过表达,进而提高正常细胞向癌表型转化的可能[32]。肠黏膜不断更新过程涉及经典的Wnt/β-catenin信号传导途径,该途径的异常可能会导致结肠癌的发展。结肠癌发展过程中,次级胆汁酸可通过激活Wnt和NF-κB信号通路,引起DNA氧化损伤和有丝分裂活性受损,进而引起结肠细胞过度增殖[33]。次级胆汁酸还能激活蛋白激酶C (protein kinase C, PKC),其随后激活p38 MAPK和NF-κB进而导致p53活性降低,促使凋亡减少及DNA损伤细胞的存活率增加,从而促进肿瘤细胞增殖[34]

4. 菌群移植

某些微生物可能会增加某些人患CRC的风险,这一知识提出了重要的问题,其答案可用于指导未来的治疗,并为旨在预防的治疗打开大门。这些问题包括使用FMT可以治疗CRC吗?此外,在高危患者中使用FMT是否可以预防CRC?肠道菌群和FMT领域的研究正在迅速进展,这些领域在过去几年里有了长足的发展,鉴于目前FMT治疗艰难梭菌感染(CDI) [35]、炎症性肠病(IBD) [36]、慢性便秘[37]和肝性脑病[38]的成功数据,它应该成为这些疾病的一线治疗方案,尤其是将对全球CDI和IBD的发病率和死亡率产生巨大的影响。Nobuhiko Kamada等研究报道了益生菌能通过产生抗真菌脂肽抑制菌群信号系统对金黄色葡萄球菌进行去殖民化[39]。Elsa Jacouton等研究证实酪蛋白乳杆菌BL23在二甲肼(DMH)诱导的CRC小鼠模型中表现出抗肿瘤特性[40],与此同时,Chien-Chang Chen等研究证实嗜酸乳杆菌NCFM可以抑制接种CT-26小鼠模型的肿瘤生长,并推测这种抗肿瘤机制源于CXCR4的表达减少——CXCR4与肿瘤转移有关,以及肿瘤细胞中MHC I类的下调,导致随后T细胞识别和攻击[41]。通过排除病原体的入侵,益生菌的摄入有助于降低肠道感染和后续炎症的风险,从而有可能预防CRC的发展,并减少已存在的CRC患者的并发症。到目前为止,益生菌可能通过三种不同的机制在预防和治疗癌症方面发挥作用:(1) 定植抵抗。益生菌通过释放抗菌肽、降低腔内pH值或直接与病原体相互作用(如竞争营养物质和位置,形成共同聚集)来抑制致病菌的定植[42] [43]。(2) 调节免疫力。益生菌通过发挥自身的免疫调节作用来减少结肠炎症(如通过激活树突状细胞(DCs)进一步调节辅助T细胞17 (Th17)和调节T细胞(Treg)的表达情况,从而使巨噬细胞转向M2亚型)或增强抗肿瘤免疫力(如增强Th17和减少Treg在系统水平上的表达,减少肿瘤CXCR4和MHC-1的表达),但其作用的发挥也受限于选定的物种和菌种[44] [45]。(3) 增强肠道屏障功能。益生菌通过上调或正常化紧密连接蛋白(claudin-1、occludin、ZO-1、ZO-2)的表达来改善肠道屏障功能、刺激粘蛋白的产生等机制来抑制炎症和促进上皮的恢复[46] [47]

化疗和放疗是CRC,特别是晚期患者,治疗中普遍采用的方法,然而它们的副作用往往限制了使用剂量或导致治疗中止。胃肠道黏膜炎是最常见的副作用之一,其特点是体重减轻、腹泻、肠道炎症和肠道屏障功能受损[48]。因此,通过调节肠道菌群直接改变结直肠环境被认为可以减轻副作用。数项研究表明,一些益生菌菌株或其上清液可以通过抑制炎症[49]、恢复肠道屏障完整性[50]和抑制粘膜上皮细胞凋亡进程改善化疗引起的胃肠道黏膜炎[51]。同时,通过FMT恢复接受化疗或放疗小鼠的肠道菌群平衡,被证明可以有效地保护小鼠免受治疗相关的胃肠道反应,并提高生存率[52]。许多化疗药物的另一种严重副作用就是骨髓的抑制作用。Susana Salva等研究发现乳酸菌CRL431和CRL1506菌属可促进环磷酰胺治疗后小鼠的骨髓抑制和免疫抑制的恢复,据推测可能通过免疫促进骨髓细胞而加速引起的免疫抑制的恢复[53]。虽然这些保护作用的分子机制尚不清楚,但这些研究为益生菌的临床意义开辟了一个新的研究方向。

为了纠正肠道菌群失调,临床前研究已经提出了各种合理的机制通过扭转菌群失调和恢复平衡来预防和治疗CRC患者,由此抗生素和菌群移植成为可行方案。抗生素能有效地根除致病菌或有害细菌,但其非选择性的抗菌作用可能会通过杀死共生微生物菌群而导致另一种状态的菌群失调,除此外因其抗癌活性受到共生微生物群的调节,还可能损害癌症免疫疗法的疗效[54] [55]。FMT为接受者引入了一个新的细菌群落,旨在扭转已经形成的菌群失调,一般认为,益生菌对健康受试者来说是安全和耐受性良好的[56]。然而,它在有潜在疾病患者中使用引起了很多人的怀疑和对其在临床使用中的安全性的关注。由于捐赠者的样本中有许多未知的成分,它也有将病原体或致病基因传播给接受者并引起菌群易位的风险,这是最大的担忧之一[57]。除此之外,可能将耐药基因传递给常驻菌群和抗生素耐药性的提升也是限制其应用的原因之一[58]。FMT作为一项新技术,据了解,目前没有评估肠道菌群操作和治疗效果的临床试验发表,同时,因无药物研发阶段,直接被应用于临床,在使用前应严格评估供给者的健康状况以及接受者的治疗风险。与此同时,关于FMT的伦理问题应进一步完善。

