心脏淀粉样变性:猝死
Cardiac Amyloidosis: Sudden Cardiac Death
摘要: 轻链型心脏淀粉样变性(AL-CA)是心脏淀粉样变性中最具侵袭性的类型,其特点是疾病进展迅速,心源性猝死率异常高。其病理生理机制涉及双重途径:淀粉样纤维对心肌的机械性浸润,以及循环游离轻链对心肌细胞的直接细胞毒性作用。希氏束–浦肯野传导系统的优先受累,使患者易发生致命性心律失常和传导异常。尽管血液系统治疗取得了进展(包括基于达雷妥尤单抗的方案显著提高了缓解率),但即使采取预防性器械干预,猝死仍是患者的主要死亡原因。非特异性的临床表现导致诊断延迟,大多数患者就诊时已处于疾病晚期,且已发生不可逆的心脏损伤。通过系统性多器官评估、心脏生物标志物检测及先进影像学技术实现早期识别,对改善预后至关重要。目前的预防策略包括快速实现血液学缓解、合理使用心脏器械以及精细化血流动力学管理。然而,干预的最佳时机和患者选择标准仍未完全明确。本综述总结了目前对AL-CA猝死机制的认知,评估了循证预防策略,强调迫切需要建立早期诊断流程和个体化治疗方案,以降低心源性猝死对此类患者的严重影响。
Abstract: Light-chain cardiac amyloidosis (AL-CA) represents the most aggressive form of cardiac amyloidosis, characterized by rapid disease progression and exceptionally high sudden cardiac death rates. The pathophysiology involves dual mechanisms: mechanical myocardial infiltration by amyloid fibrils and direct cytotoxic effects of circulating free light chains on cardiomyocytes. Preferential involvement of the His-Purkinje conduction system predisposes patients to fatal arrhythmias and conduction abnormalities. Despite advances in hematologic therapies, including daratumumab-based regimens achieving improved remission rates, sudden death remains the predominant cause of mortality even with prophylactic device interventions. The non-specific clinical presentation results in delayed diagnosis, with most patients presenting at advanced stages when irreversible cardiac damage has occurred. Early recognition through systematic multi-organ assessment, cardiac biomarkers, and advanced imaging techniques is crucial for improving outcomes. Current prevention strategies encompass rapid achievement of hematologic remission, judicious use of cardiac devices, and meticulous hemodynamic management. However, the optimal timing of interventions and patient selection criteria remain incompletely defined. This review synthesizes current understanding of sudden death mechanisms in AL-CA and evaluates evidence-based prevention strategies, highlighting the urgent need for early diagnostic algorithms and individualized treatment approaches to reduce the devastating impact of sudden cardiac death in this population.
文章引用:曹奕玥, 曾瀚庆. 心脏淀粉样变性:猝死[J]. 临床医学进展, 2025, 15(12): 1716-1723. https://doi.org/10.12677/acm.2025.15123585

1. 引言

心脏淀粉样变性(Cardiac Amyloidosis, CA)是一种由异常折叠蛋白形成的淀粉样原纤维沉积于心肌细胞外空间中导致的浸润性心肌病[1] [2]。根据前体蛋白类型,心脏淀粉样变性主要分为轻链型(AL-CA)、野生型转甲状腺素运载蛋白型(wtATTR-CA)、遗传性转甲状腺素运载蛋白型(hATTR-CA)等类型[3]-[5]。其中,AL型(轻链型)淀粉样变性是最常见且预后最差的类型,其心源性猝死风险显著高于其他类型[6]-[8]

相较于其他类型,AL型淀粉样变性具有独特的病理生理特征:游离轻链(free light chains, FLC)不仅形成淀粉样原纤维造成心肌间质的机械性损伤,轻链蛋白本身还对心肌细胞具有直接的细胞毒性作用,导致心肌细胞功能障碍和细胞死亡[9]-[12]。此外,AL型淀粉样变性易累及His-Purkinje传导系统,常表现为各种程度的房室传导阻滞和心律失常,这与其高猝死率密切相关[13]-[15]

