脑微出血研究进展
Recent Advances in Research on Cerebral Microbleeds
DOI: 10.12677/acm.2025.15123601, PDF, HTML, XML,   
作者: 马灵虎:西安医学院第一附属医院神经内科,陕西 西安;西安医学院研究生工作部,陕西 西安;徐云飞, 汪真真, 周 婷, 王乐乐, 高 飞*:西安医学院第一附属医院神经内科,陕西 西安
关键词: 脑微出血危险因素发病机制抗血栓治疗Cerebral Microbleeds Risk Factors Pathogenesis Antithrombotic Therapy
摘要: 脑微出血(CMB)是脑小血管病的影像学标志物之一,患病率随年龄增长而增加,脑内小血管病变可导致含铁血黄素沉积,在SWI等磁共振序列上呈特征性改变。高血压、脑淀粉样血管病、糖尿病、高同型半胱氨酸血症、阻塞性睡眠呼吸暂停及吸烟等是CMB的主要危险因素。CMB与认知功能下降、卒中(出血性与缺血性)及卒中后抑郁等临床结局显著相关。在治疗方面,CMB的存在与数量对静脉溶栓及抗血小板、抗凝治疗决策具有重要影响,需个体化权衡出血与血栓风险。未来研究需致力于CMB的早期精准识别、风险分层模型的建立以及针对性干预策略的开发,以改善患者预后并减轻社会负担。
Abstract: Cerebral microbleeds (CMB) are one of the imaging markers for cerebral small vessel disease, with prevalence increasing with age. Intracerebral small vessel lesions can lead to hemosiderin deposition, presenting characteristic changes on magnetic resonance sequences such as SWI. Hypertension, cerebral amyloid angiopathy, diabetes, hyperhomocysteinemia, obstructive sleep apnea, and smoking are major risk factors for CMB. CMB is significantly associated with clinical outcomes including cognitive decline, stroke (both hemorrhagic and ischemic), and post-stroke depression. Therapeutically, the presence and number of CMB critically influence decisions regarding intravenous thrombolysis and antiplatelet, anticoagulant therapy, necessitating individualized risk-benefit assessments balancing hemorrhagic and thrombotic risks. Future research should focus on early and precise identification of CMB, establishing risk stratification models, and developing targeted intervention strategies to improve patient outcomes and reduce societal burden.
文章引用:马灵虎, 徐云飞, 汪真真, 周婷, 王乐乐, 高飞. 脑微出血研究进展[J]. 临床医学进展, 2025, 15(12): 1843-1849. https://doi.org/10.12677/acm.2025.15123601

1. 背景

脑小血管病(cerebral small-vessel disease, CSVD)是一组由多种病因引起的临床–影像–病理综合征,其核心病理改变发生在脑内小血管系统–小动脉及其远端分支、微动脉、毛细血管、微静脉与小静脉,这些血管结构的异常会导致脑功能与组织学特征的改变[1]。脑微出血(cerebral microbleed, CMB)是CSVD众多特征性影像学标志物之一,其发生发展不仅反映了脑小血管损伤的程度,更与患者的临床预后密切相关。

CMB的患病率呈现出显著的年龄相关性增长趋势[2]。流行病学数据显示,60~69岁人群CMB患病率为11%,70~79岁人群升至22%,80岁及以上老年人群则高达39% [3]。当前我国人口老龄化进程不断加剧,受此影响,CMB的患病人群规模正持续扩大。作为脑小血管病的重要影像学标志,CMB不仅与脑结构损伤、认知功能下降等临床结局密切相关,更对患者健康水平及生活质量构成潜在威胁,给社会医疗体系与家庭照护带来一定负担。因此,加强对CMB的认识与研究,为其早期识别、风险防控及干预策略制定提供理论支撑,具有重要的现实意义,这也是本综述撰写的核心目的之一。