菌群测序技术的突破使得有关结直肠癌病理生理学的微生物研究取得了重大进展,积累的临床前证据表明肠道菌群是预防和治疗结直肠癌的潜在治疗策略。然而,在临床应用之前,一些基本问题还有待解决。首先,什么被定义为需要进行干预的肠道菌群失调?目前,还没有关于菌群失调的定量定义,这个概念似乎是针对宿主和疾病的。因此,在做出需要进行临床干预的决定之前,明确的定义和精确的病人选择标准是至关重要的——毕竟不管是抗生素还是菌群移植确实具有一定的风险。其次需要回答的问题是有效干预的前提条件是什么?越来越多的研究表明,并非所有受试者对肠道菌群调节治疗达到预期效果,这在很大程度上取决于包括遗传背景、肠道屏障功能和菌群多样性在内的基础特征。因此,开发个性化的菌群治疗疗法是临床治疗成功的关键。最后,有关人体临床试验的数据仍较少,临床医生必须谨慎对待,不应任意将动物数据推断到临床应用上,代表性的例子就是抗生素,尽管它经常在动物实验方面取得很好的成果,但在临床应用时经证实会产生许多问题。

5. 小结与展望

因为存在很多未知因素,肠道菌群在结直肠癌进展中所充当的角色尚未明确,其在预防和治疗结肠癌中的作用值得进一步研究。此外,FMT在治疗CRC方面的作用仍然未知,迫切需要进一步研究。尽管仍有许多问题需要解决,但随着我们对肠道菌群与结直肠癌等恶性肿瘤以及其他疾病关系的更多理解,我们正在朝着对疾病的病因及机制的更深理解前进,同时随着临床前和临床研究的不断努力我们将看到FMT如何能够转化为临床实践,并为高风险的个体和病人提供更多的辅助治疗,我们仍坚信FMT在治疗和预防CRC方面的作用将是一个非常复杂但又肥沃的研究领域。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
[2] Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2017) Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut, 66, 683-691. [Google Scholar] [CrossRef] [PubMed]
[3] Brown, K.F., Rumgay, H., Dunlop, C., Ryan, M., Quartly, F., Cox, A., et al. (2018) The Fraction of Cancer Attributable to Modifiable Risk Factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. British Journal of Cancer, 118, 1130-1141. [Google Scholar] [CrossRef] [PubMed]
[4] Albert, K., Rani, A. and Sela, D.A. (2018) The Comparative Genomics of Bifidobacterium Callitrichos Reflects Dietary Carbohydrate Utilization within the Common Marmoset Gut. Microbial Genomics, 4, 1-14. [Google Scholar] [CrossRef] [PubMed]
[5] Rijkers, G.T., Andriessen, S.Q. and van Overveld, F.J. (2019) Death and the Miser: Microbiota Regulate the Outcome of Checkpoint Inhibition Immunotherapy. Expert Review of Anticancer Therapy, 19, 831-834. [Google Scholar] [CrossRef] [PubMed]
[6] Liu, S.H., Sun, X.H., Wang, M.L., et al. (2014) A MicroRNA 221and 222 Mediated Feedback Loop Maintains Constitutive Activation of NF-κB and STAT3 in Colorectal Cancer Cells. Gastroenterology, 147, 847-859.e11.
