|
[1]
|
Wang, H., Cai, Y., Wu, W., Zhang, M., Dai, Y. and Wang, Q. (2024) Exploring the Role of Gut Microbiome in Autoimmune Diseases: A Comprehensive Review. Autoimmunity Reviews, 23, Article 103654. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, L., Su, Y., Jiao, A., Wang, X. and Zhang, B. (2023) T Cells in Health and Disease. Signal Transduction and Targeted Therapy, 8, Article No. 235. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Raeber, M.E., Sahin, D., Karakus, U. and Boyman, O. (2023) A Systematic Review of Interleukin-2-Based Immunotherapies in Clinical Trials for Cancer and Autoimmune Diseases. eBioMedicine, 90, Article 104539. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhou, H., Zhao, X., Zhang, R., Miao, M., Pei, W., Li, Z., et al. (2023) Low-Dose IL-2 Mitigates Glucocorticoid-Induced Treg Impairment and Promotes Improvement of SLE. Signal Transduction and Targeted Therapy, 8, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Thiolat, A., Pilon, C., Caudana, P., Moatti, A., To, N.H., Sedlik, C., et al. (2024) Treg-Targeted Il-2/Anti-Il-2 Complex Controls Graft-versus-Host Disease and Supports Anti-Tumor Effect in Allogeneic Hematopoietic Stem Cell Transplantation. Haematologica, 109, 129-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Humrich, J.Y., Cacoub, P., Rosenzwajg, M., Pitoiset, F., PHAM, H.P., Guidoux, J., et al. (2022) Low-Dose Interleukin-2 Therapy in Active Systemic Lupus Erythematosus (LUPIL-2): A Multicentre, Double-Blind, Randomised and Placebo-Controlled Phase II Trial. Annals of the Rheumatic Diseases, 81, 1685-1694. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rosenzwajg, M., Churlaud, G., Mallone, R., Six, A., Dérian, N., Chaara, W., et al. (2015) Low-Dose Interleukin-2 Fosters a Dose-Dependent Regulatory T Cell Tuned Milieu in T1D Patients. Journal of Autoimmunity, 58, 48-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
He, J., Chen, J., Miao, M., Zhang, R., Cheng, G., Wang, Y., et al. (2022) Efficacy and Safety of Low-Dose Interleukin 2 for Primary Sjögren Syndrome: A Randomized Clinical Trial. JAMA Network Open, 5, e2241451. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Barde, F., Lorenzon, R., Vicaut, E., Rivière, S., Cacoub, P., Cacciatore, C., et al. (2024) Induction of Regulatory T Cells and Efficacy of Low-Dose Interleukin-2 in Systemic Sclerosis: Interventional Open-Label Phase 1-Phase 2a Study. RMD Open, 10, e003500. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, J., Hamey, F., Trzupek, D., Mickunas, M., Lee, M., Godfrey, L., et al. (2022) Low-Dose IL-2 Reduces IL-21+ T Cell Frequency and Induces Anti-Inflammatory Gene Expression in Type 1 Diabetes. Nature Communications, 13, Article No. 7324. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kim, N., Gu, M.J., Kye, Y., Ju, Y., Hong, R., Ju, D.B., et al. (2022) Bacteriophage EK99P-1 Alleviates Enterotoxigenic Escherichia Coli K99-Induced Barrier Dysfunction and Inflammation. Scientific Reports, 12, Article No. 941. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Matsuoka, K., Koreth, J., Kim, H.T., Bascug, G., McDonough, S., Kawano, Y., et al. (2013) Low-Dose Interleukin-2 Therapy Restores Regulatory T Cell Homeostasis in Patients with Chronic Graft-versus-Host Disease. Science Translational Medicine, 5, 179ra43. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rafeek, R.A.M., Ketheesan, N., Good, M.F., Pandey, M. and Lepletier, A. (2025) Low-Dose Interleukin 2 Therapy Halts the Progression of Post-Streptococcal Autoimmune Complications in a Rat Model of Rheumatic Heart Disease. mBio, 16, e0382324. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Du, X., Wen, J., Wang, Y., Karmaus, P.W.F., Khatamian, A., Tan, H., et al. (2018) Hippo/Mst Signalling Couples Metabolic State and Immune Function of Cd8α+ Dendritic Cells. Nature, 558, 141-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lorenzon, R., Ribet, C., Pitoiset, F., Aractingi, S., Banneville, B., Beaugerie, L., et al. (2024) The Universal Effects of Low-Dose Interleukin-2 across 13 Autoimmune Diseases in a Basket Clinical Trial. Journal of Autoimmunity, 144, Article 103172. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Robert, J., Feuillolay, M., de Temple-Llavero, M., Akossi, R.F., Mhanna, V., Cheraï, M., et al. (2025) Expression of an Interleukin-2 Partial Agonist Enhances Regulatory T Cell Persistence and Efficacy in Mouse Autoimmune Models. Nature Communications, 16, Article No. 4891. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
He, J., Zhang, R., Shao, M., Zhao, X., Miao, M., Chen, J., et al. (2020) Efficacy and Safety of Low-Dose IL-2 in the Treatment of Systemic Lupus Erythematosus: A Randomised, Double-Blind, Placebo-Controlled Trial. Annals of the Rheumatic Diseases, 79, 141-149.
