|
[1]
|
Liu, D., Chen, X., He, W., Lu, M., Li, Q., Zhang, S., et al. (2024) Update on the Pathogenesis, Diagnosis, and Treatment of Diabetic Tubulopathy. Integrative Medicine in Nephrology and Andrology, 11, e23-00029. [Google Scholar] [CrossRef]
|
|
[2]
|
Wang, N. and Zhang, C. (2024) Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. International Journal of Molecular Sciences, 25, Article 3086. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ma, L., Yan, M., Kong, X., Jiang, Y., Zhao, T., Zhao, H., et al. (2018) Association of EPHX2 R287Q Polymorphism with Diabetic Nephropathy in Chinese Type 2 Diabetic Patients. Journal of Diabetes Research, 2018, Article ID: 2786470. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Di Pino, A., Scicali, R., Marchisello, S., Zanoli, L., Ferrara, V., Urbano, F., et al. (2021) High Glomerular Filtration Rate Is Associated with Impaired Arterial Stiffness and Subendocardial Viability Ratio in Prediabetic Subjects. Nutrition, Metabolism and Cardiovascular Diseases, 31, 3393-3400. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ruan, Z., Liu, J., Liu, W. and Huang, W. (2024) Qufeng Tongluo Decoction May Alleviate Podocyte Injury Induced by High Glucose and Hydrogen Peroxide by Regulating Autophagy. Integrative Medicine in Nephrology and Andrology, 11, e24-00023. [Google Scholar] [CrossRef]
|
|
[6]
|
Yang, H., Sun, J., Sun, A., Wei, Y., Xie, W., Xie, P., et al. (2024) Podocyte Programmed Cell Death in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Prospects. Biomedicine & Pharmacotherapy, 177, Article 117140. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chen, Y., Chen, M., Zhu, W., Zhang, Y., Liu, P. and Li, P. (2024) Morroniside Attenuates Podocytes Lipid Deposition in Diabetic Nephropathy: A Network Pharmacology, Molecular Docking and Experimental Validation Study. International Immunopharmacology, 138, Article 112560. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, D., Guo, Y. and Li, P. (2024) New Insights into a Novel Metabolic Biomarker and Therapeutic Target for Chronic Kidney Disease. Integrative Medicine in Nephrology and Andrology, 11, e24-00019. [Google Scholar] [CrossRef]
|
|
[9]
|
Mao, N., Tan, R., Wang, S., Wei, C., Shi, X., Fan, J., et al. (2016) Ginsenoside Rg1 Inhibits Angiotensin II‐Induced Podocyte Autophagy via AMPK/mTOR/PI3K Pathway. Cell Biology International, 40, 917-925. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jia, J., Tan, R., Xu, L., Wang, H., Li, J., Su, H., et al. (2024) Hederagenin Improves Renal Fibrosis in Diabetic Nephropathy by Regulating Smad3/NOX4/SLC7A11 Signaling-Mediated Tubular Cell Ferroptosis. International Immunopharmacology, 135, Article 112303. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Y., Sui, Z., Wang, M. and Liu, P. (2023) Natural Products in Attenuating Renal Inflammation via Inhibiting the NLRP3 Inflammasome in Diabetic Kidney Disease. Frontiers in Immunology, 14, Article ID: 1196016. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mima, A., Nomura, A. and Yasuzawa, T. (2025) Update on the Pathophysiology and Treatment of Diabetic Kidney Disease: A Narrative Review. Expert Review of Clinical Immunology, 21, 921-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Qin, C., Gong, S., Liang, T., Zhang, Z., Thomas, J., Deng, J., et al. (2024) HADHA Regulates Respiratory Complex Assembly and Couples FAO and OXPHOS. Advanced Science, 11, e2405147. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Qi, B., Song, L., Hu, L., Guo, D., Ren, G., Peng, T., et al. (2022) Cardiac-Specific Overexpression of Ndufs1 Ameliorates Cardiac Dysfunction after Myocardial Infarction by Alleviating Mitochondrial Dysfunction and Apoptosis. Experimental & Molecular Medicine, 54, 946-960. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cacace, J., Luna-Marco, C., Hermo-Argibay, A., Pesantes-Somogyi, C., Hernández-López, O.A., Pelechá-Salvador, M., et al. (2025) Poor Glycaemic Control in Type 2 Diabetes Compromises Leukocyte Oxygen Consumption Rate, OXPHOS Complex Content and Neutrophil-Endothelial Interactions. Redox Biology, 81, Article 103516. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bochkova, Z.V., Baizhumanov, A.A., Yusipovich, A.I., Morozova, K.I., Nikelshparg, E.I., Fedotova, A.A., et al. (2025) The Flexible Chain: Regulation of Structure and Activity of ETC Complexes Defines Rate of ATP Synthesis and Sites of Superoxide Generation. Biophysical Reviews, 17, 55-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, Q. and Sheikh-Hamad, D. (2023) Megalin Facilitates the Regulation of Mitochondrial Function by Extracellular Cues. Integrative Medicine in Nephrology and Andrology, 10, e00015. [Google Scholar] [CrossRef]