从病理机制与影像学特征来看,CMB的本质是脑内微小血管壁完整性受损后,出现血管微小破裂、血液微量渗漏,血液成分外溢后,其中的含铁血黄素会在微小血管周围间隙内逐渐沉积,形成特征性的病理改变[4]。由于含铁血黄素具有独特的顺磁性特性,CMB在特定磁共振成像(MRI)序列上呈现出典型的影像学表现:在T2加权梯度回波序列和磁敏感加权成像(SWI)序列上,CMB表现为边界清晰、信号均匀缺失的小圆形或卵圆形病灶,直径通常为2~5 mm,最大可达到10 mm;而在液体衰减反转恢复序列(FLAIR)、T1加权成像(T1WI)和T2加权成像(T2WI)上,此类病灶通常无法被清晰识别。与血管流空影在SWI上表现不同,CMB表现为在特定层面突然出现或消失的孤立性信号缺失灶[1],而血管流空影在不同成像层面上呈现连续移位的特征。随着影像学技术的不断进步,定量磁化率成像(Quantitative Susceptibility Mapping, QSM)凭借对组织磁化率差异的精准量化,显著提升了CMB的检测率与病灶特征解析能力[5] [6],已成为临床研究的重要工具。

2. CMB常见的危险因素及其病理生理机制

CMB的发生并非单一因素作用的结果,而是多种危险因素共同参与、相互作用的结果。

高血压、糖尿病、高脂血症是已被证实的CMB核心危险因素[7]。其中高血压的影响尤为显著,不仅会直接损伤脑小血管壁,其引发的血压波动还会产生额外机械应力,进一步加剧微小血管损伤,最终增加出血风险[8]。血压波动可能导致脑部血流动力学不稳定,使CMB的风险增加[9] [10]。研究表明,短期血压波动(如24小时动态血压监测中的标准差和变异系数)与CMB的发生显著相关。夜间舒张压标准差和变异系数是深部和幕下CMB的独立危险因素[9] [11]。有研究指出,随着年龄增长,机体自然衰老过程中出现的细胞衰老、氧化应激及内皮功能障碍等变化,会导致微血管脆性增加。这种脆弱性使脑微血管系统更易因高灌注或血管壁张力升高而破裂,最终促成CMB的发生[12] [13]

高血压患者的CMB主要位于深部(基底节、丘脑)和幕下(脑干、小脑),反映了高血压小动脉硬化,穿透性分支直接从大脑后动脉和大脑中动脉产生,并且由于它们的分支模式,其阻力保护微循环的近端血管段比其他大脑区域短,这些解剖学特性使这些血管供应区域更容易受到血压突然变化的影响,而出现CMB [14]。脑淀粉样血管病(Cerebral Amyloid Angiopathy, CAA)也是CMB形成的主要原因[15]。与高血压所致CMB不同,CAA相关性CMB多见于脑叶、皮质、皮质下区域[16]。这与β-淀粉样蛋白主要沉积于皮质和软脑膜的小血管相关,也与皮质区域的血管结构复杂,血流动力学变化更为显著相关,增加了CMB的发生概率[17]

多项研究证实,血糖水平与CMB的发生率存在显著相关性。在急性缺血性卒中患者中,血糖水平的升高与CMB的发生率呈正相关,尤其是在深部或幕下区域中表现更为明显[18]。此外,空腹血糖水平较高的个体,其深部CMB的发生率也显著增加[19]。在老年2型糖尿病患者中,高甘油三酯–葡萄糖(TyG)指数与CMB的严重程度及认知功能障碍密切相关[20]。高血糖可导致血管内皮细胞功能受损,增加血管通透性,从而促进CMB的发生,可引发慢性炎症反应,激活小胶质细胞,加剧CMB的病理过程。

有研究报道,中度至重度阻塞性睡眠呼吸暂停低通气综合征(Obstructive Sleep Apnea-Hypopnea Syndrome, OSAHS)与CMB相关,可作为CMB发生的预测因子[21]。OSAHS的严重程度与CMB的数量呈正相关,呼吸暂停低通气指数(AHI)越高,CMB的数量越多[21]。OSAHS患者在睡眠期间反复出现呼吸暂停,导致间歇性缺氧,这可能损伤脑小血管内皮细胞,增加CMB的风险,同时,OSAHS患者常伴有夜间血压波动,这种不稳定的血流动力学可能增加脑小血管的机械应力,共同加剧CMB的发生与进展[22]