[7] Tsoi, H., Chu, E.S.H., Zhang, X., Sheng, J., Nakatsu, G., Ng, S.C., et al. (2017) Peptostreptococcus Anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice. Gastroenterology, 152, 1419-1433.e5. [Google Scholar] [CrossRef] [PubMed]
[8] Orberg, E.T., Fan, H., Tam, A.J., et al. (2017) The Myeloid Immune Signature of Enterotoxigenic Bacteroides Fragilis-Induced Murine Colon Tumorigenesis. Mucosal Immunology, 10, 421-433. [Google Scholar] [CrossRef] [PubMed]
[9] Guo, P., Tian, Z.B., Kong, X.J., et al. (2020) FadA Promotes DNA Damage and Progression of Fusobacterium nucleatum-Induced Colorectal Cancer through Up-Regulation of chk2. Journal of Experimental & Clinical Cancer Research, 39, Article No. 202. [Google Scholar] [CrossRef] [PubMed]
[10] Abu-Ghazaleh, N., Chua, W.J. and Gopalan, V. (2021) Intestinal Microbiota and Its Association with Colon Cancer and Red/processed Meat Consumption. Journal of Gastroenterology and Hepatology, 36, 75-88. [Google Scholar] [CrossRef] [PubMed]
[11] Fan, X., Jin, Y., Chen, G., Ma, X. and Zhang, L. (2021) Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion, 102, 508-515. [Google Scholar] [CrossRef] [PubMed]
[12] Gethings-Behncke, C., Coleman, H.G., Jordao, H.W.T., Longley, D.B., Crawford, N., Murray, L.J., et al. (2020) Fusobacterium nucleatum in the Colorectum and Its Association with Cancer Risk and Survival: A Systematic Review and Meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 29, 539-548. [Google Scholar] [CrossRef] [PubMed]
[13] Zhang, S., Yang, Y.Z., Weng, W.H., et al. (2019) Fusobacterium nucleatum Promotes Chemoresistance to 5-Fluorouracil by Upregulation of BIRC3 Expression in Colorectal Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
[14] 谢玲林. 肠道菌群与疾病关系的研究进展[J]. 基因组学与应用生学, 2017, 36(11): 4570-4573.
[15] 张威, 姜可伟. 肠道菌群在结直肠癌发生发展及治疗中的作用[J] . 中华胃肠外科杂志, 2020, 23(5): 516-520.
[16] 陈丹, 逯茂洋. 肠道菌群与阿尔茨海默病的关系研究进展[J]. 世界最新医学信息文摘(连续型电子期刊), 2018, 18(6):105-106+109.
