|
[1]
|
Lamos, E.M., Malek, R. and Munir, K.M. (2020) Effects of Intermittent Fasting on Health, Aging, and Disease. The New England Journal of Medicine, 382, Article 1771. [Google Scholar] [CrossRef]
|
|
[2]
|
Khan, M.N., Khan, S.I., Rana, M.I., Ayyaz, A., Khan, M.Y. and Imran, M. (2022) Intermittent Fasting Positively Modulates Human Gut Microbial Diversity and Ameliorates Blood Lipid Profile. Frontiers in Microbiology, 13, Article 922727. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Guo, Y., Luo, S., Ye, Y., Yin, S., Fan, J. and Xia, M. (2021) Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. The Journal of Clinical Endocrinology & Metabolism, 106, 64-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Patterson, R.E. and Sears, D.D. (2017) Metabolic Effects of Intermittent Fasting. Annual Review of Nutrition, 37, 371-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., et al. (2020) Effects of 4-and 6-H Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metabolism, 32, 366-378.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Longo, V.D. and Panda, S. (2016) Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metabolism, 23, 1048-1059. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Dabke, K., Hendrick, G. and Devkota, S. (2019) The Gut Microbiome and Metabolic Syndrome. Journal of Clinical Investigation, 129, 4050-4057. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375, 2369-2379. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., et al. (2018) Environment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature, 555, 210-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cani, P.D. (2018) Human Gut Microbiome: Hopes, Threats and Promises. Gut, 67, 1716-1725. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mattson, M.P., Longo, V.D. and Harvie, M. (2017) Impact of Intermittent Fasting on Health and Disease Processes. Ageing Research Reviews, 39, 46-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Harvie, M. and Howell, A. (2017) Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects—A Narrative Review of Human and Animal Evidence. Behavioral Sciences, 7, Article 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mattison, J.A., Colman, R.J., Beasley, T.M., Allison, D.B., Kemnitz, J.W., Roth, G.S., et al. (2017) Caloric Restriction Improves Health and Survival of Rhesus Monkeys. Nature Communications, 8, Article No. 14063. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Di Francesco, A., Di Germanio, C., Bernier, M. and de Cabo, R. (2018) A Time to Fast. Science, 362, 770-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Varady, K.A., Dam, V.T., Klempel, M.C., Horne, M., Cruz, R., Kroeger, C.M., et al. (2015) Effects of Weight Loss via High Fat Vs. Low Fat Alternate Day Fasting Diets on Free Fatty Acid Profiles. Scientific Reports, 5, Article No. 7561. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sutton, E.F., Beyl, R., Early, K.S., Cefalu, W.T., Ravussin, E. and Peterson, C.M. (2018) Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metabolism, 27, 1212-1221.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lessan, N. and Ali, T. (2019) Energy Metabolism and Intermittent Fasting: The Ramadan Perspective. Nutrients, 11, Article 1192. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fanti, M., Mishra, A., Longo, V.D. and Brandhorst, S. (2021) Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Current Obesity Reports, 10, 70-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Paukkonen, I., Törrönen, E., Lok, J., Schwab, U. and El-Nezami, H. (2024) The Impact of Intermittent Fasting on Gut Microbiota: A Systematic Review of Human Studies. Frontiers in Nutrition, 11, Article 1342787. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zarrinpar, A., Chaix, A., Yooseph, S. and Panda, S. (2014) Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 20, 1006-1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Olsen, M.K., Choi, M.H., Kulseng, B., Zhao, C. and Chen, D. (2017) Time-Restricted Feeding on Weekdays Restricts Weight Gain: A Study Using Rat Models of High-Fat Diet-Induced Obesity. Physiology & Behavior, 173, 298-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Delahaye, L.B., Bloomer, R.J., Butawan, M.B., Wyman, J.M., Hill, J.L., Lee, H.W., et al. (2018) Time-Restricted Feeding of a High-Fat Diet in Male C57BL/6 Mice Reduces Adiposity but Does Not Protect against Increased Systemic Inflammation. Applied Physiology, Nutrition, and Metabolism, 43, 1033-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Duncan, M.J., Smith, J.T., Narbaiza, J., Mueez, F., Bustle, L.B., Qureshi, S., et al. (2016) Restricting Feeding to the Active Phase in Middle-Aged Mice Attenuates Adverse Metabolic Effects of a High-Fat Diet. Physiology & Behavior, 167, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Varady, K.A., Cienfuegos, S., Ezpeleta, M. and Gabel, K. (2021) Cardiometabolic Benefits of Intermittent Fasting. Annual Review of Nutrition, 41, 333-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
陈语涵, 郑萍. 间歇性禁食对动物肠道健康的影响研究进展[J]. 动物营养学报, 2024, 36(4): 2143-2154.
|
|
[26]
|
陈晓瑜. 间歇性禁食对普通饮食和高脂饮食小鼠代谢健康和肠道菌群的影响[D]: [硕士学位论文]. 上海: 上海交通大学, 2019.
|
|
[27]
|
张雪晴, 吴斌. 间歇性禁食对肥胖个体代谢与免疫的影响及作用机制研究进展[J]. 实用医学杂志, 2021, 37(2): 272-276.
