|
[1]
|
Szklarska, D. and Rzymski, P. (2018) Is Lithium a Micronutrient? From Biological Activity and Epidemiological Observation to Food Fortification. Biological Trace Element Research, 189, 18-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hamstra, S.I., Roy, B.D., Tiidus, P., MacNeil, A.J., Klentrou, P., MacPherson, R.E.K., et al. (2023) Beyond Its Psychiatric Use: The Benefits of Low-Dose Lithium Supplementation. Current Neuropharmacology, 21, 891-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Clifford, D.B., Podolsky, A. and Zorumski, C.F. (1985) Acute Effects of Lithium on Hippocampal Kindled Seizures. Epilepsia, 26, 689-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Jiang, G., Pu, T., Li, Z., Zhang, X., Zhou, R., Cao, X., et al. (2018) Lithium Affects Rat Hippocampal Electrophysiology and Epileptic Seizures in a Dose Dependent Manner. Epilepsy Research, 146, 112-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hirsch, E., Baram, T.Z. and Snead, O.C. (1992) Ontogenic Study of Lithium-Pilocarpine-Induced Status Epilepticus in Rats. Brain Research, 583, 120-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Oakley, P.W., Whyte, I.M. and Carter, G.L. (2001) Lithium Toxicity: An Iatrogenic Problem in Susceptible Individuals. Australian & New Zealand Journal of Psychiatry, 35, 833-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Curia, G., Longo, D., Biagini, G., Jones, R.S.G. and Avoli, M. (2008) The Pilocarpine Model of Temporal Lobe Epilepsy. Journal of Neuroscience Methods, 172, 143-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cryan, J.F., O'Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ding, M., Lang, Y., Shu, H., Shao, J. and Cui, L. (2021) Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Frontiers in Immunology, 12, Article 742449. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dols, A., Sienaert, P., van Gerven, H., Schouws, S., Stevens, A., Kupka, R., et al. (2013) The Prevalence and Management of Side Effects of Lithium and Anticonvulsants as Mood Stabilizers in Bipolar Disorder from a Clinical Perspective. International Clinical Psychopharmacology, 28, 287-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Huang, S., Hu, S., Liu, S., Tang, B., Liu, Y., Tang, L., et al. (2022) Lithium Carbonate Alleviates Colon Inflammation through Modulating Gut Microbiota and Treg Cells in a GPR43-Dependent Manner. Pharmacological Research, 175, Article ID: 105992. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cussotto, S., Strain, C.R., Fouhy, F., Strain, R.G., Peterson, V.L., Clarke, G., et al. (2018) Differential Effects of Psychotropic Drugs on Microbiome Composition and Gastrointestinal Function. Psychopharmacology, 236, 1671-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Demarquoy, J. (2025) Trace Metals in Modern Technology and Human Health: A Microbiota Perspective on Cobalt, Lithium, and Nickel. Acta Microbiologica Hellenica, 70, Article 18. [Google Scholar] [CrossRef]
|
|
[14]
|
Lei, Z., Yang, L., Lei, Y., Yang, Y., Zhang, X., Song, Q., et al. (2021) High Dose Lithium Chloride Causes Colitis through Activating F4/80 Positive Macrophages and Inhibiting Expression of Pigr and Claudin-15 in the Colon of Mice. Toxicology, 457, Article ID: 152799. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
de Souza Lopes, L., da Silva, J.S., da luz, J.M.R., de Cássia Soares da Silva, M., Lima, H.S., Rocha, G.C., et al. (2024) Intestinal Microbial Diversity of Swines Fed with Different Sources of Lithium. 3 Biotech, 14, Article No. 102. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Holmes, M., Flaminio, Z., Vardhan, M., Xu, F., Li, X., Devinsky, O., et al. (2020) Cross Talk between Drug‐resistant Epilepsy and the Gut Microbiome. Epilepsia, 61, 2619-2628. