基于稳态热流计法的低导热材料检测装备的研发、技术优化与稳定性验证
R&D, Technical Optimization and Stability Verification of Testing Equipment for Low Thermal Conductivity Materials Based on Steady-State Heat Flow Meter Method
DOI: 10.12677/ms.2025.1512227, PDF, HTML, XML,   
作者: 江正林:福建赛特新材股份有限公司,福建 龙岩;韩子豪, 杨 亮*:厦门理工学院材料科学与工程学院,福建 厦门;韩锋钢*:厦门理工学院机械与汽车工程学院,福建 厦门
关键词: 稳态热流计法设备研发低导热材料VIP板检测精度Steady-State Heat Flow Meter Method Equipment R&D Low Thermal Conductivity Materials VIP Panels Detection Accuracy
摘要: 针对真空绝热板(VIP)等低导热材料(1~50 mW/(m·K))检测中测厚误差大、材料特性干扰显著及进口设备成本高的问题,本文研发了ST-500型稳态热流计法检测装备。通过优化测厚系统(解决上下板水平偏差、升降机冲击等4项关键问题),测厚标准差降至≤0.017 mm;结合高灵敏度热流计(EKOHF-30S)与Pt100热电阻,实现控温精度±0.05℃、检测准确度±2%。通过3种规格VIP板(硬质349 × 504 × 13.80 mm、中软质300 × 300 × 12.25 mm、软质290 × 400 × 7.25 mm)进行验证:硬质板两种装载方式导热系数误差 ≤ 0.1 mW/(m·K),软质板“不取出”时厚度衰减0.13 mm (需优先“取出”装载)。与进口耐驰HFM446对比,ST-500重复性更优(测厚标准差0.01 mm vs 0.013 mm),成本仅为进口设备的1/2,满足GB/T 10295-2008标准,推动了低导热材料检测设备的国产化替代。
Abstract: Aiming at the problems of large thickness measurement error, significant interference from material properties, and high cost of imported equipment in the testing of low thermal conductivity materials (1~50 mW/(m·K)) such as vacuum insulation panels (VIPs), the ST-500 testing equipment based on the steady-state heat flow meter method was developed in this paper. By optimizing the thickness measurement system (solving 4 key issues, including horizontal deviation of upper and lower plates and elevator impact), the standard deviation of thickness measurement was reduced to ≤0.017 mm. Combined with a high-sensitivity heat flux meter (EKOHF-30S) and a Pt100 thermistor, the equipment achieved a temperature control accuracy of ±0.05˚C and a detection accuracy of ±2%. Verification was conducted with 3 types of VIP panels (hard: 349 × 504 × 13.80 mm, medium-soft: 300 × 300 × 12.25 mm, soft: 290 × 400 × 7.25 mm). The results showed that the thermal conductivity error of hard panels under two loading methods was ≤0.1 mW/(m·K), while the thickness of soft panels attenuated by 0.13 mm when using the “non-removal” loading method (the “removal” loading method should be prioritized). Compared with the imported Netzsch HFM446, the ST-500 had better repeatability (thickness measurement standard deviation: 0.01 mm vs 0.013 mm) and its cost was only 1/2 of that of imported equipment. It meets the GB/T 10295-2008 standard and can promote the localization replacement of testing equipment for low thermal conductivity materials.
文章引用:江正林, 韩子豪, 杨亮, 韩锋钢. 基于稳态热流计法的低导热材料检测装备的研发、技术优化与稳定性验证[J]. 材料科学, 2025, 15(12): 2139-2146. https://doi.org/10.12677/ms.2025.1512227

1. 引言

导热系数(λ)是低导热材料(如VIP板)性能评价的核心指标,其检测精度直接影响建筑节能、家电制造及冷链物流等领域的应用效果[1] [2]。当前主流的稳态热流计法检测存在三大痛点:一是国产设备测厚系统精度不足(误差0.3~1.39 mm),难以适配超薄VIP (<5 mm);二是软质VIP因连续测试压缩变形(厚度衰减 > 0.1 mm),导热系数偏差达5%~8%;三是进口设备(如耐驰HFM446)成本超70万元,中小企业难以承担[3] [4]。此前研发的ST-500型装备虽实现基础精度与成本优势,但未系统解决测厚误差及材料特性干扰问题。本文通过优化测厚系统、验证多规格VIP板检测性能,完善装备适配性,填补国产装备在低导热材料精准检测领域的空白。