然而AL型心脏淀粉样变性因其临床表现缺乏特异性,致使大多数患者在确诊时病情已进展至晚期阶段,此时心源性猝死风险显著增高。流行病学发现AL型淀粉样变性进展迅速,中位生存期仅6~15个月,早期准确诊断对改善预后至关重要。目前,AL型心脏淀粉样变性的诊断与治疗仍面临严峻挑战。由于早期症状隐匿且缺乏特异性,确诊时多已进展至心功能严重受损阶段,甚至需依赖尸检明确诊断[16] [17]。更值得注意的是,即便患者接受规范化疗或植入埋藏式心脏转复除颤器(ICD),心脏起搏器等预防措施,其猝死发生率仍居高不下[7]。因此,深入理解AL型心脏淀粉样变性的猝死机制,并据此制定针对性的早期筛查及个体化干预策略,是改善患者预后的关键突破口。

本综述旨在系统阐述AL型心脏淀粉样变性致猝死的病理生理机制,并综合评述现有诊断及治疗策略的成效与局限性,为AL型心脏淀粉样变性相关猝死的预防和治疗提供新的理论依据和临床思路。

2. 心源性猝死机制

了解淀粉样变性猝死的病理生理机制对于疾病的诊断、治疗及预防具有关键意义。AL型淀粉样变性患者表现出空间异质性传导和复极化异常,这些电生理改变是心律失常和心力衰竭风险增加的重要标志,并与猝死密切相关[18]。一些尸检病理学报告显示,淀粉样原纤维和轻链的毒性浸润心脏传导系统是引发猝死最可能的机制。淀粉样蛋白优先浸润希氏–浦肯野系统,导致传导速度异质性和传导阻滞,当传导系统广泛受累时,可发生完全性房室传导阻滞,成为心脏停搏的关键机制,而浸润传导系统引起的严重心动过速也是心脏终末期表现[13] [19] [20]。同时,窦房结的淀粉样蛋白浸润是房性心律失常如心房颤动的重要原因,淀粉样蛋白沉积导致心房电机械功能解偶联,当心房功能障碍时,心脏整体循环灌注受到影响[14]。在心室功能层面,淀粉样原纤维在心脏的不均匀沉积导致左右心室收缩不同步和心室内传导延迟的空间异质性,血流动力学效能降低,最终可能导致猝死,而严重的淀粉样蛋白浸润可引起急性机电分离,表现为有电活动但无有效机械收缩,这是猝死的直接机制之一[21]。此外,血管周围淀粉样蛋白沉积导致壁增厚和管腔阻塞影响心肌灌注,可能加重传导系统的血供障碍,瓣膜组织的淀粉样蛋白浸润同样可能影响心脏整体的血流动力学稳定性[22] [23]

3. 早期识别是预防猝死的关键

鉴于AL型心脏淀粉样变性临床表现缺乏特异性且疾病进展迅速,建立系统性早期识别框架对改善患者预后具有重要意义[1]。多系统受累征象往往早于心脏症状出现,是提高诊断敏感性的关键切入点[24]

AL型淀粉样变性的早期识别依赖于多系统受累征象和基础检查的综合评估[25] [26]。心外表现包括皮肤紫癜和瘀斑、巨舌症、周围神经病变、肾病综合征、消化系统症状及凝血功能异常,这些表现为疾病怀疑提供重要线索。心电图检查可发现QRS波群低电压与心室壁厚度增加形成的“电–机械分离”现象、伪梗死型Q波、房室传导阻滞及心房颤动等特征性改变[13] [27] [28]。血清生物标志物方面,NT-proBNP与心肌肌钙蛋白的不成比例升高具有重要诊断提示意义[29] [30],而血清游离轻链κ/λ比值异常是筛查单克隆免疫球蛋白病的核心指标[31]