一项Meta分析研究显示高同型半胱氨酸(Homocysteine, Hcy)水平可能是CMB发生的独立危险因素,血清Hcy水平与CMB的存在呈剂量依赖性关系。健康人群的研究显示,Hcy水平与CMB的发生率呈正相关,且随着Hcy水平的升高,CMB的严重程度也增加[23]。Hcy通过损伤血管内皮、促进氧化应激和炎症反应,参与脑小血管病的病理过程[24]。完善Hcy水平检测及早期干预Hcy水平对CMB的预防和早期治疗可能具有重要意义[25]

近年来,研究者发现ApoE基因(尤其是ε2和ε4等位基因)是CMB的重要遗传学危险因素。研究显示,ε4等位基因与CMB风险显著增加相关,尤其是脑叶CMB (与脑淀粉样血管病相关) [26] [27]ε4通过增加脑β淀粉样蛋白(Aβ)负荷,尤其枕叶Aβ,促进脑叶CMB发生[28] [29]ε4可能通过增强血管内皮生长因子的作用促进深部CMB形成,尤其在ε2/ε4携带者中,血管内皮生长因子水平与深部CMB风险呈基因型依赖性关联[30]

吸烟也是CMB的明确危险因素[7]。烟草中的有害物质可通过血液循环作用于脑小血管,破坏血管内皮完整性,加速血管硬化进程,为CMB的形成创造病理基础。

3. CMB的常见临床表现

CMB所导致的临床症状与其位置、数量密切相关。CMB可导致总体认知功能、执行功能和信息处理速度的下降[31] [32]。以脑叶分布为主的CMB与认知功能下降、执行功能受损、记忆障碍有较高的相关性,而深部/幕下CMB与运动速度相关[33]-[35]。CMB越来越被认为是认知障碍疾病的标志物,可加剧或导致血管性认知障碍与痴呆(Vascular Cognitive Impairment and Dementia, VCID)和阿尔茨海默病(Alzheimer’s Disease, AD)等疾病的认知能力下降,有项研究对3979名没有痴呆症的老年人进行了调查,发现较多的CMB与简易精神状态检查(MMSE)得分较低以及信息处理和运动速度较差有关[34]

一项Meta分析纳入了31项队列研究,包括20,368例患者的数据,结果显示,在非脑卒中患者中,CMB患者首次症状性脑出血(Intracerebral Hemorrhage, ICH)和缺血性脑卒中(Ischemic Stroke, IS)的风险显著增高[36]。CMB的位置尤为重要:脑叶CMB与显着增高的ICH风险相关,而与IS风险无关。深部CMB与ICH和IS的风险显著升高均相关[37]。CMB在预测脑出血复发的风险中也有一定意义,有研究表明,CMB在复发性脑出血患者中的发生率高于首发的脑出血患者,其中在首次发生脑出血患者中占52%,复发性脑出血中占83%,因此可用于预测脑出血复发的风险[38]

CMB与卒中后抑郁(post-stroke depression, PSD)也有相关性。一项研究,以210例缺血性脑卒中患者为研究对象,研究显示脑深部CMB是PSD的独立危险因素[39],这可能与深部CMB导致执行功能的下降和神经递质传递紊乱等机制有关。CMB不仅是局部含铁血黄素的沉积,还能引起病灶周围纤维坏死,破坏神经传导通路,干扰神经递质,从而影响情绪和认知功能环路的联系[39]

