|
[1]
|
Volk, N. and Lacy, B. (2017) Anatomy and Physiology of the Small Bowel. Gastrointestinal Endoscopy Clinics of North America, 27, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rudolph, S.E., Longo, B.N., Tse, M.W., Houchin, M.R., Shokoufandeh, M.M., Chen, Y., et al. (2022) Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium. ACS Biomaterials Science & Engineering, 8, 4942-4955. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nikolaev, M., Mitrofanova, O., Broguiere, N., Geraldo, S., Dutta, D., Tabata, Y., et al. (2020) Homeostatic Mini-Intestines through Scaffold-Guided Organoid Morphogenesis. Nature, 585, 574-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Taebnia, N., Zhang, R., Kromann, E.B., Dolatshahi-Pirouz, A., Andresen, T.L. and Larsen, N.B. (2021) Dual-Material 3D-Printed Intestinal Model Devices with Integrated Villi-Like Scaffolds. ACS Applied Materials & Interfaces, 13, 58434-58446. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Verhulsel, M., Simon, A., Bernheim-Dennery, M., Gannavarapu, V.R., Gérémie, L., Ferraro, D., et al. (2021) Developing an Advanced Gut on Chip Model Enabling the Study of Epithelial Cell/Fibroblast Interactions. Lab on a Chip, 21, 365-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Macedo, M.H., Torras, N., García-Díaz, M., Barrias, C., Sarmento, B. and Martínez, E. (2023) The Shape of Our Gut: Dissecting Its Impact on Drug Absorption in a 3D Bioprinted Intestinal Model. Biomaterials Advances, 153, Article ID: 213564. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Castaño, A.G., García-Díaz, M., Torras, N., Altay, G., Comelles, J. and Martínez, E. (2019) Dynamic Photopolymerization Produces Complex Microstructures on Hydrogels in a Moldless Approach to Generate a 3D Intestinal Tissue Model. Biofabrication, 11, Article ID: 025007. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
华晓蓝. 小肠绒毛运动对葡萄糖传质与吸收过程的影响: 建模模拟研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2021.
|
|
[9]
|
王达米. 小肠绒毛与微绒毛的辨析[J]. 中学生物教学, 1994(3): 29.
|
|
[10]
|
Li, Y., Zhang, W., Zhan, C., Chen, K., Xue, C., Wang, Y., et al. (2021) A Microfluidic Generator of Dynamic Shear Stress and Biochemical Signals Based on Autonomously Oscillatory Flow. Electrophoresis, 42, 2264-2272. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kasendra, M., Luc, R., Yin, J., Manatakis, D.V., Kulkarni, G., Lucchesi, C., et al. (2020) Duodenum Intestine-Chip for Preclinical Drug Assessment in a Human Relevant Model. eLife, 9, e50135. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yin, J., Sunuwar, L., Kasendra, M., Yu, H., Tse, C., Talbot, C.C., et al. (2021) Fluid Shear Stress Enhances Differentiation of Jejunal Human Enteroids in Intestine-Chip. American Journal of Physiology-Gastrointestinal and Liver Physiology, 320, G258-G271. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wieck, M.M., Schlieve, C.R., Thornton, M.E., Fowler, K.L., Isani, M., Grant, C.N., et al. (2017) Prolonged Absence of Mechanoluminal Stimulation in Human Intestine Alters the Transcriptome and Intestinal Stem Cell Niche. Cellular and Molecular Gastroenterology and Hepatology, 3, 367-388.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gayer, C.P. and Basson, M.D. (2009) The Effects of Mechanical Forces on Intestinal Physiology and Pathology. Cellular Signalling, 21, 1237-1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, J., Li, W., Sanders, M.A., et al. (2003) Regulation of the Intestinal Epithelial Response to Cyclic Strain by Extra-cellular Matrix Proteins. The FASEB Journal, 17, 926-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, W., Duzgun, A., Sumpio, B.E. and Basson, M.D. (2001) Integrin and Fak-Mediated MAPK Activation Is Required for Cyclic Strain Mitogenic Effects in Caco-2 Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280, G75-G87. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ishikawa, T., Sato, T., Mohit, G., Imai, Y. and Yamaguchi, T. (2011) Transport Phenomena of Microbial Flora in the Small Intestine with Peristalsis. Journal of Theoretical Biology, 279, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
U.S. Food and Drug Administration (2022) FDA Modernization Act 2.0. https://www.fda.gov
|
|
[19]
|
Chen, Z., Zilberberg, J. and Lee, W. (2020) Pumpless Microfluidic Device with Open Top Cell Culture under Oscillatory Shear Stress. Biomedical Microdevices, 22, Article No. 58. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Borwornpiyawat, P., Juntasaro, E., Aueviriyavit, S., Juntasaro, V., Sripumkhai, W., Pattamang, P., et al. (2022) Effects of Porous Size and Membrane Pattern on Shear Stress Characteristic in Gut-on-a-Chip with Peristalsis Motion. Micromachines, 14, Article 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Su, H., Ma, T., Liu, X., Wang, L., Shu, F., Liang, Z., et al. (2024) Microfluidic Organ Chip of Fluid-Solid Dynamic Curved Interface. Applied Physics Reviews, 11, Article ID: 011404. [Google Scholar] [CrossRef]
|
|
[22]
|
王力, 吴健, 陈俊, 等. 集成肠道多模态运动三维腔体肠器官芯片及方法[P]. 中国专利, CN110331097B. 2019-10-15.
|
|
[23]
|
Knupp, P.M. (2003) Algebraic Mesh Quality Metrics for Unstructured Initial Meshes. Finite Elements in Analysis and Design, 39, 217-241. [Google Scholar] [CrossRef]
|
|
[24]
|
Poon, C. (2022) Measuring the Density and Viscosity of Culture Media for Optimized Computational Fluid Dynamics Analysis of in Vitro Devices. Journal of the Mechanical Behavior of Biomedical Materials, 126, Article ID: 105024. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wolf, M.P., Salieb-Beugelaar, G.B. and Hunziker, P. (2018) PDMS with Designer Functionalities—Properties, Modifications Strategies, and Applications. Progress in Polymer Science, 83, 97-134. [Google Scholar] [CrossRef]
|
|
[26]
|
Happel, J. and Brenner, H. (1983) Low Reynolds Number Hydrodynamics. D. Reidel.
|