|
|
[18]
|
Zhang, S., Chen, H., Wang, J., Shao, H., Cheng, T., Pei, R., et al. (2024) The Efficacy and Safety of Short-Term and Low-Dose IL-2 Combined with Tocilizumab to Treat Rheumatoid Arthritis. Frontiers in Immunology, 15, Article ID: 1359041. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Case, A.G., O’Brien, J.W., Lu, Y., Charlier, F.T.W., Zhao, X., Weng, Y., et al. (2025) Low-Dose Interleukin-2 Induces Clonal Expansion of Bach2-Repressed Effector Regulatory T Cells Following Acute Coronary Syndrome. Nature Cardiovascular Research, 4, 727-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Piconese, S., Walker, L.S.K. and Dominguez-Villar, M. (2021) Editorial: Control of Regulatory T Cell Stability, Plasticity, and Function in Health and Disease. Frontiers in Immunology, 11, Article ID: 611591. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Amini, L., Kaeda, J., Weber, O. and Reinke, P. (2024) Low-Dose Interleukin-2 Therapy: Fine-Tuning Treg in Solid Organ Transplantation? Transplantation, 108, 1492-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Rosenzwajg, M., Salet, R., Lorenzon, R., Tchitchek, N., Roux, A., Bernard, C., et al. (2020) Low-Dose IL-2 in Children with Recently Diagnosed Type 1 Diabetes: A Phase I/II Randomised, Double-Blind, Placebo-Controlled, Dose-Finding Study. Diabetologia, 63, 1808-1821. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Koreth, J., Kim, H.T., Jones, K.T., Lange, P.B., Reynolds, C.G., Chammas, M.J., et al. (2016) Efficacy, Durability, and Response Predictors of Low-Dose Interleukin-2 Therapy for Chronic Graft-versus-Host Disease. Blood, 128, 130-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yasuda, K., Takeuchi, Y. and Hirota, K. (2019) The Pathogenicity of Th17 Cells in Autoimmune Diseases. Seminars in Immunopathology, 41, 283-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gao, H., Sun, M., Li, A., Gu, Q., Kang, D., Feng, Z., et al. (2025) Microbiota-Derived IPA Alleviates Intestinal Mucosal Inflammation through Upregulating Th1/Th17 Cell Apoptosis in Inflammatory Bowel Disease. Gut Microbes, 17, Article 2467235. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xue, C., Yao, Q., Gu, X., Shi, Q., Yuan, X., Chu, Q., et al. (2023) Evolving Cognition of the JAK-STAT Signaling Pathway: Autoimmune Disorders and Cancer. Signal Transduction and Targeted Therapy, 8, Article No. 204. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Graßhoff, H., Comdühr, S., Monne, L.R., Müller, A., Lamprecht, P., Riemekasten, G., et al. (2021) Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Frontiers in Immunology, 12, Article ID: 648408. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Vaupel, P. and Multhoff, G. (2018) Hypoxia-/HIF-1α-Driven Factors of the Tumor Microenvironment Impeding Antitumor Immune Responses and Promoting Malignant Progression. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 171-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shouse, A.N., LaPorte, K.M. and Malek, T.R. (2024) Interleukin-2 Signaling in the Regulation of T Cell Biology in Autoimmunity and Cancer. Immunity, 57, 414-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Whyte, C.E., Singh, K., Burton, O.T., Aloulou, M., Kouser, L., Veiga, R.V., et al. (2022) Correction: Context-Dependent Effects of IL-2 Rewire Immunity into Distinct Cellular Circuits. Journal of Experimental Medicine, 219, e20212391. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Huang, K., Han, Y., Chen, Y., Shen, H., Zeng, S. and Cai, C. (2025) Tumor Metabolic Regulators: Key Drivers of Metabolic Reprogramming and the Promising Targets in Cancer Therapy. Molecular Cancer, 24, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, Y., Ji, W., Qin, H., Chen, Z., Zhou, Y., Zhou, Z., et al. (2025) Astragalus Polysaccharides Alleviate DSS-Induced Ulcerative Colitis in Mice by Restoring SCFA Production and Regulating Th17/Treg Cell Homeostasis in a Microbiota-Dependent Manner. Carbohydrate Polymers, 349, Article 122829. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shi, Y., Zhang, H. and Miao, C. (2025) Metabolic Reprogram and T Cell Differentiation in Inflammation: Current Evidence and Future Perspectives. Cell Death Discovery, 11, Article No. 123. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sharma, A., Sharma, G. and Im, S. (2025) Gut Microbiota in Regulatory T Cell Generation and Function: Mechanisms and Health Implications. Gut Microbes, 17, Article 2516702. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, Z., Tang, H., Chen, P., Xie, H. and Tao, Y. (2019) Demystifying the Manipulation of Host Immunity, Metabolism, and Extraintestinal Tumors by the Gut Microbiome. Signal Transduction and Targeted Therapy, 4, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, M., Bell, C.J.M., Rubio Garcia, A., Godfrey, L., Pekalski, M., Wicker, L.S., et al. (2023) CD56bright Natural Killer Cells Preferentially Kill Proliferating CD4+ T Cells. Discovery Immunology, 2, kyad012. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bensimon, G., Leigh, P.N., Tree, T., Malaspina, A., Payan, C.A., Pham, H., et al. (2025) Efficacy and Safety of Low-Dose IL-2 as an Add-On Therapy to Riluzole (MIROCALS): A Phase 2b, Double-Blind, Randomised, Placebo-Controlled Trial. The Lancet, 405, 1837-1850. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sun, J., Guo, L., Ji, D., Yu, M., Cheng, B., Zhu, X., et al. (2025) Reshape the Fates of Treg and CD8+ T Cells through Il‐2rα by Synergizing Divergent Receptor‐Biased IL-2 Pegylates. Advanced Science, 12, e2414931. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lin, Y., Wang, X., Qin, Y., Wang, C., Zhou, T., Zhang, L., et al. (2024) A Single-Agent Fusion of Human IL-2 and Anti-Il-2 Antibody That Selectively Expands Regulatory T Cells. Communications Biology, 7, Article No. 299. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Stoops, J., Morton, T., Powell, J., Pace, A.L. and Bluestone, J.A. (2025) Treg Cell Therapy Manufacturability: Current State of the Art, Challenges and New Opportunities. Frontiers in Immunology, 16, Article ID: 1604483. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tuomela, K., Garcia, R.V., Boardman, D.A., Tavakoli, P., Ancheta-Schmit, M., Sham, H.P., et al. (2025) TYK2 Inhibition Enhances Treg Differentiation and Function While Preventing Th1 and Th17 Differentiation. Cell Reports Medicine, 6, Article 102303. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Coppola, C., Hopkins, B., Huhn, S., Du, Z., Huang, Z. and Kelly, W.J. (2020) Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4+ T Cells. International Journal of Molecular Sciences, 21, Article 7814. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Thonhoff, J.R., Beers, D.R., Zhao, W., Faridar, A., Thome, A., Wen, S., et al. (2024) A Phase 1 Proof-of-Concept Study Evaluating Safety, Tolerability, and Biological Marker Responses with Combination Therapy of CTLA4-Ig and Interleukin-2 in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 15, Article ID: 1415106. [Google Scholar] [CrossRef] [PubMed]
|