当基础检查提示可能的AL型心脏淀粉样变性时,影像学检查提供进一步的诊断依据[32]。超声心动图显示心肌颗粒状闪光回声、室壁增厚、舒张功能异常,二维斑点追踪成像评估的整体纵向应变减低伴心尖保留模式对早期诊断具有较高敏感性[33]-[35]。多参数超声心动图评分系统整合多个指标,诊断准确性AUC达0.90 [36]。核素心肌显像中,99mTc-PYP等骨扫描剂在AL型中仅20%~30%患者呈轻度摄取,主要用于排除ATTR型[37]。心脏磁共振成像提供最精确的组织特征化信息,原生T1弛豫时间延长和细胞外容积分数增加是淀粉样沉积的早期表现,延迟钆增强呈心内膜下环周性分布,钆对比剂清除异常为典型征象[38] [39]

综合多种无创性检查能够在大多数情况下建立AL型心脏淀粉样变性的高可能性诊断[40]。这种基于无创检查的综合诊断策略避免有创操作风险,满足早期识别需求。然而,在临床表现不典型或无创检查结果不确定的疑难病例中,组织学检查仍具有确诊价值[41]。心外组织活检包括腹壁脂肪垫穿刺、直肠黏膜活检或唾液腺活检,相对心内膜活检风险较低,但仍存在并发症风险,特别是凝血功能异常的AL型患者。刚果红染色显示苹果绿双折射现象,激光显微切割质谱分析确定淀粉样蛋白具体类型[42]。临床实践中应优先采用无创性综合诊断策略,必要时谨慎选择组织学检查作为补充手段。

4. 治疗策略

预防策略需要针对这些机制采取综合性治疗措施,核心包括快速达到血液学缓解以阻止疾病进展,以及积极管理心脏并发症[1]。早期诊断、快速达到完全缓解、合理选择器械治疗以及个体化的风险评估是提高患者生存率、降低猝死风险的关键措施。治疗决策需在获益与风险间平衡,充分考虑疾病分期、心功能状态和预期生存期。

4.1. 猝死预防的根本策略

血液学缓解是预防心源性猝死的关键,通过抑制异常浆细胞克隆减少致病性轻链产生,阻止淀粉样物质进一步沉积,是逆转心肌损伤、降低AL-CA猝死风险的核心,不同治疗方案的心脏反应特征及缓解深度直接决定预后差异。以达雷妥尤单抗为基础的D-VCd方案(达雷妥尤单抗、硼替佐米、环磷酰胺和地塞米松)已成为新诊断AL型淀粉样变性的标准治疗,并且在IIIb患者仍有显著的缓解效果[43] [44]。Bellofiore等人在2025年发表的匹配病例对照研究显示。对于AL淀粉样变性IIIb期心脏受累患者人群,达雷妥尤单抗联合方案组的中位总生存期为10.3个月,显著高于CyBorD方案(硼替佐米、环磷酰胺和地塞米松)组的4.0个月,主要器官恶化无进展生存期中位数为10.2个月,远超CyBorD组的3.2个月,而达雷妥尤单抗联合方案组在治疗开始后3个月时的总血液学缓解率达到50%,显著高于CyBorD组的21%。更重要的是,达雷妥尤单抗组在3个月时实现了25%的心脏反应率,显著优于对照组的3%,这表明即使在具有较高克隆负荷的晚期IIIb期患者中,达雷妥尤单抗的加入也能带来更深层次的血液学和心脏缓解,从而延长患者的OS [44]。自体造血干细胞移植(ASCT)的策略正在重新定义,当前倾向于先使用新型药物诱导治疗后评估是否需要ASCT。达到完全缓解的患者可继续维持治疗或选择ASCT,而达到部分缓解的合适患者仍可从ASCT获得缓解深化和生存获益。自体造血干细胞移植仍是符合条件的AL淀粉样变性患者的首选治疗方案之一,主要适用于年龄 < 65岁、且心功能储备较好的患者。D’Souza等2015年的研究证实,ASCT能够带来长期的深度缓解,患者在5年时的血液学完全缓解率约为37%。虽然心脏反应的出现通常延迟至治疗后6~12个月,但其缓解持续时间长,显著优于传统药物治疗方案。然而,ASCT预处理阶段的心脏毒性风险是巨大的挑战,因此需要全程严密监测和支持[45]