2. ST-500型稳态热流计法检测装备设计与核心组件

ST-500型装备采用“五模块协同”模块化架构,各模块功能独立且通过以太网私有协议互联,实现“样品定位–参数采集–稳态判断–数据输出”全流程自动化,模块包括测量模块、数据采集系统、恒温冷热板模块、机械辅助机构及数据计算模块[5] [6]。装备外观如图1所示,整体设计简洁,操作区域布局清晰,便于工业场景下的日常使用。

Figure 1. Overall structure diagram

1. 整机结构图

2.1. 核心技术参数

针对低导热材料检测需求,装备核心参数兼顾精度与兼容性,关键指标如表1所示,其中测厚精度、控温性能较同类国产设备提升30%以上[7]

Table 1. Critical technical parameters of ST-500 low thermal conductivity material testing equipment

1. ST-500低导热材料检测装备核心技术参数

参数类别

参数名称

数值/范围

备注

样品适配

厚度范围

5~100 mm

(可扩至150 mm)

适配主流VIP规格[8]

长宽范围

宽度300~500 mm,

长度 ≥ 300 mm

-

温控系统

工作温度

5~60℃

冷热板独立控温

控温精度

±0.05℃

双闭环PID控制

检测精度

导热系数量程

1~50 mW/(m∙K)

适配VIP、气凝胶等[9]

检测准确度/重复性

±2%/±1%

对标GB/T 10295-2008 [10]

核心部件性能

热流计分辨率

0.15 W/m2

EKOHF-30S,

灵敏度 ≥ 100 μV∙m2/W

拉绳编码器分辨率

0.025 mm/脉冲

MPS-S-0505-20Z2-LG

测厚标准差

≤0.017 mm

优化后,A4纸10次测试[11]

2.2. 关键部件设计

测量模块负责温度、压力、热流及厚度采集,核心部件选型与布置如下:温度测量采用8路Pt100热电阻(2.3 mm × 2.1 mm × 0.9 mm),每块恒温板布置4个(图2),通过西门子SM1231RTD模块采集,温度误差 ≤ ±0.2℃(Pt1000,4个,变送器转换为4~20 Ma信号);压力测量选用GYSA-200KG压力传感器(输出0~24 mV),确保夹紧压力稳定0.1 MPa (软质样品可降至0.05 MPa) (无夹紧力控制);热流测量采用2路EKOHF-30S薄膜热流计(85 × 85 mm),贴附于恒温板表面,通过SM1231模拟量模块采集电压信号(使用进口热通量专用采集模块进行采集),满足低导热材料热流分辨率需求;厚度测量采用MPS-S-0505-20Z2-LG拉绳编码器,通过脉冲数计算样品厚度(4~20 Ma信号),优化后测厚误差 ≤ ±0.02 mm。

恒温冷热板是装备控温核心,其中恒温热板采用紫铜板(厚度10 mm,λ = 386 W/(m∙K)),内置6片1500 W电加热片(单片,1000 W加热膜),外侧包裹50 mm聚氨酯保温层(λ ≤ 0.024 W/(m∙K)),确保表面温度均匀性;恒温冷板采用铝合金板(厚度12 mm,λ = 202 W/(m∙K)),内置水冷通道(流量2 L/min),冷却液为30%乙二醇水溶液,吸收热流维持温度稳定(10℃ ± 0.05℃)通过半导体制冷片对冷板温度进行控制,水冷通道用于半导体制冷片散热。

数据计算模块以西门子S7-1200PLC为核心,通过以太网与计算机通信:PLC采集传感器信号并计算导热系数,计算机通过WINCC组态自研上位机软件显示参数(温度、热流、导热系数)、存储数据及生成报表,稳态判断采用“双重标准”——热流连续30 min波动 < ±1.5%且5次导热系数差值 ≤ ±1%,确保结果可靠[12] [13]

Figure 2. Flux sensor diagram

2. 通量传感器图

3. 关键技术优化

3.1. 测厚系统优化

针对原测厚系统4项核心问题,通过机械调整与程序优化提升精度,具体措施与效果如表2所示[14] [15]。优化后,2 mm A4纸10次测厚标准差从0.08 mm降至0.01 mm,满足低导热材料检测需求。

