|
[1]
|
Nguyen, H., Youn, Y., Bui, D.T., Nguyen, T.H.Y., Dinh, D.T. and Ho, Q.T. (2023) Optimal Forest Management for Carbon Sequestration, Timber, and Bioenergy Production in Vietnam Using an Extended Full-Cycle Carbon Accounting Method. Environmental Science and Pollution Research, 30, 101192-101207. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
(2025) IPCC—Intergovernmental Panel on Climate Change. https://www.ipcc.ch
|
|
[3]
|
周艳莲, 居为民, 柳艺博. 1981-2019年全球陆地生态系统碳通量变化特征及其驱动因子[J]. 大气科学学报, 2022, 45(3): 332-344.
|
|
[4]
|
He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., et al. (2016) Effects of Biochar Application on Soil Greenhouse Gas Fluxes: A Meta-Analysis. GCB Bioenergy, 9, 743-755. [Google Scholar] [CrossRef]
|
|
[5]
|
Sun, Z., Sun, W., Tong, C., Zeng, C., Yu, X. and Mou, X. (2015) China’s Coastal Wetlands: Conservation History, Implementation Efforts, Existing Issues and Strategies for Future Improvement. Environment International, 79, 25-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
王玲玲, 孙志高, 牟晓杰, 等. 黄河口滨岸潮滩湿地CO2、CH4和N2O通量特征初步研究[J]. 草业学报, 2011, 20(3): 51-61.
|
|
[7]
|
Olefeldt, D., Euskirchen, E.S., Harden, J., Kane, E., McGuire, A.D., Waldrop, M.P., et al. (2017) A Decade of Boreal Rich Fen Greenhouse Gas Fluxes in Response to Natural and Experimental Water Table Variability. Global Change Biology, 23, 2428-2440. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ouyang, X. and Lee, S.Y. (2014) Updated Estimates of Carbon Accumulation Rates in Coastal Marsh Sediments. Biogeosciences, 11, 5057-5071. [Google Scholar] [CrossRef]
|
|
[9]
|
Hirota, M., Senga, Y., Seike, Y., Nohara, S. and Kunii, H. (2007) Fluxes of Carbon Dioxide, Methane and Nitrous Oxide in Two Contrastive Fringing Zones of Coastal Lagoon, Lake Nakaumi, Japan. Chemosphere, 68, 597-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chmura, G.L. (2013) What Do We Need to Assess the Sustainability of the Tidal Salt Marsh Carbon Sink? Ocean & Coastal Management, 83, 25-31. [Google Scholar] [CrossRef]
|
|
[11]
|
Wilson, B.J., Mortazavi, B. and Kiene, R.P. (2015) Spatial and Temporal Variability in Carbon Dioxide and Methane Exchange at Three Coastal Marshes along a Salinity Gradient in a Northern Gulf of Mexico Estuary. Biogeochemistry, 123, 329-347. [Google Scholar] [CrossRef]
|
|
[12]
|
杨平, 仝川, 何清华, 等. 闽江口鱼虾混养塘水-气界面温室气体通量及主要影响因子[J]. 环境科学学报, 2013, 33(5): 1493-1503.
|
|
[13]
|
张清磊. 胶州湾典型滨海湿地CO2排放通量研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2015.
|
|
[14]
|
Friborg, T., Soegaard, H., Christensen, T.R., Lloyd, C.R. and Panikov, N.S. (2003) Siberian Wetlands: Where a Sink Is a Source. Geophysical Research Letters, 30, 1-4. [Google Scholar] [CrossRef]
|
|
[15]
|
王蒙. 杭州湾滨海湿地CH4、N2O、CO2排放通量及其影响因素研究[D]: [硕士学位论文]. 北京: 中国林业科学研究院, 2014.