血液学缓解的深度与患者的猝死风险及长期预后量化关联目前尚不明确,Palladini等人于2012年制定的标准,完全缓解要求血清FLC比值正常,且血清和尿液中无单克隆蛋白;而非常好部分缓解则要求受累和非受累FLC之间的差值(ΔFLC) ≤ 40 mg/L。然而需要注意的是,心脏反应的判定需基于心肌生物标志物(如NT-proBNP)的下降幅度(如≥30%且≥300 pg/mL的下降)来单独评估,不应与血液学缓解标准混用[31]。动态监测NT-proBNP、肌钙蛋白等指标对心脏反应进行,以便及时调整治疗策略,才是能最大化降低患者的猝死风险并争取器官功能保护的窗口。

4.2. 直接预防心源性猝死

心律失常是AL型心脏淀粉样变性最直接的猝死原因。传导系统受累常导致症状性心动过缓和房室传导阻滞,起搏器植入适应症包括症状性心动过缓、二度II型或三度房室传导阻滞、以及伴症状的窦房结功能障碍[46]

对于室性心律失常,植入型心律转复除颤器(ICD)的应用仍存争议。2019年HRS专家共识推荐持续性室速或室颤幸存者接受ICD治疗,对于预期生存期 > 1年且伴非持续性室速的患者可考虑ICD植入[47]。一些研究也证明了轻链淀粉样变性患者预防性植入心律转复除颤器可有效成功治疗这些患者的持续性VA [48]

预防血流动力学崩溃

AL型心脏淀粉样变性表现为限制性心肌病,心输出量高度依赖前负荷。容量管理构成治疗核心,需在缓解充血症状与维持足够心输出量间达到平衡。过度利尿可导致心输出量急剧下降,诱发低血压性晕厥甚至心源性休克。

药物选择需格外谨慎。钙通道阻滞剂因与淀粉样纤维高亲和力结合可诱发严重心功能恶化,地高辛可因心肌局部浓度升高出现毒性反应,正性肌力药物易诱发室性心律失常,均应避免使用[11]β受体阻滞剂的使用存在争议,但对于合并快速房颤且血压可耐受的患者,小剂量使用可能改善血流动力学状态[12]

4.3. 降低栓塞性猝死风险

AL型心脏淀粉样变性患者血栓栓塞风险增加,不仅因房颤,还因心房功能障碍和血液高凝状态。抗凝决策应个体化评估而非严格依据CHA2DS2-VASc评分。建议房颤患者均应抗凝除非有绝对禁忌症,窦性心律但有心房功能障碍或既往栓塞史者应考虑抗凝。新型口服抗凝药可能优于华法林,大出血风险更低[13]

5. 展望

AL型心脏淀粉样变性因其快速进展和较差预后,特别是猝死这一致命并发症,给临床管理带来巨大挑战。构建有效的预防策略体系是当前研究的重点和临床实践的迫切需求。基于AL型心脏淀粉样变性从病理生理机制到临床表现的全程认识,后续可结合AL-CA病理生理特征与临床实践,在Mayo分期(基于肌钙蛋白、NT-proBNP)基础上,整合心脏磁共振(CMR)细胞外容积分数(ECV)、超声整体纵向应变(GLS)等影像学参数,尝试建立“临床–生物标志物–影像学”三维风险分层模型,实现个体化预防干预,目前可进行分层递进的预防策略:在疾病早期,关键在于提高识别能力,通过优化诊断流程和生物标志物筛查实现早期发现;在治疗层面,以血液学治疗为核心,控制轻链产生和淀粉样蛋白沉积,目前对于AL淀粉样变性血液方面治疗处于完善阶段,达雷妥尤单抗这种新兴药物的出现,明显改善了疾病的缓解程度;当心脏功能受损时,需要根据具体的病理生理机制,个体化选择心律管理设备如ICD或起搏器。尽管现有证据显示器械治疗对总体生存期的改善有限,但这主要反映了疾病的晚期特征——患者更多死于心力衰竭而非猝死。因此,这些干预措施在提高生活质量和预防猝死方面仍具有重要价值。未来研究应聚焦于早期诊断,制定个体化的综合治疗策略,最终实现从被动治疗向主动预防的转变。