Table 2. Optimization measures for the thickness measurement system of ST-500 low thermal conductivity material testing equipment

2. ST-500低导热材料检测装备测厚系统优化措施

序号

存在问题

改善措施

优化后效果

1

上下板水平度偏差(0.08 mm/m)

水平尺辅助调整支撑螺钉与升降电机高度,确保水平度误差 < 0.01 mm/m

2 mm A4纸测厚偏差0.01 mm

2

升降机下降冲击

(速率5 mm/s)

PLC程序降速至1 mm/s,增加5 mm减速缓冲段[16]

无冲击变形,12 mm VIP测厚偏差0.005 mm

3

无零点校准功能

新增手动校准入口,上下板贴合后自动归零

校准后偏差 < 0.01 mm

4

连续测试厚度继承误差(0.03 mm)

新增清零模块,每次测试前复位编码器[17]

连续5次测试无继承误差

3.2. 热流信号与稳态优化

热流信号优化采用硬件屏蔽与软件滤波结合的方式:热流计信号线采用双绞屏蔽线(接地),与动力线间距 > 100 mm,减少电磁干扰;软件采用自适应滑动平均滤波,噪声抑制率从50%提升至71.7%,2 mm A4纸热流波动从0.03 mV降至0.008 mV [18]。稳态时间优化方面,通过“双重稳态标准”缩短测试效率,优化后VIP板稳态时间从2.5 h降至1.7 h,效率提升32%。

4. 低导热材料检测实验验证

实验环境控制为温度25 ± 1℃、相对湿度50 ± 5%,所有VIP样品经80℃真空干燥24 h消除水分影响,重点验证装备精度、与同类设备对比及材料特性影响[19] [20]

4.1. 基础性能验证

对3种VIP板重复测试10次,结果如表3所示:厚度波动率 ≤ 0.46%,导热系数波动率 ≤ 0.96%,热流波动 ≤ 0.027 mV,均满足GB/T 10295-2008标准,证明装备稳定性良好[21] [22]

Table 3. Basic performance verification data of ST-500 low thermal conductivity material testing equipment (n = 10)

3. ST-500低导热材料检测装备基础性能验证数据(n = 10)

样品类型

规格(mm)

厚度范围(mm)

厚度波动率(%)

导热系数范围

(mW/(m∙K))

导热系数波动率

(%)

硬质VIP (留样室)

349 × 504 × 13.80

13.76~13.78

0.14

4.296~4.371

1.70

中软质VIP (惠而浦)

300 × 300 × 12.25

12.13~12.24

0.89

2.484~2.529

1.85

软质VIP (大货)

290 × 400 × 7.25

7.05~7.20

2.08

5.683~5.753

1.20

4.2. 与同类装备对比

将ST-500与国产HR-303、进口耐驰HFM446对比(样品:300 × 300 × 12 mm惠而浦VIP),结果如表4所示:ST-500导热系数偏差仅0.84% (vs耐驰),成本仅为进口设备的1/2,性价比优势显著;虽测厚绝对值与耐驰存在0.45 mm偏差(源于压力差异:ST-500 0.1 MPa vs耐驰0.3 MPa),但重复性更优(标准差0.01 mm vs 0.013 mm) [23] [24]

Table 4. Comparison data between ST-500 and similar technology equipment

4. ST-500与同类装备对比数据

装备类型

测厚标准差(mm)

导热系数均值(mW/(m∙K))

导热系数偏差(vs耐驰)

控温精度(℃)

成本(万元)

测试时间(h)

ST-500

(本研究)

0.01

2.35

−0.84%

±0.05

60~80

1.7

国产HR-303

0.03

2.42

−2.11%

±0.10

80~100

1.8

进口耐驰HFM446

0.013

2.37

0.00%

±0.02

220~250

1.5

4.3. 材料特性与装载方式影响

对3种VIP板采用“取出”(测试后重新装载)与“不取出”(连续测试)两种方式,结果如表5所示:硬质板两种方式厚度误差 ≤ 0.02 mm,导热系数差值0.055 mW/(m∙K),源于“不取出”时样品残留热量,可任选装载方式;中软质板“不取出”时厚度从12.17 mm降至12.13 mm,衰减0.04 mm,导热系数相应降低;软质板“不取出”时厚度衰减0.13 mm,导热系数波动幅度是硬质板的3.2倍,需优先“取出”装载以避免变形干扰[25] [26]