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Peng, A., Qiu, X., Lai, W., Li, W., Zhang, L., Zhu, X., et al. (2018) Altered Composition of the Gut Microbiome in Patients with Drug-Resistant Epilepsy. Epilepsy Research, 147, 102-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xie, G., Zhou, Q., Qiu, C., Dai, W., Wang, H., Li, Y., et al. (2017) Ketogenic Diet Poses a Significant Effect on Imbalanced Gut Microbiota in Infants with Refractory Epilepsy. World Journal of Gastroenterology, 23, 6164-6171. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lee, K., Kim, N., Shim, J.O. and Kim, G. (2020) Gut Bacterial Dysbiosis in Children with Intractable Epilepsy. Journal of Clinical Medicine, 10, Article 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gong, X., Liu, X., Chen, C., Lin, J., Li, A., Guo, K., et al. (2020) Alteration of Gut Microbiota in Patients with Epilepsy and the Potential Index as a Biomarker. Frontiers in Microbiology, 11, Article 517797. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lindefeldt, M., Eng, A., Darban, H., Bjerkner, A., Zetterström, C.K., Allander, T., et al. (2019) The Ketogenic Diet Influences Taxonomic and Functional Composition of the Gut Microbiota in Children with Severe Epilepsy. npj Biofilms and Microbiomes, 5, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Şafak, B., Altunan, B., Topçu, B. and Eren Topkaya, A. (2020) The Gut Microbiome in Epilepsy. Microbial Pathogenesis, 139, Article ID: 103853. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Arulsamy, A., Tan, Q.Y., Balasubramaniam, V., O’Brien, T.J. and Shaikh, M.F. (2020) Gut Microbiota and Epilepsy: A Systematic Review on Their Relationship and Possible Therapeutics. ACS Chemical Neuroscience, 21, 3488-3498. https://pubs.acs.org/doi/10.1021/acschemneuro.0c00431 [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, Y., Zhou, S., Zhou, Y., Yu, L., Zhang, L. and Wang, Y. (2018) Altered Gut Microbiome Composition in Children with Refractory Epilepsy after Ketogenic Diet. Epilepsy Research, 145, 163-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bagheri, S., Heydari, A., Alinaghipour, A. and Salami, M. (2019) Effect of Probiotic Supplementation on Seizure Activity and Cognitive Performance in PTZ-Induced Chemical Kindling. Epilepsy & Behavior, 95, 43-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gómez-Eguílaz, M., Ramón-Trapero, J.L., Pérez-Martínez, L. and Blanco, J.R. (2018) The Beneficial Effect of Probiotics as a Supplementary Treatment in Drug-Resistant Epilepsy: A Pilot Study. Beneficial Microbes, 9, 875-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
de Souza Lopes, L., da Silva, J.S., da luz, J.M.R., de Cássia Soares da Silva, M., Lima, H.S., Rocha, G.C., et al. (2024) Intestinal Microbial Diversity of Swines Fed with Different Sources of Lithium. 3 Biotech, 14, Article No. 102. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Oliveira, M.E.T., Paulino, G.V.B., dos Santos Júnior, E.D., da Silva Oliveira, F.A., Melo, V.M.M., Ursulino, J.S., et al. (2022) Multi-Omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Molecular Neurobiology, 59, 6429-6446. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Amlerova, J., Šroubek, J., Angelucci, F. and Hort, J. (2021) Evidences for a Role of Gut Microbiota in Pathogenesis and Management of Epilepsy. International Journal of Molecular Sciences, 22, Article 5576. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mayer, E.A., Nance, K. and Chen, S. (2022) The Gut-Brain Axis. Annual Review of Medicine, 73, 439-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yamanaka, G., Morichi, S., Takamatsu, T., Watanabe, Y., Suzuki, S., Ishida, Y., et al. (2021) Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. International Journal of Molecular Sciences, 22, Article 4395. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dong, L., Zheng, Q., Cheng, Y., Zhou, M., Wang, M., Xu, J., et al. (2022) Gut Microbial Characteristics of Adult Patients with Epilepsy. Frontiers in Neuroscience, 16, Article 803538. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, J., Jin, Y., Ye, Y., Tang, Y., Dai, S., Li, M., et al. (2021) The Neuroprotective Effect of Short Chain Fatty Acids against Sepsis-Associated Encephalopathy in Mice. Frontiers in Immunology, 12, Article 626894. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bienenstock, J., Kunze, W. and Forsythe, P. (2015) Microbiota and the Gut-Brain Axis. Nutrition Reviews, 73, 28-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