NOTES

*通讯作者。

参考文献

[1] Falk, R.H., Alexander, K.M., Liao, R. and Dorbala, S. (2016) AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. Journal of the American College of Cardiology, 68, 1323-1341. [Google Scholar] [CrossRef] [PubMed]
[2] Gertz, M.A., Dispenzieri, A. and Sher, T. (2015) Pathophysiology and Treatment of Cardiac Amyloidosis. Nature Reviews Cardiology, 12, 91-102. [Google Scholar] [CrossRef] [PubMed]
[3] Perfetto, F., Cappelli, F., Bergesio, F., Ciuti, G., Porciani, M.C., Padeletti, L., et al. (2011) Cardiac Amyloidosis: The Heart of the Matter. Internal and Emergency Medicine, 8, 191-203. [Google Scholar] [CrossRef] [PubMed]
[4] Fontana, M., Ćorović, A., Scully, P. and Moon, J.C. (2019) Myocardial Amyloidosis: The Exemplar Interstitial Disease. JACC: Cardiovascular Imaging, 12, 2345-2356. [Google Scholar] [CrossRef] [PubMed]
[5] Garcia-Pavia, P., Rapezzi, C., Adler, Y., Arad, M., Basso, C., Brucato, A., et al. (2021) Diagnosis and Treatment of Cardiac Amyloidosis: A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 42, 1554-1568. [Google Scholar] [CrossRef] [PubMed]
[6] de Frutos, F., Saturi, G., Gonzalez-Lopez, E., Sguazzotti, M., Dominguez, F., Ponziani, A., et al. (2024) Incidence and Predictors of Sudden Death in Patients with Cardiac Amyloidosis. Amyloid, 31, 334-338. [Google Scholar] [CrossRef] [PubMed]
[7] Kharoubi, M., Bodez, D., Bézard, M., Zaroui, A., Galat, A., Guendouz, S., et al. (2022) Describing Mode of Death in Three Major Cardiac Amyloidosis Subtypes to Improve Management and Survival. Amyloid, 29, 79-91. [Google Scholar] [CrossRef] [PubMed]
[8] Chen, Z., Shi, A., Dong, H., Laptseva, N., Chen, F., Yang, J., et al. (2024) Prognostic Implications of Premature Ventricular Contractions and Non-Sustained Ventricular Tachycardia in Light-Chain Cardiac Amyloidosis. Europace, 26, euae063. [Google Scholar] [CrossRef] [PubMed]
[9] Brenner, D.A., Jain, M., Pimentel, D.R., Wang, B., Connors, L.H., Skinner, M., et al. (2004) Human Amyloidogenic Light Chains Directly Impair Cardiomyocyte Function through an Increase in Cellular Oxidant Stress. Circulation Research, 94, 1008-1010. [Google Scholar] [CrossRef] [PubMed]
[10] Liao, R., Jain, M., Teller, P., Connors, L.H., Ngoy, S., Skinner, M., et al. (2001) Infusion of Light Chains from Patients with Cardiac Amyloidosis Causes Diastolic Dysfunction in Isolated Mouse Hearts. Circulation, 104, 1594-1597. [Google Scholar] [CrossRef] [PubMed]
[11] Shi, J., Guan, J., Jiang, B., Brenner, D.A., del Monte, F., Ward, J.E., et al. (2010) Amyloidogenic Light Chains Induce Cardiomyocyte Contractile Dysfunction and Apoptosis via a Non-Canonical P38α MAPK Pathway. Proceedings of the National Academy of Sciences, 107, 4188-4193. [Google Scholar] [CrossRef] [PubMed]
[12] Siddiqi, O.K. and Ruberg, F.L. (2018) Cardiac Amyloidosis: An Update on Pathophysiology, Diagnosis, and Treatment. Trends in Cardiovascular Medicine, 28, 10-21. [Google Scholar] [CrossRef] [PubMed]
[13] Reisinger, J., Dubrey, S.W., Lavalley, M., Skinner, M. and Falk, R.H. (1997) Electrophysiologic Abnormalities in AL (Primary) Amyloidosis with Cardiac Involvement. Journal of the American College of Cardiology, 30, 1046-1051. [Google Scholar] [CrossRef] [PubMed]