|
|
[16]
|
Subke, J., Reichstein, M. and Tenhunen, J.D. (2003) Explaining Temporal Variation in Soil CO2 Efflux in a Mature Spruce Forest in Southern Germany. Soil Biology and Biochemistry, 35, 1467-1483. [Google Scholar] [CrossRef]
|
|
[17]
|
Li, J., Nie, M. and Pendall, E. (2019) An Incubation Study of Temperature Sensitivity of Greenhouse Gas Fluxes in Three Land-Cover Types Near Sydney, Australia. Science of The Total Environment, 688, 324-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A. and Zechmeister‐Boltenstern, S. (2010) Greenhouse Gas Emissions from European Soils under Different Land Use: Effects of Soil Moisture and Temperature. European Journal of Soil Science, 61, 683-696. [Google Scholar] [CrossRef]
|
|
[19]
|
Tang, L., Zhang, L., Yang, P., Tong, C., Yang, H., Tan, L., et al. (2023) Seasonal Variations in Source-Sink Balance of CO2 in Subtropical Earthen Aquaculture Ponds: Implications for Carbon Emission Management. Journal of Hydrology, 626, Article 130330. [Google Scholar] [CrossRef]
|
|
[20]
|
Xiao, Q., Xu, X., Duan, H., Qi, T., Qin, B., Lee, X., et al. (2020) Eutrophic Lake Taihu as a Significant CO2 Source during 2000-2015. Water Research, 170, Article 115331. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jenkinson, D.S., Adams, D.E. and Wild, A. (1991) Model Estimates of CO2 Emissions from Soil in Response to Global Warming. Nature, 351, 304-306. [Google Scholar] [CrossRef]
|
|
[22]
|
仝川, 鄂焱, 廖稷, 等. 闽江河口潮汐沼泽湿地CO2排放通量特征[J]. 环境科学学报, 2011, 31(12): 2830-2840.
|
|
[23]
|
Xie, J., Yuan, Y., Wang, X., Zhang, R., Zhong, R., Zhai, J., et al. (2025) Impact of Coastal Beach Reclamation on Seasonal Greenhouse Gas Emissions: A Study of Diversified Saline-Alkaline Land Use Patterns. Agriculture, 15, Article 1403. [Google Scholar] [CrossRef]
|
|
[24]
|
Wang, Y., Li, Q., Wang, H., Wen, X., Yang, F., Ma, Z., et al. (2011) Precipitation Frequency Controls Interannual Variation of Soil Respiration by Affecting Soil Moisture in a Subtropical Forest Plantation. Canadian Journal of Forest Research, 41, 1897-1906. [Google Scholar] [CrossRef]
|
|
[25]
|
Ball, B.C. (2013) Soil Structure and Greenhouse Gas Emissions: A Synthesis of 20 Years of Experimentation. European Journal of Soil Science, 64, 357-373. [Google Scholar] [CrossRef]
|
|
[26]
|
Tan, L., Zhang, L., Yang, P., Tong, C., Lai, D.Y.F., Yang, H., et al. (2023) Effects of Conversion of Coastal Marshes to Aquaculture Ponds on Sediment Anaerobic CO2 Production and Emission in a Subtropical Estuary of China. Journal of Environmental Management, 338, Article 117813. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, X., Luo, M., Tan, J., Zhang, C., Liu, Y., Huang, J., et al. (2022) Salt-Tolerant Plant Moderates the Effect of Salinity on Soil Organic Carbon Mineralization in a Subtropical Tidal Wetland. Science of The Total Environment, 837, Article 155855. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, Y., Ge, Z., Xie, L., Li, S. and Tan, L. (2022) Effects of Waterlogging and Salinity Increase on CO2 Efflux in Soil from Coastal Marshes. Applied Soil Ecology, 170, Article 104268. [Google Scholar] [CrossRef]
|
|
[29]
|
Teal, J.M. and Weishar, L. (2005) Ecological Engineering, Adaptive Management, and Restoration Management in Delaware Bay Salt Marsh Restoration. Ecological Engineering, 25, 304-314. [Google Scholar] [CrossRef]
|
|
[30]
|
Parmentier, F.J.W., van der Molen, M.K., de Jeu, R.A.M., Hendriks, D.M.D. and Dolman, A.J. (2009) CO2 Fluxes and Evaporation on a Peatland in the Netherlands Appear Not Affected by Water Table Fluctuations. Agricultural and Forest Meteorology, 149, 1201-1208. [Google Scholar] [CrossRef]
|
|
[31]
|
聂明华, 刘敏, 侯立军, 等. 长江口潮滩土壤呼吸季节变化及其影响因素[J]. 环境科学学报, 2011, 31(4): 824-831.