4. CMB抗血栓治疗注意事项

关于CMB患者是否可以静脉溶栓,一直存在争议。多项研究显示,CMB的存在与溶栓后症状性脑出血(ICH)风险增加相关,但这种关联在不同研究中存在差异。荟萃分析表明,CMB患者ICH发生率为6% (95%CI: 4%~8%),显著高于无CMB患者的4% (95%CI: 2%~6%) [40]。然而,一项ENCHANTED试验发现,CMB与ICH的关联未达到统计学显著性差异[41]。有研究显示,CMB的解剖分布也与溶栓预后有重要关系[42] [43]。《中国急性缺血性卒中诊治指南2023》指出CMB不是静脉溶栓的绝对禁忌证,对于头颅MRI显示具有少量CMB (1~10个),但符合其他溶栓条件的患者,可以静脉应用阿替普酶。对于存在大量CMB (>10个)但符合其他溶栓条件的患者,静脉应用阿替普酶可能会增加症状性颅内出血的风险,治疗获益尚未明确[44]。未来仍需开展更多设计严谨的临床研究,以CMB的精确计数与解剖分布为切入点,进一步量化其溶栓的出血风险,提升CMB患者静脉溶栓治疗的安全性。

抗血小板药物(如阿司匹林、氯吡格雷)的使用与CMB的关系存在争议。Vernooij报道,长期抗血栓治疗患者CMB的发病率较高,CMB在接受血小板聚集抑制剂治疗的患者中更为常见[45]。Naka等研究揭示了缺血性或出血性脑卒中后抗血小板(包括阿司匹林、氯吡格雷、西洛他唑)与CMB的关系,结果表明CMB患者使用抗血小板药物可增加ICH的发生率[46]。存在大量CMB的患者应慎用抗血小板药物,西洛他唑可能是更安全的选择[47]。相比阿司匹林,西洛他唑或许可降低CMB患者的脑出血风险[48]。长期抗血小板治疗患者需定期MRI随访CMB变化,尤其对于CMB数量较多的患者。

CMB患者的抗凝治疗需要精细的个体化决策,平衡血栓栓塞和出血风险。CMB患者抗凝治疗中,华法林可能会增加CMB和ICH的发生率,因此应谨慎考虑抗凝方案,尤其是当SWI序列中CMB数量超过5个时,患者应在抗凝前进行SWI序列检查,以确定CMB的数量,以便及时调整治疗方案,避免新的出血事件[49]。研究显示新型直接口服抗凝药(Direct Oral Anticoagulants, DOACs)通过直接抑制Xa因子或凝血酶可能减少对血管壁的损伤,从而降低CMB患者ICH风险,喻志慧等针对心源性脑梗死合并CMB患者的研究显示,华法林治疗组的出血转化率显著高于无CMB组,而DOACs (如利伐沙班、达比加群酯)在CMB患者中未表现出类似的出血风险差异,但文中也提到对于中重度心源性脑梗死(NIHSS ≥ 8分)合并CMB患者,需谨慎评估抗凝治疗的获益与风险,必要时考虑个体化剂量调整或替代治疗策略[50]。有研究显示部分DOACs的代谢产物依赖肾脏排泄,慢性肾病患者需根据肌酐清除率调整药物剂量[51]

5. 总结

脑微出血(CMB)作为脑小血管病(CSVD)的影像学标志物之一,其临床重要性日益凸显。随着人口老龄化的加剧,CMB的疾病负担将持续加重。本文系统梳理了CMB的影像学特征、危险因素、病理生理机制、多样化的临床表现及其在抗血栓治疗决策中的关键作用。现有证据表明,CMB的发生与发展是高血压、脑淀粉样血管病(CAA)、代谢异常、睡眠呼吸障碍等多种因素共同作用的结果,其不仅与认知功能下降、卒中(包括出血性与缺血性)及卒中后抑郁等不良临床结局密切相关,更对急性期静脉溶栓和长期抗血小板、抗凝治疗策略的选择提出了严峻挑战。