[14] Barbhaiya, C.R., Kumar, S., Baldinger, S.H., Michaud, G.F., Stevenson, W.G., Falk, R., et al. (2016) Electrophysiologic Assessment of Conduction Abnormalities and Atrial Arrhythmias Associated with Amyloid Cardiomyopathy. Heart Rhythm, 13, 383-390. [Google Scholar] [CrossRef] [PubMed]
[15] Hua, D., Yang, Q., Li, X., Zhou, X., Kang, Y., Zhao, Y., et al. (2025) The Combination of Clostridium butyricum and Akkermansia muciniphila Mitigates DSS-Induced Colitis and Attenuates Colitis-Associated Tumorigenesis by Modulating Gut Microbiota and Reducing CD8+ T Cells in Mice. mSystems, 10, e0156724. [Google Scholar] [CrossRef] [PubMed]
[16] Wechalekar, A.D., Fontana, M., Quarta, C.C. and Liedtke, M. (2022) AL Amyloidosis for Cardiologists. JACC: CardioOncology, 4, 427-441. [Google Scholar] [CrossRef] [PubMed]
[17] D’Errico, S., Mazzanti, A., Baldari, B., Maiese, A., Frati, P. and Fineschi, V. (2020) Sudden Death in Lambda Light Chain AL Cardiac Amyloidosis: A Review of Literature and Update for Clinicians and Pathologists. International Journal of Clinical and Experimental Pathology, 13, 1474-1482.
[18] Orini, M., Graham, A.J., Martinez‐Naharro, A., Andrews, C.M., de Marvao, A., Statton, B., et al. (2019) Noninvasive Mapping of the Electrophysiological Substrate in Cardiac Amyloidosis and Its Relationship to Structural Abnormalities. Journal of the American Heart Association, 8, e012097. [Google Scholar] [CrossRef] [PubMed]
[19] Reyners, A., Hazenberg, B.P.C., Reitsma, W.D. and Smit, A.J. (2002) Heart Rate Variability as a Predictor of Mortality in Patients with AA and AL Amyloidosis. European Heart Journal, 23, 157-161. [Google Scholar] [CrossRef] [PubMed]
[20] Wang, Y., Feng, X., Shen, B., Ma, J. and Zhao, W. (2017) Is Vascular Amyloidosis Intertwined with Arterial Aging, Hypertension and Atherosclerosis? Frontiers in Genetics, 8, Article ID: 126. [Google Scholar] [CrossRef] [PubMed]
[21] Ogano, M., Takano, H., Fukuma, N., Takayama, M., Takano, T., Miyagi, Y., et al. (2005) Sudden Death in a Case of Cardiac Amyloidosis Immediately after Pacemaker Implantation for Complete Atrioventricular Block. Journal of Nippon Medical School, 72, 285-289. [Google Scholar] [CrossRef] [PubMed]
[22] Dorbala, S., Vangala, D., Bruyere, J., Quarta, C., Kruger, J., Padera, R., et al. (2014) Coronary Microvascular Dysfunction Is Related to Abnormalities in Myocardial Structure and Function in Cardiac Amyloidosis. JACC: Heart Failure, 2, 358-367. [Google Scholar] [CrossRef] [PubMed]
[23] Aimo, A., Camerini, L., Fabiani, I., Morfino, P., Panichella, G., Barison, A., et al. (2023) Valvular Heart Disease in Patients with Cardiac Amyloidosis. Heart Failure Reviews, 29, 65-77. [Google Scholar] [CrossRef] [PubMed]
[24] Saldanha, M., Chen, L.K., Solomon, J., Cunanan, K., Tournoux, F., Massie, R., et al. (2025) Beyond the Heart: Exploring Extracardiac Manifestations in Cardiac Amyloidosis for Early Diagnosis. Current Cardiology Reports, 27, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
[25] Gertz, M.A. and Dispenzieri, A. (2020) Systemic Amyloidosis Recognition, Prognosis, and Therapy: A Systematic Review. JAMA, 324, 79-89. [Google Scholar] [CrossRef] [PubMed]