[17] Cavaillon, J.M. and Legout, S. (2016) Centenary of the Death of Elie Metchnikoff: A Visionary and an Outstanding Team Leader. Microbes and Infection, 18, 577-594. [Google Scholar] [CrossRef] [PubMed]
[18] Ambalam, P., Raman, M., Purama, R.K. and Doble, M. (2016) Probiotics, Prebiotics and Colorectal Cancer Prevention. Best Practice & Research Clinical Gastroenterology, 30, 119-131. [Google Scholar] [CrossRef] [PubMed]
[19] 张倩, 熊利霞, 张红星, 等. 藏灵菇源干酪乳杆菌微胶囊喷雾干燥工艺条件的优化[J]. 食品工业科技, 2016, 37(13): 210-214.
[20] Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y. and Andoh, A. (2017) Gut Microbiota in the Pathogenesis of Inflammatory Bowel Disease. Clinical Journal of Gastroenterology, 11, 1-10. [Google Scholar] [CrossRef] [PubMed]
[21] Yu, Y.N., Yu, T.C., Zhao, H.J., et al. (2015) Berberine May Rescue Fusobacterium nucleatum-Induced Colorectal Tumorigenesis by Modulating the Tumor Microenvironment. Oncotarget, 6, 32013-32026. [Google Scholar] [CrossRef] [PubMed]
[22] Ma, Y., Su, X.Z. and Lu, F. (2020) The Roles of Type I Interferon in Co-Infections with Parasites and Viruses, Bacteria, or Other Parasites. Frontiers in Immunology, 11, Article 1805. [Google Scholar] [CrossRef] [PubMed]
[23] Panwalker, A.P. (1988) Unusual Infections Associated with Colorectal Cancer. Clinical Infectious Diseases, 10, 347-364. [Google Scholar] [CrossRef] [PubMed]
[24] Krishnan, S. and Eslick, G.D. (2014) Streptococcus bovis Infection and Colorectal Neoplasia: A Meta-Analysis. Colorectal Disease, 16, 672-680. [Google Scholar] [CrossRef] [PubMed]
[25] Wassenaar, T.M. (2018) E. coli and Colorectal Cancer: A Complex Relationship That Deserves a Critical Mindset. Critical Reviews in Microbiology, 44, 619-632. [Google Scholar] [CrossRef] [PubMed]
[26] Grobbee, E.J., Lam, S.Y., Fuhler, G.M., Blakaj, B., Konstantinov, S.R., Bruno, M.J., et al. (2020) First Steps Towards Combining Faecal Immunochemical Testing with the Gut Microbiome in Colorectal Cancer Screening. United European Gastroenterology Journal, 8, 293-302. [Google Scholar] [CrossRef] [PubMed]
[27] Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L.A. and Feizabadi, M.M. (2020) Enterotoxigenic Bacteroides Fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Frontiers in Cellular and Infection Microbiology, 9, Article 449. [Google Scholar] [CrossRef] [PubMed]
[28] Xu, K. and Jiang, B. (2017) Analysis of Mucosa-Associated Microbiota in Colorectal Cancer. Medical Science Monitor, 23, 4422-4430. [Google Scholar] [CrossRef] [PubMed]
[29] Bolte, L.A., Vich Vila, A., Imhann, F., Collij, V., Gacesa, R., Peters, V., et al. (2021) Long-Term Dietary Patterns Are Associated with Pro-Inflammatory and Anti-Inflammatory Features of the Gut Microbiome. Gut, 70, 1287-1298. [Google Scholar] [CrossRef] [PubMed]
[30] Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. [Google Scholar] [CrossRef] [PubMed]
[31] Piekarska, J., Miśta, D., Houszka, M., Króliczewska, B., Zawadzki, W. and Gorczykowski, M. (2011) Trichinella Spiralis: The Influence of Short Chain Fatty Acids on the Proliferation of Lymphocytes, the Goblet Cell Count and Apoptosis in the Mouse Intestine. Experimental Parasitology, 128, 419-426. [Google Scholar] [CrossRef] [PubMed]