De Caro, C., Iannone, L.F., Citraro, R., Striano, P., De Sarro, G., Constanti, A., et al. (2019) Can We ‘Seize’ the Gut Microbiota to Treat Epilepsy? Neuroscience & Biobehavioral Reviews, 107, 750-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Maslowski, K.M., Vieira, A.T., Ng, A., Kranich, J., Sierro, F., Di Yu,, et al. (2009) Regulation of Inflammatory Responses by Gut Microbiota and Chemoattractant Receptor Gpr43. Nature, 461, 1282-1286. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Li, D., Bai, X., Jiang, Y. and Cheng, Y. (2021) Butyrate Alleviates PTZ-Induced Mitochondrial Dysfunction, Oxidative Stress and Neuron Apoptosis in Mice via Keap1/Nrf2/HO-1 Pathway. Brain Research Bulletin, 168, 25-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., et al. (2011) Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Borre, Y.E., O’Keeffe, G.W., Clarke, G., Stanton, C., Dinan, T.G. and Cryan, J.F. (2014) Microbiota and Neurodevelopmental Windows: Implications for Brain Disorders. Trends in Molecular Medicine, 20, 509-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lum, G.R., Olson, C.A. and Hsiao, E.Y. (2020) Emerging Roles for the Intestinal Microbiome in Epilepsy. Neurobiology of Disease, 135, Article ID: 104576. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mao, Y., Kasper, D.L., Wang, B., Forsythe, P., Bienenstock, J. and Kunze, W.A. (2013) Bacteroides fragilis Polysaccharide a Is Necessary and Sufficient for Acute Activation of Intestinal Sensory Neurons. Nature Communications, 4, Article No. 1465. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Goehler, L.E., Gaykema, R.P.A., Opitz, N., Reddaway, R., Badr, N. and Lyte, M. (2005) Activation in Vagal Afferents and Central Autonomic Pathways: Early Responses to Intestinal Infection with Campylobacter Jejuni. Brain, Behavior, and Immunity, 19, 334-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Attenello, F., Amar, A.P., Liu, C. and Apuzzo, M.L.J. (2015) Theoretical Basis of Vagus Nerve Stimulation. In: Slavin, K.V., Ed., Progress in Neurological Surgery, S. Karger AG, 20-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ressler, K.J. and Mayberg, H.S. (2007) Targeting Abnormal Neural Circuits in Mood and Anxiety Disorders: From the Laboratory to the Clinic. Nature Neuroscience, 10, 1116-1124. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Martin, C.R., Osadchiy, V., Kalani, A. and Mayer, E.A. (2018) The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 6, 133-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Stecher, B. and Hardt, W. (2011) Mechanisms Controlling Pathogen Colonization of the Gut. Current Opinion in Microbiology, 14, 82-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Hooper, L.V. and Macpherson, A.J. (2010) Immune Adaptations That Maintain Homeostasis with the Intestinal Microbiota. Nature Reviews Immunology, 10, 159-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Balosso, S., Liu, J., Bianchi, M.E. and Vezzani, A. (2014) Disulfide-containing High Mobility Group Box-1 Promotes n-Methyl-d-Aspartate Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in Hippocampal Neurons. Antioxidants & Redox Signaling, 21, 1726-1740. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Blander, J.M., Longman, R.S., Iliev, I.D., Sonnenberg, G.F. and Artis, D. (2017) Regulation of Inflammation by Microbiota Interactions with the Host. Nature Immunology, 18, 851-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A.M., et al. (2010) Toll-Like Receptor 4 and High-Mobility Group Box-1 Are Involved in Ictogenesis and Can Be Targeted to Reduce Seizures. Nature Medicine, 16, 413-419. [Google Scholar] [CrossRef] [PubMed]
|