[26] Kharoubi, M., Bézard, M., Galat, A., Le Bras, F., Poullot, E., Molinier‐Frenkel, V., et al. (2021) History of Extracardiac/Cardiac Events in Cardiac Amyloidosis: Prevalence and Time from Initial Onset to Diagnosis. ESC Heart Failure, 8, 5501-5512. [Google Scholar] [CrossRef] [PubMed]
[27] Cyrille, N.B., Goldsmith, J., Alvarez, J. and Maurer, M.S. (2014) Prevalence and Prognostic Significance of Low QRS Voltage among the Three Main Types of Cardiac Amyloidosis. The American Journal of Cardiology, 114, 1089-1093. [Google Scholar] [CrossRef] [PubMed]
[28] Rahman, J.E., Helou, E.F., Gelzer-Bell, R., Thompson, R.E., Kuo, C., Rodriguez, E.R., et al. (2004) Noninvasive Diagnosis of Biopsy-Proven Cardiac Amyloidosis. Journal of the American College of Cardiology, 43, 410-415. [Google Scholar] [CrossRef] [PubMed]
[29] Dispenzieri, A., Gertz, M.A., Kyle, R.A., Lacy, M.Q., Burritt, M.F., Therneau, T.M., et al. (2004) Serum Cardiac Troponins and N-Terminal Pro-Brain Natriuretic Peptide: A Staging System for Primary Systemic Amyloidosis. Journal of Clinical Oncology, 22, 3751-3757. [Google Scholar] [CrossRef] [PubMed]
[30] Kumar, S., Dispenzieri, A., Lacy, M.Q., Hayman, S.R., Buadi, F.K., Colby, C., et al. (2012) Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements. Journal of Clinical Oncology, 30, 989-995. [Google Scholar] [CrossRef] [PubMed]
[31] Palladini, G., Dispenzieri, A., Gertz, M.A., Kumar, S., Wechalekar, A., Hawkins, P.N., et al. (2012) New Criteria for Response to Treatment in Immunoglobulin Light Chain Amyloidosis Based on Free Light Chain Measurement and Cardiac Biomarkers: Impact on Survival Outcomes. Journal of Clinical Oncology, 30, 4541-4549. [Google Scholar] [CrossRef] [PubMed]
[32] Dorbala, S., Ando, Y., Bokhari, S., Dispenzieri, A., Falk, R.H., Ferrari, V.A., et al. (2019) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Journal of Nuclear Cardiology, 26, 2065-2123. [Google Scholar] [CrossRef] [PubMed]
[33] Koyama, J., Ray-Sequin, P.A. and Falk, R.H. (2003) Longitudinal Myocardial Function Assessed by Tissue Velocity, Strain, and Strain Rate Tissue Doppler Echocardiography in Patients with AL (Primary) Cardiac Amyloidosis. Circulation, 107, 2446-2452. [Google Scholar] [CrossRef] [PubMed]
[34] Phelan, D., Collier, P., Thavendiranathan, P., Popović, Z.B., Hanna, M., Plana, J.C., et al. (2012) Relative Apical Sparing of Longitudinal Strain Using Two-Dimensional Speckle-Tracking Echocardiography Is Both Sensitive and Specific for the Diagnosis of Cardiac Amyloidosis. Heart, 98, 1442-1448. [Google Scholar] [CrossRef] [PubMed]
[35] Barros-Gomes, S., Williams, B., Nhola, L.F., Grogan, M., Maalouf, J.F., Dispenzieri, A., et al. (2017) Prognosis of Light Chain Amyloidosis with Preserved LVEF: Added Value of 2D Speckle-Tracking Echocardiography to the Current Prognostic Staging System. JACC: Cardiovascular Imaging, 10, 398-407. [Google Scholar] [CrossRef] [PubMed]
[36] Nicol, M., Baudet, M., Brun, S., Harel, S., Royer, B., Vignon, M., et al. (2019) Diagnostic Score of Cardiac Involvement in AL Amyloidosis. European Heart Journal-Cardiovascular Imaging, 21, 542-548. [Google Scholar] [CrossRef] [PubMed]