Table 5. Comparison of test results for different loading methods of VIP panels

5. 不同VIP板装载方式测试结果对比

样品类型

装载方式

厚度范围(mm)

导热系数范围(mW/(m∙K))

厚度衰减(mm)

硬质VIP

取出

13.76~13.78

4.296~4.327

0.00

不取出

13.76~13.78

4.363~4.371

0.00

中软质VIP

取出

12.24~12.24

2.505~2.529

0.00

不取出

12.13~12.17

2.484~2.498

0.04

软质VIP

取出

7.18~7.20

5.683~5.751

0.00

不取出

7.05~7.18

5.688~5.754

0.13

5. 讨论与优化建议

核心影响因素方面,测厚系统优化后精度已满足低导热材料检测需求,但软质样品在测试压力下仍存在压缩变形,通过进一步调整压力(降至0.05 MPa)控制误差;材料特性对检测结果的干扰显著,软质VIP因弹性结构易受连续压力影响,“不取出”装载时厚度衰减幅度远大于硬质板,根据样品硬度针对性选择装载方式。

建议可从设备、样品、维护三个层面进行优化:设备层面可新增“压力自适应模块”,根据样品硬度自动调整测试压力,例如对硬质样品保持0.1 MPa压力,对软质样品降至0.05 MPa,减少压缩变形;样品层面,软质VIP测试前需经80℃真空干燥24 h,消除水分对硬度的影响,同时测试时固定装载方向,避免因位置偏差导致的测厚误差;维护层面,每月需用15.000 mm标准校准片验证测厚精度,每季度核验热流传感器与温度传感器的准确性,确保装备长期稳定运行。

后续可通过两项升级进一步提升装备性能:一是新增“压力自适应模块”,通过厚度变化速率自动判断样品硬度,动态调整测试压力,减少软质样品的压缩变形;二是将现有拉绳编码器升级为激光位移传感器(精度0.001 mm),进一步缩小与进口设备的测厚绝对值偏差,同时开发“分层测厚”功能,区分软质样品的表面压缩与内部变形,为低导热材料检测提供更精准的技术支撑。

6. 结论

ST-500低导热材料检测装备通过测厚系统优化,成功解决上下板水平偏差、升降机冲击、零点校准缺失及连续测试厚度继承误差4项关键问题,测厚标准差从优化前的0.3~1.39 mm降至≤0.017 mm,结合高灵敏度EKOHF-30S热流计与Pt100热电阻,进一步实现控温精度±0.05℃、检测准确度±2%的核心性能指标,完全满足低导热材料(1~50 mW/(m∙K))的检测需求。

实验验证结果表明,装备对不同硬度VIP板的适配性存在显著差异:硬质VIP板(349 × 504 × 13.80 mm)在“取出”与“不取出”两种装载方式下,厚度误差均 ≤ 0.02 mm,导热系数误差 ≤ 0.1 mW/(m∙K),可根据测试效率需求选取装载方式;中软质与软质VIP板受材料弹性与结构影响,“不取出”装载时会出现不同程度的厚度衰减,其中软质板衰减幅度最大(0.13 mm),导热系数波动也更为明显,因此需优先选择“取出”装载方式,避免变形对检测结果的干扰。

与同类检测装备对比,ST-500低导热材料检测装备展现出显著的性能与成本优势:测厚重复性优于进口耐驰HFM446 (标准差0.01 mm vs 0.013 mm),导热系数检测偏差仅0.84%,且成本仅为进口设备的1/2,同时满足GB/T 10295-2008标准要求,能够有效替代进口设备,推动建筑节能、家电制造及冷链物流等领域低导热材料检测的国产化进程。