|
|
[28]
|
Varady, K.A., Roohk, D.J., McEvoy-Hein, B.K., Gaylinn, B.D., Thorner, M.O. and Hellerstein, M.K. (2008) Modified Alternate-Day Fasting Regimens Reduce Cell Proliferation Rates to a Similar Extent as Daily Calorie Restriction in Mice. The FASEB Journal, 22, 2090-2096. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gabel, K., Marcell, J., Cares, K., Kalam, F., Cienfuegos, S., Ezpeleta, M., et al. (2020) Effect of Time Restricted Feeding on the Gut Microbiome in Adults with Obesity: A Pilot Study. Nutrition and Health, 26, 79-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cignarella, F., Cantoni, C., Ghezzi, L., Salter, A., Dorsett, Y., Chen, L., et al. (2018) Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metabolism, 27, 1222-1235.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ozkul, C., Yalinay, M. and Karakan, T. (2019) Islamic Fasting Leads to an Increased Abundance of Akkermansia Muciniphila and Bacteroides Fragilis Group: A Preliminary Study on Intermittent Fasting. The Turkish Journal of Gastroenterology, 30, 1030-1035. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Beli, E., Yan, Y., Moldovan, L., Vieira, C.P., Gao, R., Duan, Y., et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes, 67, 1867-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chelluboina, B., Cho, T., Park, J., Mehta, S.L., Bathula, S., Jeong, S., et al. (2024) Intermittent Fasting Induced Cerebral Ischemic Tolerance Altered Gut Microbiome and Increased Levels of Short-Chain Fatty Acids to a Beneficial Phenotype. Neurochemistry International, 178, Article 105795. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, G., Xie, C., Lu, S., Nichols, R.G., Tian, Y., Li, L., et al. (2017) Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metabolism, 26, 672-685.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, Z., Dai, X., Zhang, H., Shi, R., Hui, Y., Jin, X., et al. (2020) Gut Microbiota Mediates Intermittent-Fasting Alleviation of Diabetes-Induced Cognitive Impairment. Nature Communications, 11, Article No. 855. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Udayappan, S., Manneras-Holm, L., Chaplin-Scott, A., Belzer, C., Herrema, H., Dallinga-Thie, G.M., et al. (2016) Oral Treatment with Eubacterium Hallii Improves Insulin Sensitivity in db/db Mice. npj Biofilms and Microbiomes, 2, Article No. 16009. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Canfora, E.E., Meex, R.C.R., Venema, K. and Blaak, E.E. (2019) Gut Microbial Metabolites in Obesity, NAFLD and T2DM. Nature Reviews Endocrinology, 15, 261-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fiorucci, S., Mencarelli, A., Palladino, G. and Cipriani, S. (2009) Bile-Acid-Activated Receptors: Targeting TGR5 and Farnesoid-X-Receptor in Lipid and Glucose Disorders. Trends in Pharmacological Sciences, 30, 570-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lei, S., Liu, G., Wang, S., Zong, G., Zhang, X., Pan, L., et al. (2024) Intermittent Fasting Improves Insulin Resistance by Modulating the Gut Microbiota and Bile Acid Metabolism in Diet-Induced Obesity. Molecular Nutrition & Food Research, 68, e24004541. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gregor, A., Panteva, V., Bruckberger, S., Auñon-Lopez, A., Blahova, S., Blahova, V., et al. (2024) Energy and Macronutrient Restriction Regulate Bile Acid Homeostasis. The Journal of Nutritional Biochemistry, 124, Article 109517. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lin, X., Zhu, X., Xin, Y., Zhang, P., Xiao, Y., He, T., et al. (2023) Intermittent Fasting Alleviates Non-Alcoholic Steatohepatitis by Regulating Bile Acid Metabolism and Promoting Fecal Bile Acid Excretion in High-Fat and High-Cholesterol Diet Fed Mice. Molecular Nutrition & Food Research, 67, Article 2200595. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Katsuma, S., Hirasawa, A. and Tsujimoto, G. (2005) Bile Acids Promote Glucagon-Like Peptide-1 Secretion through TGR5 in a Murine Enteroendocrine Cell Line Stc-1. Biochemical and Biophysical Research Communications, 329, 386-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Watanabe, M., Houten, S.M., Mataki, C., Christoffolete, M.A., Kim, B.W., Sato, H., et al. (2006) Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation. Nature, 439, 484-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jiang, C., Xie, C., Lv, Y., Li, J., Krausz, K.W., Shi, J., et al. (2015) Intestine-Selective Farnesoid X Receptor Inhibition Improves Obesity-Related Metabolic Dysfunction. Nature Communications, 6, Article No. 10166. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Clemente-Suárez, V.J., Mielgo-Ayuso, J., Martín-Rodríguez, A., Ramos-Campo, D.J., Redondo-Flórez, L. and Tornero-Aguilera, J.F. (2022) The Burden of Carbohydrates in Health and Disease. Nutrients, 14, Article 3809. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Thaiss, C.A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A.C., et al. (2014) Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 159, 514-529. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Leone, V., Gibbons, S.M., Martinez, K., Hutchison, A.L., Huang, E.Y., Cham, C.M., et al. (2015) Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism. Cell Host & Microbe, 17, 681-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Voigt, R.M., Forsyth, C.B., Green, S.J., Engen, P.A. and Keshavarzian, A. (2016) Circadian Rhythm and the Gut Microbiome. In: International Review of Neurobiology, Elsevier, 193-205. [Google Scholar] [CrossRef] [PubMed]
|