展望未来,对CMB的研究与管理仍面临诸多机遇与挑战。首先,需要进一步借助先进影像技术,深化对CMB微观结构与生物学特性的认识,实现更早期、更精确的识别与分类。其次,在临床实践层面,亟需建立基于CMB数量、解剖分布及动态变化的个体化风险评估模型,以指导抗血栓药物的精准应用,在有效预防缺血事件与最大限度降低出血风险之间找到最佳平衡点。最后,针对CMB的病理机制研究仍需进一步深入,旨在从根源上延缓甚至阻止CMB的进展,最终改善患者远期预后,减轻家庭与社会负担。

NOTES

*通讯作者。

参考文献

[1] 胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.
[2] Romero, J.R., Preis, S.R., Beiser, A., DeCarli, C., Viswanathan, A., Martinez-Ramirez, S., et al. (2014) Risk Factors, Stroke Prevention Treatments, and Prevalence of Cerebral Microbleeds in the Framingham Heart Study. Stroke, 45, 1492-1494. [Google Scholar] [CrossRef] [PubMed]
[3] Graff-Radford, J., Botha, H., Rabinstein, A.A., Gunter, J.L., Przybelski, S.A., Lesnick, T., et al. (2019) Cerebral Microbleeds. Neurology, 92, e253-e262. [Google Scholar] [CrossRef] [PubMed]
[4] Wu, Y. and Chen, T. (2016) An Up-to-Date Review on Cerebral Microbleeds. Journal of Stroke and Cerebrovascular Diseases, 25, 1301-1306. [Google Scholar] [CrossRef] [PubMed]
[5] Luo, Y., Gao, K., Zhou, Y., Fawaz, M., Mark Haacke, E., Xia, S., et al. (2025) Differentiating Calcifications from Cerebral Microbleeds Using Quantitative Susceptibility Mapping. European Radiology, 35, 2043-2052. [Google Scholar] [CrossRef] [PubMed]
[6] Lee, K., Ellison, B., Selim, M., Long, N.H., Filippidis, A., Thomas, A.J., et al. (2023) Quantitative Susceptibility Mapping Improves Cerebral Microbleed Detection Relative to Susceptibility-Weighted Images. Journal of Neuroimaging, 33, 138-146. [Google Scholar] [CrossRef] [PubMed]
[7] Cuadrado-Godia, E., Dwivedi, P., Sharma, S., Ois Santiago, A., Roquer Gonzalez, J., Balcells, M., et al. (2018) Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. Journal of Stroke, 20, 302-320. [Google Scholar] [CrossRef] [PubMed]
[8] Zhou, T.L., Rensma, S.P., van der Heide, F.C.T., Henry, R.M.A., Kroon, A.A., Houben, A.J.H.M., et al. (2020) Blood Pressure Variability and Microvascular Dysfunction: The Maastricht Study. Journal of Hypertension, 38, 1541-1550. [Google Scholar] [CrossRef] [PubMed]
[9] Bao, Y., Gu, J., Lv, T., Chen, M., Zhao, K., Yang, Y., et al. (2023) Correlation between Blood Pressure Variability and Deep Cerebral Microbleeds in Patients with Acute Ischemic Stroke. Folia Neuropathologica, 61, 309-316. [Google Scholar] [CrossRef] [PubMed]
[10] Shen, J., Yang, L., Xu, Z. and Wei, W. (2022) Association between Twenty-Four-Hour Ambulatory Blood Pressure Variability and Cerebral Small Vessel Disease Burden in Acute Ischemic Stroke. Behavioural Neurology, 2022, 1-5. [Google Scholar] [CrossRef] [PubMed]
[11] 孙丽丽, 冯羿博, 焦劲松, 等. 短时血压变异性与脑微出血的相关性研究[J]. 中风与神经疾病杂志, 2018, 35(6): 484-487.
[12] Toth, P., Tarantini, S., Springo, Z., Tucsek, Z., Gautam, T., Giles, C.B., et al. (2015) Aging Exacerbates Hypertension-Induced Cerebral Microhemorrhages in Mice: Role of Resveratrol Treatment in Vasoprotection. Aging Cell, 14, 400-408. [Google Scholar] [CrossRef] [PubMed]