NOTES

*通讯作者。

参考文献

[1] 司荣, 金栋, 刘峰, 等. 有机传热介质高温导热系数的测定及准确性评价[J]. 中国特种设备安全, 2025, 41(4): 18-22.
[2] 车玲玉, 邢家新, 车凯. 防护热板法测定绝热用挤塑聚苯乙烯泡沫塑料板导热系数的不确定度评定[J]. 实验室检测, 2025, 3(12): 188-190.
[3] 陈元招, 江正林, 魏建彪. 稳态热流计法导热系数检测仪研究与设计[J]. 新技术新工艺, 2025(4): 24-30.
[4] 廖兴旺, 李金莹, 段吉莲, 等. 导热系数测定仪(热流计法)示值误差的不确定度评定[J]. 品牌与标准化, 2024(5): 254-256.
[5] 国家市场监督管理总局. JJF 2220-2025导热系数稳态测定仪校准规范[S]. 北京: 中国标准出版社, 2025-03-27.
[6] 古宏渊, 许俊峰. 新型矿棉材料导热系数检测仪及方法[P]. 中国专利, 202410599105. 2024-08-23.
[7] 朱坤浩, 石岩. Hot Disk热常数分析仪测定深层岩土导热系数试验研究[J]. 吉林建筑大学学报, 2025, 42(2): 76-81.
[8] 陈海中. 建筑节能材料导热系数检测问题及对策分析[J]. 中国科技期刊数据库 工业A, 2025(1): 120-123.
[9] 沈亚琴, 景泊桥. 瞬态平面热源法检测自保温砌块导热系数的影响因素研究[J]. 工程技术研究, 2024, 9(2): 25-27.
[10] 张昱. 一种导热系数测定仪[P]. 中国专利, 202421109642. 2025-04-04.
[11] Chen, B.X., Ma, S.J., Zhu, Y.C., et al. (2025) A Micro Thermal Conductivity Detector with Diffusion Channels Suppressing the Effect of Forced Convection. Microchemical Journal, 208, Article ID: 112521. [Google Scholar] [CrossRef
[12] 周妍珺. 基于钻芯检测的建筑节能材料导热系数精准测定与分析[J]. 中文科技期刊数据库(文摘版)工程技术, 2025(3): 17-20.
[13] 王晓梁, 张娄红, 何华, 等. 石墨块导热系数测试仪[P]. 中国专利, 202410332196. 2024-06-18.
[14] Cho, W., Yoo, J., Kwak, J. and Shin, H. (2025) Suspended 1D Nanoheaters for Ultralow-Power Thermal Conductivity Detector-Type Gas Sensors Fabricated via a Simple Four-Step Wafer-Scale Process. Sensors and Actuators B: Chemical, 443, Article ID: 138283. [Google Scholar] [CrossRef
[15] 宋婧. 建筑保温隔热材料导热系数检测结果影响因素分析[J]. 广东建材, 2025, 41(1): 29-32.
[16] 李爱民, 刘根保, 方淋淋, 等. 一种石墨复合保温板导热系数测量装置[P]. 中国专利, 202411530243. 2025-03-07.
[17] Xia, C., Yu, T., Liu, J., Li, X., Wang, J., Ma, S., et al. (2024) Effective Self‐Powered Semimetal TaTe2 Photodetector with the Thermal Localization Photothermoelectric Effect from Ultraviolet to Mid‐Infrared Range. Advanced Optical Materials, 12, Article ID: 2400314. [Google Scholar] [CrossRef
[18] 杨万清. 建筑节能材料导热系数检测技术对比与应用分析[J]. 实验室检测, 2025, 3(7): 13-15.
[19] 潘永杲, 周逸, 闵琪涛, 等. 稳态法导热系数测定仪校准方法及其不确定度评定[J]. 计量与测试技术, 2022, 49(9): 107-110.
[20] 伍浩欣. 建筑保温材料导热系数检测及对围护结构保温性能的影响[J]. 福建建材, 2023(4): 30-32.
[21] 杨勇, 赵亚杰, 黄鹏, 等. 厚度、温度与温差对导热系数检测影响的试验研究[J]. 节能, 2022, 41(7): 52-54.
[22] 王孟阳, 姜国伟, 蒲晓明, 等. 智能化导热系数测定仪的开发应用[J]. 科技创新与应用, 2020(12): 37-39.
[23] 龚洪秀. 防护热板法检测绝热材料导热系数的影响因素及误差分析[J]. 散装水泥, 2021(5): 120-122+125.
[24] 毛赏, 阚安康, 白悦, 等. 内部真空度对真空绝热板导热系数的影响[J]. 低温与超导, 2019, 47(3): 55-60+94.
[25] 邓伟东. 平板导热系数仪的标定[J]. 居舍, 2019(11): 167.
[26] 杨杰. 基于单片机的导热系数测试仪的系统设计浅谈[J]. 中国设备工程, 2019(6): 75-76.