|
|
[32]
|
杨朋金. 裸露潮间带表观CO2通量的变化规律[D]: [博士学位论文]. 青岛: 中国海洋大学, 2009.
|
|
[33]
|
曹磊, 宋金明, 李学刚, 等. 中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33(17): 5141-5152.
|
|
[34]
|
Moreno-Sotomayor, A., Weiss, A., Paparozzi, E.T. and Arkebauer, T.J. (2002) Stability of Leaf Anatomy and Light Response Curves of Field Grown Maize as a Function of Age and Nitrogen Status. Journal of Plant Physiology, 159, 819-826. [Google Scholar] [CrossRef]
|
|
[35]
|
Verville, J.H., Hobbie, S.E., Chapin, F.S. and Hooper, D.U. (1998) Response of Tundra CH4 and CO2 Flux Tomanipulation of Temperature and Vegetation. Biogeochemistry, 41, 215-235. [Google Scholar] [CrossRef]
|
|
[36]
|
Flanagan, L.B. and Johnson, B.G. (2005) Interacting Effects of Temperature, Soil Moisture and Plant Biomass Production on Ecosystem Respiration in a Northern Temperate Grassland. Agricultural and Forest Meteorology, 130, 237-253. [Google Scholar] [CrossRef]
|
|
[37]
|
李姝臻, 刘强, 甘罗扬, 等. 东北典型盐碱湿地碳排放的水深临界阈值及其温度依赖性[J]. 湖泊科学, 2025, 37(1): 159-173.
|
|
[38]
|
Huang, Y., Wang, J., Wu, P., Duan, Z., Li, X. and Tang, J. (2025) Impacts of Spartina Alterniflora Invasion on Coastal Carbon Cycling within a Native Phragmites Australis-Dominated Wetland. Agricultural and Forest Meteorology, 363, Article 110405. [Google Scholar] [CrossRef]
|
|
[39]
|
程寅瑞, 查勇, 陈丽娟, 等. 盐城滨海湿地不同植被类型土壤呼吸[J]. 生态学杂志, 2020, 39(12): 4090-4097.
|
|
[40]
|
项琦. 互花米草入侵对杭州湾潮滩湿地土壤及植物碳、氮、磷生态化学计量特征的影响[D]: [硕士学位论文]. 金华: 浙江师范大学, 2021.
|
|
[41]
|
姜铭. 黄河三角洲滨海湿地生态系统碳交换过程对冬春增温与夏秋减雨的响应[D]: [博士学位论文]. 上海: 华东师范大学, 2023.
|
|
[42]
|
林家洋, 宋哲岳, 李自民, 等. 滨海湿地碳汇和碳负排放技术研究进展[J]. 湿地科学, 2023, 21(2): 302-311.
|
|
[43]
|
Yuan, J., Dong, Y., Li, J., et al. (2025) Foregone Carbon Sequestration Dominates Greenhouse Gas Footprint in Aquaculture Associated with Coastal Wetland Conversion. Nature Food, 6, 587-596.
|
|
[44]
|
(2025) Low Greenhouse Gas Emissions of Land-Based Mariculture Still Warrant Mitigation. Nat Food, 6, 537-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
胡芳, 曹琼, 黄佳芳, 等. 河口沼泽湿地转化为养虾塘对土壤胞外酶活性及CO2和CH4产生潜力的影响[J]. 环境科学学报, 2023, 43(6): 460-470.
|
|
[46]
|
杨平. 闽江河口湿地水产养殖塘水-气界面温室气体通量研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2013.
|
|
[47]
|
宋红丽. 围填海活动对黄河三角洲滨海湿地生态系统类型变化和碳汇功能的影响[D]: [博士学位论文]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2015.
|