[37] Dorbala, S., Ando, Y., Bokhari, S., Dispenzieri, A., Falk, R.H., Ferrari, V.A., et al. (2019) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization. Journal of Cardiac Failure, 25, 854-865. [Google Scholar] [CrossRef] [PubMed]
[38] Martinez-Naharro, A., Baksi, A.J., Hawkins, P.N. and Fontana, M. (2020) Diagnostic Imaging of Cardiac Amyloidosis. Nature Reviews Cardiology, 17, 413-426. [Google Scholar] [CrossRef] [PubMed]
[39] Karamitsos, T.D., Piechnik, S.K., Banypersad, S.M., Fontana, M., Ntusi, N.B., Ferreira, V.M., et al. (2013) Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 6, 488-497. [Google Scholar] [CrossRef] [PubMed]
[40] Fine, N.M., Davis, M.K., Anderson, K., Delgado, D.H., Giraldeau, G., Kitchlu, A., et al. (2020) Canadian Cardiovascular Society/Canadian Heart Failure Society Joint Position Statement on the Evaluation and Management of Patients with Cardiac Amyloidosis. Canadian Journal of Cardiology, 36, 322-334. [Google Scholar] [CrossRef] [PubMed]
[41] Fine, N.M., Arruda-Olson, A.M., Dispenzieri, A., Zeldenrust, S.R., Gertz, M.A., Kyle, R.A., et al. (2014) Yield of Noncardiac Biopsy for the Diagnosis of Transthyretin Cardiac Amyloidosis. The American Journal of Cardiology, 113, 1723-1727. [Google Scholar] [CrossRef] [PubMed]
[42] Vrana, J.A., Gamez, J.D., Madden, B.J., Theis, J.D., Bergen, H.R. and Dogan, A. (2009) Classification of Amyloidosis by Laser Microdissection and Mass Spectrometry-Based Proteomic Analysis in Clinical Biopsy Specimens. Blood, 114, 4957-4959. [Google Scholar] [CrossRef] [PubMed]
[43] Locke, M. and Nieto, M. (2025) AL Amyloidosis: Current Treatment and Outcomes. Advances in Hematology, 2025, Article ID: 7280805. [Google Scholar] [CrossRef] [PubMed]
[44] Bellofiore, C., Basset, M., Sanna, G.D., Foli, A., Mussinelli, R., Nanci, M., et al. (2025) Daratumumab‐Based Regimens versus Cybord in Newly Diagnosed Patients with AL Amyloidosis and IIIB Cardiac Stage: A Matched Case‐Control Study. HemaSphere, 9, e70112. [Google Scholar] [CrossRef] [PubMed]
[45] D’Souza, A., Dispenzieri, A., Wirk, B., Zhang, M., Huang, J., Gertz, M.A., et al. (2015) Improved Outcomes after Autologous Hematopoietic Cell Transplantation for Light Chain Amyloidosis: A Center for International Blood and Marrow Transplant Research Study. Journal of Clinical Oncology, 33, 3741-3749. [Google Scholar] [CrossRef] [PubMed]
[46] Hartnett, J., Jaber, W., Maurer, M., Sperry, B., Hanna, M., Collier, P., et al. (2021) Electrophysiological Manifestations of Cardiac Amyloidosis. JACC: CardioOncology, 3, 506-515. [Google Scholar] [CrossRef] [PubMed]
[47] Al-Khatib, S.M., Stevenson, W.G., Ackerman, M.J., Bryant, W.J., Callans, D.J., Curtis, A.B., et al. (2018) 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation, 138, e272-e391. [Google Scholar] [CrossRef] [PubMed]
[48] Wei, H., Wang, J., Liang, Y., Xia, S., Li, L. and Zhong, L. (2025) Prophylactic Implantation of Cardioverter‐Defibrillator in Patients with Advanced Light‐Chain Amyloidosis—A Pilot Study. Journal of Arrhythmia, 41, e70068. [Google Scholar] [CrossRef] [PubMed]