|
|
[18]
|
Wang, J., Zhang, R., Wu, C., Wang, L., Liu, P. and Li, P. (2024) Exploring Potential Targets for Natural Product Therapy of DN: The Role of Sumoylation. Frontiers in Pharmacology, 15, Article ID: 1432724. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, R., Wang, J., Wu, C., Wang, L., Liu, P. and Li, P. (2025) Lipidomics-Based Natural Products for Chronic Kidney Disease Treatment. Heliyon, 11, e41620. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, P., Chen, Y., Xiao, J., Zhu, W., Yan, X. and Chen, M. (2022) Protective Effect of Natural Products in the Metabolic-Associated Kidney Diseases via Regulating Mitochondrial Dysfunction. Frontiers in Pharmacology, 13, Article ID: 1093397. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ma, X., Ma, J., Leng, T., Yuan, Z., Hu, T., Liu, Q., et al. (2023) Advances in Oxidative Stress in Pathogenesis of Diabetic Kidney Disease and Efficacy of TCM Intervention. Renal Failure, 45, Article ID: 2146512. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Mamun, A.A., Shao, C., Geng, P., Wang, S. and Xiao, J. (2024) Polyphenols Targeting NF-κB Pathway in Neurological Disorders: What We Know So Far? International Journal of Biological Sciences, 20, 1332-1355. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Aryal, D., Joshi, S., Thapa, N.K., Chaudhary, P., Basaula, S., Joshi, U., et al. (2024) Dietary Phenolic Compounds as Promising Therapeutic Agents for Diabetes and Its Complications: A Comprehensive Review. Food Science & Nutrition, 12, 3025-3045. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sun, M., Deng, Y., Cao, X., Xiao, L., Ding, Q., Luo, F., et al. (2022) Effects of Natural Polyphenols on Skin and Hair Health: A Review. Molecules, 27, Article 7832. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gielecińska, A., Kciuk, M., Mujwar, S., Celik, I., Kołat, D., Kałuzińska-Kołat, Ż., et al. (2023) Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells, 12, Article 986. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kaur, A., Tiwari, R., Tiwari, G. and Ramachandran, V. (2022) Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits. Drug Research, 72, 5-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kim, Y.J., et al. (2017) Recent Studies on Resveratrol and Its Biological and Pharmacological Activity. EXCLI Journal, 16, 602-608.
|
|
[28]
|
Gowd, V., Kang, Q., Wang, Q., Wang, Q., Chen, F. and Cheng, K. (2020) Resveratrol: Evidence for Its Nephroprotective Effect in Diabetic Nephropathy. Advances in Nutrition, 11, 1555-1568. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Woodman, K., Coles, C., Lamandé, S. and White, J. (2016) Nutraceuticals and Their Potential to Treat Duchenne Muscular Dystrophy: Separating the Credible from the Conjecture. Nutrients, 8, Article 713. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bu, X., Wu, D., Lu, X., Yang, L., Xu, X., Wang, J., et al. (2017) Role of SIRT1/PGC-1α in Mitochondrial Oxidative Stress in Autistic Spectrum Disorder. Neuropsychiatric Disease and Treatment, 13, 1633-1645. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gao, J., Liu, P., Shen, Z., Xu, K., Wu, C., Tian, F., et al. (2021) Morroniside Promotes PGC‐1α‐Mediated Cholesterol Efflux in Sodium Palmitate or High Glucose‐Induced Mouse Renal Tubular Epithelial Cells. BioMed Research International, 2021, Article ID: 9942152. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, T., Chi, Y., Kang, Y., Lu, H., Niu, H., Liu, W., et al. (2019) Resveratrol Ameliorates Podocyte Damage in Diabetic Mice via SIRT1/PGC‐1α Mediated Attenuation of Mitochondrial Oxidative Stress. Journal of Cellular Physiology, 234, 5033-5043. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wu, S., Wang, L., Wang, F. and Zhang, J. (2024) Resveratrol Improved Mitochondrial Biogenesis by Activating Sirt1/PGC-1α Signal Pathway in Sap. Scientific Reports, 14, Article No. 26216. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Moses, T., Papadopoulou, K.K. and Osbourn, A. (2014) Metabolic and Functional Diversity of Saponins, Biosynthetic Intermediates and Semi-Synthetic Derivatives. Critical Reviews in Biochemistry and Molecular Biology, 49, 439-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yulvianti, M. and Zidorn, C. (2021) Chemical Diversity of Plant Cyanogenic Glycosides: An Overview of Reported Natural Products. Molecules, 26, Article 719. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Shikov, A.N., Kosman, V.M., Flissyuk, E.V., Smekhova, I.E., Elameen, A. and Pozharitskaya, O.N. (2020) Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola Rosea L. Molecules, 25, Article 1826. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Huang, X., Xue, H., Ma, J., Zhang, Y., Zhang, J., Liu, Y., et al. (2019) Salidroside Ameliorates Adriamycin Nephropathy in Mice by Inhibiting β‐Catenin Activity. Journal of Cellular and Molecular Medicine, 23, 4443-4453. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lai, W., Wang, B., Huang, R., Zhang, C., Fu, P. and Ma, L. (2024) Ferroptosis in Organ Fibrosis: From Mechanisms to Therapeutic Medicines. Journal of Translational Internal Medicine, 12, 22-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, R., Guo, Y., Zhang, Y., Zhang, X., Zhu, L. and Yan, T. (2019) Salidroside Ameliorates Renal Interstitial Fibrosis by Inhibiting the TLR4/NF-κB and MAPK Signaling Pathways. International Journal of Molecular Sciences, 20, Article 1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Fan, H., Su, B., Le, J. and Zhu, J. (2022) Salidroside Protects Acute Kidney Injury in Septic Rats by Inhibiting Inflammation and Apoptosis. Drug Design, Development and Therapy, 16, 899-907. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wu, D., Yang, X., Zheng, T., Xing, S., Wang, J., Chi, J., et al. (2016) A Novel Mechanism of Action for Salidroside to Alleviate Diabetic Albuminuria: Effects on Albumin Transcytosis across Glomerular Endothelial Cells. American Journal of Physiology-Endocrinology and Metabolism, 310, E225-E237. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhao, Q., Shi, J., Chen, S., Hao, D., Wan, S., Niu, H., et al. (2022) Salidroside Affects Gut Microbiota Structure in db/db Mice by Affecting Insulin, Blood Glucose and Body Weight. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 2619-2631. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lu, H., Li, Y., Zhang, T., Liu, M., Chi, Y., Liu, S., et al. (2017) Salidroside Reduces High-Glucose-Induced Podocyte Apoptosis and Oxidative Stress via Upregulating Heme Oxygenase-1 (HO-1) Expression. Medical Science Monitor, 23, 4067-4076. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Pan, J., Zhu, J., Li, L., Zhang, T. and Xu, Z. (2023) Salidroside Attenuates LPS-Induced Kidney Injury through Activation of SIRT1/NRF2 Pathway. Human & Experimental Toxicology, 42, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhao, D., Sun, X., Lv, S., Sun, M., Guo, H., Zhai, Y., et al. (2019) Salidroside Attenuates Oxidized Low-Density Lipoprotein-Induced Endothelial Cell Injury via Promotion of the AMPK/SIRT1 Pathway. International Journal of Molecular Medicine, 43, 2279-2290. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xue, H., Li, P., Luo, Y., Wu, C., Liu, Y., Qin, X., et al. (2019) Salidroside Stimulates the SIRT1/PGC-1α Axis and Ameliorates Diabetic Nephropathy in Mice. Phytomedicine, 54, 240-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liang, Y., Chen, B., Liang, D., Quan, X., Gu, R., Meng, Z., et al. (2023) Pharmacological Effects of Astragaloside IV: A Review. Molecules, 28, Article 6118. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Qu, C., Tan, X., Hu, Q., Tang, J., Wang, Y., He, C., et al. (2024) A Systematic Review of Astragaloside IV Effects on Animal Models of Diabetes Mellitus and Its Complications. Heliyon, 10, e26863. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhu, Y. and Lu, F. (2024) Astragaloside IV Inhibits Cell Viability and Glycolysis of Hepatocellular Carcinoma by Regulating KAT2A-Mediated Succinylation of PGAM1. BMC Cancer, 24, Article No. 682. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, L., Wang, Q., He, Y., Sun, L., Yang, Y. and Pang, X. (2022) Astragaloside IV Suppresses Migration and Invasion of TGF-β1-Induced Human Hepatoma HuH-7 Cells by Regulating NRF2/Ho-1 and TGF-Β1/Smad3 Pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology, 395, 397-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wan, J., Zhang, Z., Wu, C., Tian, S., Zang, Y., Jin, G., et al. (2023) Astragaloside IV Derivative HHQ16 Ameliorates Infarction-Induced Hypertrophy and Heart Failure through Degradation of LncRNA4012/9456. Signal Transduction and Targeted Therapy, 8, Article No. 414. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wang, H., Zhuang, Z., Huang, Y., Zhuang, Z., Jin, Y., Ye, H., et al. (2020) Protective Effect and Possible Mechanisms of Astragaloside IV in Animal Models of Diabetic Nephropathy: A Preclinical Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 11, Article No. 988. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, L., Zhang, Y., Luo, Y., Meng, X., Pan, G., Zhang, H., et al. (2023) The Molecular Basis of the Anti-Inflammatory Property of Astragaloside IV for the Treatment of Diabetes and Its Complications. Drug Design, Development and Therapy, 17, 771-790. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zang, Y., Liu, S., Cao, A., Shan, X., Deng, W., Li, Z., et al. (2021) Astragaloside IV Inhibits Palmitic Acid-Induced Apoptosis through Regulation of Calcium Homeostasis in Mice Podocytes. Molecular Biology Reports, 48, 1453-1464. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Feng, H., Zhu, X., Tang, Y., Fu, S., Kong, B. and Liu, X. (2021) Astragaloside IV Ameliorates Diabetic Nephropathy in db/db Mice by Inhibiting NLRP3 Inflammasome-Mediated Inflammation. International Journal of Molecular Medicine, 48, Article No. 164. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Gui, D., Guo, Y., Wang, F., Liu, W., Chen, J., Chen, Y., et al. (2012) Astragaloside IV, a Novel Antioxidant, Prevents Glucose-Induced Podocyte Apoptosis in Vitro and in Vivo. PLOS ONE, 7, e39824. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hu, Z., Zhou, Y., Gao, C., Liu, J., Pan, C. and Guo, J. (2024) Astragaloside IV Attenuates Podocyte Apoptosis via Regulating TXNIP/NLRP3/GSDMD Signaling Pathway in Diabetic Nephropathy. Diabetology & Metabolic Syndrome, 16, Article No. 296. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Shen, Q., Fang, J., Guo, H., Su, X., Zhu, B., Yao, X., et al. (2023) Astragaloside IV Attenuates Podocyte Apoptosis through Ameliorating Mitochondrial Dysfunction by Up-Regulated NRF2-ARE/TFAM Signaling in Diabetic Kidney Disease. Free Radical Biology and Medicine, 203, 45-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Jiang, K., Zhao, G., Deng, G., Wu, H., Yin, N., Chen, X., et al. (2017) Polydatin Ameliorates Staphylococcus Aureus-Induced Mastitis in Mice via Inhibiting TLR2-Mediated Activation of the P38 MAPK/NF-κB Pathway. Acta Pharmacologica Sinica, 38, 211-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Karami, A., Fakhri, S., Kooshki, L. and Khan, H. (2022) Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules, 27, Article 6474. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Chen, Z., Sun, X., Li, X., Xu, Z., Yang, Y., Lin, Z., et al. (2020) Polydatin Attenuates Renal Fibrosis in Diabetic Mice through Regulating the Cx32-Nox4 Signaling Pathway. Acta Pharmacologica Sinica, 41, 1587-1596. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Reyna-Bolaños, I., Solís-García, E.P., Vargas-Vargas, M.A., Peña-Montes, D.J., Saavedra-Molina, A., Cortés-Rojo, C., et al. (2024) Polydatin Prevents Electron Transport Chain Dysfunction and ROS Overproduction Paralleled by an Improvement in Lipid Peroxidation and Cardiolipin Levels in Iron-Overloaded Rat Liver Mitochondria. International Journal of Molecular Sciences, 25, Article 11104. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Niu, X., Zhao, Y., Zhang, T., Sun, Y., Wei, Z., Fu, K., et al. (2023) Comprehensive Succinylome Analyses Reveal That Hyperthermia Upregulates Lysine Succinylation of Annexin A2 by Downregulating Sirtuin7 in Human Keratinocytes. Journal of Translational Internal Medicine, 12, 424-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Ding, H., Tang, C., Wang, W., Pan, Y., Jiao, R. and Kong, L. (2022) Polydatin Ameliorates High Fructose-Induced Podocyte Oxidative Stress via Suppressing HIF-1α/NOX4 Pathway. Pharmaceutics, 14, Article 2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Ahn, B., Kim, H., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., et al. (2008) A Role for the Mitochondrial Deacetylase Sirt3 in Regulating Energy Homeostasis. Proceedings of the National Academy of Sciences, 105, 14447-14452. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Lin, L., Li, X., Li, Y., Lang, Z., Li, Y. and Zheng, J. (2024) Ginsenoside Rb1 Induces Hepatic Stellate Cell Ferroptosis to Alleviate Liver Fibrosis via the BECN1/SLC7A11 Axis. Journal of Pharmaceutical Analysis, 14, Article 100902. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Li, X., Cao, D., Sun, S. and Wang, Y. (2023) Anticancer Therapeutic Effect of Ginsenosides through Mediating Reactive Oxygen Species. Frontiers in Pharmacology, 14, Article ID: 1215020. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Jiang, L., Yin, X., Chen, Y., Chen, Y., Jiang, W., Zheng, H., et al. (2021) Proteomic Analysis Reveals Ginsenoside Rb1 Attenuates Myocardial Ischemia/Reperfusion Injury through Inhibiting ROS Production from Mitochondrial Complex I. Theranostics, 11, 1703-1720. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zhou, P., Xie, W., Luo, Y., Lu, S., Dai, Z., Wang, R., et al. (2018) Protective Effects of Total Saponins of Aralia Elata (Miq.) on Endothelial Cell Injury Induced by TNF-α via Modulation of the PI3K/Akt and NF-κB Signalling Pathways. International Journal of Molecular Sciences, 20, Article 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
He, J., Hong, Q., Chen, B., Cui, S., Liu, R., Cai, G., et al. (2022) Ginsenoside Rb1 Alleviates Diabetic Kidney Podocyte Injury by Inhibiting Aldose Reductase Activity. Acta Pharmacologica Sinica, 43, 342-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Ju, J., Li, J., Lin, Q. and Xu, H. (2018) Efficacy and Safety of Berberine for Dyslipidaemias: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Phytomedicine, 50, 25-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Wang, K., Yin, J., Chen, J., Ma, J., Si, H. and Xia, D. (2024) Inhibition of Inflammation by Berberine: Molecular Mechanism and Network Pharmacology Analysis. Phytomedicine, 128, Article 155258. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Araj-Khodaei, M., Ayati, M.H., Azizi Zeinalhajlou, A., Novinbahador, T., Yousefi, M., Shiri, M., et al. (2023) Berberine-induced Glucagon-Like Peptide-1 and Its Mechanism for Controlling Type 2 Diabetes Mellitus: A Comprehensive Pathway Review. Archives of Physiology and Biochemistry, 130, 678-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Ni, W., Zhou, H., Ding, H. and Tang, L. (2020) Berberine Ameliorates Renal Impairment and Inhibits Podocyte Dysfunction by Targeting the Phosphatidylinositol 3‐Kinase-Protein Kinase B Pathway in Diabetic Rats. Journal of Diabetes Investigation, 11, 297-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Turner, N., Li, J., Gosby, A., To, S.W.C., Cheng, Z., Miyoshi, H., et al. (2008) Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex I: A Mechanism for the Action of Berberine to Activate AMP-Activated Protein Kinase and Improve Insu-Lin Action. Diabetes, 57, 1414-1418. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Qin, X., Jiang, M., Zhao, Y., Gong, J., Su, H., Yuan, F., et al. (2020) Berberine Protects against Diabetic Kidney Disease via Promoting PGC‐1α‐Regulated Mitochondrial Energy Homeostasis. British Journal of Pharmacology, 177, 3646-3661. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Yang, L., Yuan, S., Wang, R., Guo, X., Xie, Y., Wei, W., et al. (2024) Exploring the Molecular Mechanism of Berberine for Treating Diabetic Nephropathy Based on Network Pharmacology. International Immunopharmacology, 126, Article 111237. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Qin, X., Zhao, Y., Gong, J., Huang, W., Su, H., Yuan, F., et al. (2019) Berberine Protects Glomerular Podocytes via Inhibiting Drp1-Mediated Mitochondrial Fission and Dysfunction. Theranostics, 9, 1698-1713. [Google Scholar] [CrossRef] [PubMed]
|