[13] Faakye, J., Nyúl-Tóth, Á., Muranyi, M., Gulej, R., Csik, B., Shanmugarama, S., et al. (2023) Preventing Spontaneous Cerebral Microhemorrhages in Aging Mice: A Novel Approach Targeting Cellular Senescence with ABT263/Navitoclax. GeroScience, 46, 21-37. [Google Scholar] [CrossRef] [PubMed]
[14] Liu, W., Liu, R., Sun, W., Peng, Q., Zhang, W., Xu, E., et al. (2012) Different Impacts of Blood Pressure Variability on the Progression of Cerebral Microbleeds and White Matter Lesions. Stroke, 43, 2916-2922. [Google Scholar] [CrossRef] [PubMed]
[15] Shi, Y. and Wardlaw, J.M. (2016) Update on Cerebral Small Vessel Disease: A Dynamic Whole-Brain Disease. Stroke and Vascular Neurology, 1, 83-92. [Google Scholar] [CrossRef] [PubMed]
[16] 胡朗, 刘宁. 脑小血管病发病机制及影像学表现的研究进展[J]. 山东医药, 2019, 59(13): 102-105.
[17] 杨君, 吴昭英, 张丽丽, 等. 脑淀粉样血管病的MRI评价[J]. 国际脑血管病杂志, 2023, 31(5): 378-383.
[18] Lei, C., Zhong, L., Ling, Y. and Chen, T. (2018) Blood Glucose Levels Are Associated with Cerebral Microbleeds in Patients with Acute Ischaemic Stroke. European Neurology, 80, 187-192. [Google Scholar] [CrossRef] [PubMed]
[19] Ma, X., Liu, F., Qiu, L., Chen, J., Du, W., He, J., et al. (2025) Correlation between Blood Glucose Level and Cerebral Small Vessel Disease Markers in Neurologically Asymptomatic, Nondiabetic Individuals. Aging Medicine, 8, 117-125. [Google Scholar] [CrossRef] [PubMed]
[20] Teng, Z., Feng, J., Dong, Y., Xu, J., Jiang, X., Chen, H., et al. (2022) Triglyceride Glucose Index Is Associated with Cerebral Small Vessel Disease Burden and Cognitive Impairment in Elderly Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 13, Article 970122. [Google Scholar] [CrossRef] [PubMed]
[21] Koo, D.L., Kim, J.Y., Lim, J., Kwon, H. and Nam, H. (2017) Cerebral Microbleeds on MRI in Patients with Obstructive Sleep Apnea. Journal of Clinical Sleep Medicine, 13, 65-72. [Google Scholar] [CrossRef] [PubMed]
[22] Song, T.J., Park, J.H., Choi, K.H., et al. (2017) Moderate-to-Severe Obstructive Sleep Apnea Is Associated with Cerebral Small Vessel Disease. Sleep Medicine, 30, 36-42. [Google Scholar] [CrossRef] [PubMed]
[23] Nam, K.W., Kwon, H.M., Jeong, H.Y., et al. (2019) Serum Homocysteine Level Is Related to Cerebral Small Vessel Disease in a Healthy Population. Neurology, 92, e317-e325. [Google Scholar] [CrossRef] [PubMed]
[24] Ji, Y., Li, X., Teng, Z., Li, X., Jin, W. and Lv, P.Y. (2020) Homocysteine Is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. Journal of Stroke and Cerebrovascular Diseases, 29, Article 105393. [Google Scholar] [CrossRef] [PubMed]
[25] 王鸿, 易芳, 谷文萍. 同型半胱氨酸与脑微出血相关性的Meta分析[J]. 中国神经免疫学和神经病学杂志, 2025, 32(3): 188-195+210.
[26] 乔亚男, 王磊, 邵文, 等. 脑微出血β淀粉样蛋白阳性患者载脂蛋白E基因型及认知特点[J]. 中华老年医学杂志, 2020, 39(5): 489-492.
[27] 宋雨, 田淑芬. ApoE基因多态性与缺血性脑血管病患者脑微出血的相关性[J]. 山东大学学报(医学版), 2019, 57(4): 47-51+8.