[32] Kurata, N., Tokashiki, N., Fukushima, K., Misao, T., Hasuoka, N., Kitagawa, K., et al. (2019) Short Chain Fatty Acid Butyrate Uptake Reduces Expressions of Prostanoid EP4 Receptors and Their Mediation of Cyclooxygenase-2 Induction in HCA-7 Human Colon Cancer Cells. European Journal of Pharmacology, 853, 308-315. [Google Scholar] [CrossRef] [PubMed]
[33] Zeng, H.W., Umar, S., Rust, B., et al. (2019) Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. International Journal of Molecular Sciences, 20, Article 1214. [Google Scholar] [CrossRef] [PubMed]
[34] Sánchez, B. (2018) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis: A Role for Bifidobacteria and Lactobacilli? Nature Reviews Gastroenterology & Hepatology, 15, Article 205. [Google Scholar] [CrossRef] [PubMed]
[35] Tariq, R., Pardi, D.S., Bartlett, M.G. and Khanna, S. (2019) Low Cure Rates in Controlled Trials of Fecal Microbiota Transplantation for Recurrent Clostridium Difficile Infection: A Systematic Review and Meta-Analysis. Clinical Infectious Diseases, 68, 1351-1358. [Google Scholar] [CrossRef] [PubMed]
[36] Paramsothy, S., Nielsen, S., Kamm, M.A., Deshpande, N.P., Faith, J.J., Clemente, J.C., et al. (2019) Specific Bacteria and Metabolites Associated with Response to Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Gastroenterology, 156, 1440-1454.e2. [Google Scholar] [CrossRef] [PubMed]
[37] 罗勤. 解读粪便菌群移植[J]. 家庭医学, 2016(12): 64-65.
[38] Assimakopoulos, S.F., Papadopoulou, I., Bantouna, D., de Lastic, A., Rodi, M., Mouzaki, A., et al. (2021) Fecal Microbiota Transplantation and Hydrocortisone Ameliorate Intestinal Barrier Dysfunction and Improve Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis. Shock, 55, 666-675. [Google Scholar] [CrossRef] [PubMed]
[39] Kamada, N., Sakamoto, K., Seo, S., Zeng, M.Y., Kim, Y., Cascalho, M., et al. (2015) Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host & Microbe, 17, 617-627. [Google Scholar] [CrossRef] [PubMed]
[40] Lenoir, M., Carmen, S.D., Cortes-Perez, N.G., et al. (2016) Lactobacillus casei BL23 Regulates Treg and Th17 T-Cell Populations and Reduces DMH-Associated Colorectal Cancer. Journal of Gastroenterology, 51, 862-873. [Google Scholar] [CrossRef] [PubMed]
[41] Yazdi, M.H., Soltan Dallal, M.M., Hassan, Z.M., Holakuyee, M., Agha Amiri, S., Abolhassani, M., et al. (2010) Oral Administration Oflactobacillus Acidophilusinduces IL-12 Production in Spleen Cell Culture of BALB/c Mice Bearing Transplanted Breast Tumour. British Journal of Nutrition, 104, 227-232. [Google Scholar] [CrossRef] [PubMed]
[42] Chen, Y., Xiao, L., Zhou, M. and Zhang, H. (2024) The Microbiota: A Crucial Mediator in Gut Homeostasis and Colonization Resistance. Frontiers in Microbiology, 15, Article 1417864. [Google Scholar] [CrossRef] [PubMed]
[43] Horrocks, V., King, O.G., Yip, A.Y.G., Marques, I.M. and McDonald, J.A.K. (2023) Role of the Gut Microbiota in Nutrient Competition and Protection against Intestinal Pathogen Colonization. Microbiology, 169, Article 1377. [Google Scholar] [CrossRef] [PubMed]
[44] Ghadimi, D., Vrese, M.d., Heller, K.J. and Schrezenmeir, J. (2010) Effect of Natural Commensal-Origin DNA on Toll-Like Receptor 9 (TLR9) Signaling Cascade, Chemokine IL-8 Expression, and Barrier Integrity of Polarized Intestinal Epithelial Cells. Inflammatory Bowel Diseases, 16, 410-427. [Google Scholar] [CrossRef] [PubMed]
[45] Park, J.S., Choi, J.W., Jhun, J., Kwon, J.Y., Lee, B., Yang, C.W., et al. (2018) Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development. Journal of Medicinal Food, 21, 215-224. [Google Scholar] [CrossRef] [PubMed]