[28] Graff-Radford, J., Lesnick, T., Rabinstein, A.A., Gunter, J., Aakre, J., Przybelski, S.A., et al. (2020) Cerebral Microbleed Incidence, Relationship to Amyloid Burden: The Mayo Clinic Study of Aging. Neurology, 94, e190-e199. [Google Scholar] [CrossRef] [PubMed]
[29] Bonaterra-Pastra, A., Benítez, S., Pancorbo, O., Rodríguez-Luna, D., Vert, C., Rovira, A., et al. (2023) Association of Candidate Genetic Variants and Circulating Levels of ApoE/ApoJ with Common Neuroimaging Features of Cerebral Amyloid Angiopathy. Frontiers in Aging Neuroscience, 15, Article 1134399. [Google Scholar] [CrossRef] [PubMed]
[30] 白家赫, 于永鹏, 刘丽君, 等. 脑微出血影像学分类与血浆血管内皮生长因子水平及载脂蛋白E基因分型的关系研究[J]. 中国卒中杂志, 2019, 14(9): 856-864.
[31] van Es, A.C.G.M., van der Grond, J., de Craen, A.J.M., Westendorp, R.G.J., Bollen, E.L.E.M., Blauw, G.J., et al. (2011) Cerebral Microbleeds and Cognitive Functioning in the PROSPER Study. Neurology, 77, 1446-1452. [Google Scholar] [CrossRef] [PubMed]
[32] Nannoni, S., Ohlmeier, L., Brown, R.B., Morris, R.G., MacKinnon, A.D. and Markus, H.S. (2022) Cognitive Impact of Cerebral Microbleeds in Patients with Symptomatic Small Vessel Disease. International Journal of Stroke, 17, 415-424. [Google Scholar] [CrossRef] [PubMed]
[33] Chung, C.P., Chou, K.H., Chen, W.T., et al. (2016) Strictly Lobar Cerebral Microbleeds Are Associated with Cognitive Impairment. Stroke, 47, 2497-2502. [Google Scholar] [CrossRef] [PubMed]
[34] Poels, M.M.F., Ikram, M.A., van der Lugt, A., Hofman, A., Niessen, W.J., Krestin, G.P., et al. (2012) Cerebral Microbleeds Are Associated with Worse Cognitive Function: The Rotterdam Scan Study. Neurology, 78, 326-333. [Google Scholar] [CrossRef] [PubMed]
[35] Inoue, Y., Shue, F., Bu, G. and Kanekiyo, T. (2023) Pathophysiology and Probable Etiology of Cerebral Small Vessel Disease in Vascular Dementia and Alzheimer’s Disease. Molecular Neurodegeneration, 18, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
[36] Charidimou, A., Shams, S., Romero, J.R., Ding, J., Veltkamp, R., Horstmann, S., et al. (2018) Clinical Significance of Cerebral Microbleeds on MRI: A Comprehensive Meta-Analysis of Risk of Intracerebral Hemorrhage, Ischemic Stroke, Mortality, and Dementia in Cohort Studies (v1). International Journal of Stroke, 13, 454-468. [Google Scholar] [CrossRef] [PubMed]
[37] Akoudad, S., Portegies, M.L.P., Koudstaal, P.J., Hofman, A., van der Lugt, A., Ikram, M.A., et al. (2015) Cerebral Microbleeds Are Associated with an Increased Risk of Stroke: The Rotterdam Study. Circulation, 132, 509-516. [Google Scholar] [CrossRef] [PubMed]
[38] Charidimou, A., Imaizumi, T., Moulin, S., Biffi, A., Samarasekera, N., Yakushiji, Y., et al. (2017) Brain Hemorrhage Recurrence, Small Vessel Disease Type, and Cerebral Microbleeds. Neurology, 89, 820-829. [Google Scholar] [CrossRef] [PubMed]
[39] 李芸, 樊新颖. 脑微出血与缺血性脑卒中后抑郁的关联性研究[J]. 医学研究生学报, 2016, 29(11): 1136-1139.
[40] Yan, J., Qiu, J., Wu, X., Ge, Y., Wang, J. and Wang, Y. (2020) Pretreatment Cerebral Microbleeds and Symptomatic Intracerebral Hemorrhage Post-Thrombolysis: A Systematic Review and Meta-Analysis. Journal of Neurology, 267, 301-307. [Google Scholar] [CrossRef] [PubMed]
[41] Zhou, Z., Ge, Y., Yoshimura, S., Torii-Yoshimura, T., Sakamoto, Y., Liu, X., et al. (2025) Intravenous Thrombolysis in Patients with Acute Ischemic Stroke and Cerebral Microbleeds: Results from the ENCHANTED Trial. International Journal of Stroke, 2025, Article 17474930251392751. [Google Scholar] [CrossRef
[42] Braemswig, T.B., Villringer, K., Turc, G., Erdur, H., Fiebach, J.B., Audebert, H.J., et al. (2019) Predictors of New Remote Cerebral Microbleeds after IV Thrombolysis for Ischemic Stroke. Neurology, 92, e630-e638. [Google Scholar] [CrossRef] [PubMed]
[43] Jabłoński, B., Gójska-Grymajło, A., Ossowska, D., Szurowska, E., Wyszomirski, A., Rojek, B., et al. (2021) New Remote Cerebral Microbleeds on T2*-Weighted Echo Planar MRI after Intravenous Thrombolysis for Acute Ischemic Stroke. Frontiers in Neurology, 12, Article 744701. [Google Scholar] [CrossRef] [PubMed]
[44] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性卒中诊治指南2023 [J]. 中华神经科杂志, 2024, 57(6): 523-559.
[45] Vernooij, M.W., Haag, M.D., Van Der Lugt, A., et al. (2009) Use of Antithrombotic Drugs and the Presence of Cerebral Microbleeds: The Rotterdam Scan Study. Archives of Neurology, 66, 714-720. [Google Scholar] [CrossRef] [PubMed]
[46] Naka, H., Nomura, E., Kitamura, J., Imamura, E., Wakabayashi, S. and Matsumoto, M. (2013) Antiplatelet Therapy as a Risk Factor for Microbleeds in Intracerebral Hemorrhage Patients: Analysis Using Specific Antiplatelet Agents. Journal of Stroke and Cerebrovascular Diseases, 22, 834-840. [Google Scholar] [CrossRef] [PubMed]
[47] Kim, B.J., Kwon, S.U., Park, J., Kim, Y., Hong, K., Wong, L.K.S., et al. (2020) Cilostazol versus Aspirin in Ischemic Stroke Patients with High-Risk Cerebral Hemorrhage: Subgroup Analysis of the PICASSO Trial. Stroke, 51, 931-937. [Google Scholar] [CrossRef] [PubMed]
[48] Park, H.K., Lee, J.S., Kim, B.J., et al. (2021) Cilostazol versus Aspirin in Ischemic Stroke with Cerebral Microbleeds versus Prior Intracerebral Hemorrhage. International Journal of Stroke, 16, 1019-1030. [Google Scholar] [CrossRef] [PubMed]
[49] Chen, Z., Ding, Y., Ji, X., Yin, X. and Meng, R. (2021) Advance of Antithrombotic Treatment in Patients with Cerebral Microbleed. Journal of Thrombosis and Thrombolysis, 51, 530-535. [Google Scholar] [CrossRef] [PubMed]
[50] 喻志慧, 马骏, 陈建光, 等. 心源性脑梗死合并脑微出血患者口服抗凝剂的安全性分析[J]. 浙江临床医学, 2020, 22(8): 1159-1160.
[51] Mavrakanas, T.A., Charytan, D.M. and Winkelmayer, W.C. (2020) Direct Oral Anticoagulants in Chronic Kidney Disease: An Update. Current Opinion in Nephrology & Hypertension, 29, 489-496. [Google Scholar] [CrossRef] [PubMed]