[46] Alvarez, C.S., Giménez, R., Cañas, M.A., Vera, R., Díaz-Garrido, N., Badia, J., et al. (2019) Extracellular Vesicles and Soluble Factors Secreted by Escherichia coli Nissle 1917 and ECOR63 Protect against Enteropathogenic E. coli-Induced Intestinal Epithelial Barrier Dysfunction. BMC Microbiology, 19, Article No. 166. [Google Scholar] [CrossRef] [PubMed]
[47] Laval, L., Martin, R., Natividad, J., Chain, F., Miquel, S., de Maredsous, C.D., et al. (2015) Lactobacillus rhamnosus CNCM I-3690 and the Commensal Bacterium faecalis Bacterium Prausnitziia2-165 Exhibit Similar Protective Effects to Induced Barrier Hyper-Permeability in Mice. Gut Microbes, 6, 1-9. [Google Scholar] [CrossRef] [PubMed]
[48] Wang, L., Wang, R., Wei, G., Wang, S. and Du, G. (2020) Dihydrotanshinone Attenuates Chemotherapy-Induced Intestinal Mucositis and Alters Fecal Microbiota in Mice. Biomedicine & Pharmacotherapy, 128, Article 110262. [Google Scholar] [CrossRef] [PubMed]
[49] Huang, L., Chiang Chiau, J., Cheng, M., Chan, W., Jiang, C., Chang, S., et al. (2019) SCID/NOD Mice Model for 5-FU Induced Intestinal Mucositis: Safety and Effects of Probiotics as Therapy. Pediatrics & Neonatology, 60, 252-260. [Google Scholar] [CrossRef] [PubMed]
[50] Wei, L., Wen, X.S. and Xian, C.J. (2021) Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-Like Receptor Signaling Pathways. International Journal of Molecular Sciences, 22, Article 9474. [Google Scholar] [CrossRef] [PubMed]
[51] Song, D.S., Shi, B., Xue, H., et al. (2006) Confirmation and Prevention of Intestinal Barrier Dysfunction and Bacterial Translocation Caused by Methotrexate. Digestive Diseases and Sciences, 51, 1549-1556. [Google Scholar] [CrossRef] [PubMed]
[52] Chen, K.J., Chen, Y.L., Ueng, S.H., et al. (2021) Neutrophil Elastase Inhibitor (MPH-966) Improves Intestinal Mucosal Damage and Gut Microbiota in a Mouse Model of 5-Fluorouracil-Induced Intestinal Mucositis. Biomedicine & Pharmacotherapy, 134, Article 111152. [Google Scholar] [CrossRef] [PubMed]
[53] McFarland, L.V., Ship, N., Auclair, J. and Millette, M. (2018) Primary Prevention of Clostridium Difficile Infections with a Specific Probiotic Combining Lactobacillus acidophilus, L. Casei, and L. Rhamnosus Strains: Assessing the Evidence. Journal of Hospital Infection, 99, 443-452. [Google Scholar] [CrossRef] [PubMed]
[54] Santacroce, L., Di Domenico, M., Montagnani, M. and Jirillo, E. (2023) Antibiotic Resistance and Microbiota Response. Current Pharmaceutical Design, 29, 356-364. [Google Scholar] [CrossRef] [PubMed]
[55] Long, X.H., Wong, C.C., Tong, L., Chu, E.S.H., Ho Szeto, C., Go, M.Y.Y., et al. (2019) Peptostreptococcus anaerobius Promotes Colorectal Carcinogenesis and Modulates Tumour Immunity. Nature Microbiology, 4, 2319-2330. [Google Scholar] [CrossRef] [PubMed]
[56] Kump, P. and Högenauer, C. (2016) Any Future for Fecal Microbiota Transplantation as Treatment Strategy for Inflammatory Bowel Diseases? Digestive Diseases, 34, 74-81. [Google Scholar] [CrossRef] [PubMed]
[57] Brandt, L.J. (2013) FMT: First Step in a Long Journey. American Journal of Gastroenterology, 108, 1367-1368. [Google Scholar] [CrossRef] [PubMed]
[58] Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., et al. (2017) The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed]