|
[1]
|
Gu, D., Jia, C., Weidenthaler, C., Bongard, H., Spliethoff, B., Schmidt, W., et al. (2015) Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide. Journal of the American Chemical Society, 137, 11407-11418. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhao, S., Li, T., Lin, J., Wu, P., Li, Y., Li, A., et al. (2021) Engineering Co3+-Rich Crystal Planes on Co3O4 Hexagonal Nanosheets for CO and Hydrocarbons Oxidation with Enhanced Catalytic Activity and Water Resistance. Chemical Engineering Journal, 420, Article ID: 130448. [Google Scholar] [CrossRef]
|
|
[3]
|
刘艳. Co3O4基催化剂的制备、表征及甲烷催化燃烧性能研究[D]: [博士学位论文]. 杭州: 浙江工业大学, 2018.
|
|
[4]
|
Xie, X., Li, Y., Liu, Z., Haruta, M. and Shen, W. (2009) Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature, 458, 746-749. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sun, Y., Lv, P., Yang, J., He, L., Nie, J., Liu, X., et al. (2011) Ultrathin Co3O4 Nanowires with High Catalytic Oxidation of Co. Chemical Communications, 47, Article 11279. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Song, L., Liu, Y., Zhang, S., Zhou, C., Ma, K. and Yue, H. (2022) Tuning Oxygen Vacancies of the Co3O4 Catalyst through an Ethanol-Assisted Hydrothermal Method for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 61, 14783-14792. [Google Scholar] [CrossRef]
|
|
[7]
|
Liu, C., Wang, X., Wen, C., Li, B., Tang, C., Lu, J., et al. (2023) Discerning and Modulating Critical Surface Active Sites for Propane and CO Oxidation over Co3O4 Based Catalyst. Applied Surface Science, 617, Article ID: 156572. [Google Scholar] [CrossRef]
|
|
[8]
|
Balakrishnan, A., Gaware, G.J. and Chinthala, M. (2023) Heterojunction Photocatalysts for the Removal of Nitrophenol: A Systematic Review. Chemosphere, 310, Article ID: 136853. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gulati, A., Malik, J., Mandeep, and Kakkar, R. (2020) Peanut Shell Biotemplate to Fabricate Porous Magnetic Co3O4 Coral Reef and Its Catalytic Properties for P-Nitrophenol Reduction and Oxidative Dye Degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, Article ID: 125328. [Google Scholar] [CrossRef]
|
|
[10]
|
Chen, H., Yang, M., Tao, S. and Chen, G. (2017) Oxygen Vacancy Enhanced Catalytic Activity of Reduced Co3O4 towards P-Nitrophenol Reduction. Applied Catalysis B: Environment and Energy, 209, 648-656. [Google Scholar] [CrossRef]
|
|
[11]
|
Chiu, H., Wi-Afedzi, T., Liu, Y., Ghanbari, F. and Lin, K.A. (2020) Cobalt Oxides with Various 3D Nanostructured Morphologies for Catalytic Reduction of 4-Nitrophenol: A Comparative Study. Journal of Water Process Engineering, 37, Article ID: 101379. [Google Scholar] [CrossRef]
|
|
[12]
|
胡文德, 曹宵鸣, 胡培君. 金属掺杂对四氧化三钴催化甲烷燃烧活性影响的理论研究[C]//中国化学会. 中国化学会第十二届全国量子化学会议论文摘要集. 上海: 华东理工大学计算化学中心工业催化研究所, 2014: 476.
|
|
[13]
|
Wang, C., Li, S. and An, L. (2013) Hierarchically Porous Co3O4 Hollow Spheres with Tunable Pore Structure and Enhanced Catalytic Activity. Chemical Communications, 49, Article 7427. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fei, Z., He, S., Li, L., Ji, W. and Au, C. (2012) Morphology-Directed Synthesis of Co3O4 Nanotubes Based on Modified Kirkendall Effect and Its Application in Ch4combustion. Chem. Commun., 48, 853-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Teng, F., Chen, M., Li, G., Teng, Y., Xu, T., Hang, Y., et al. (2011) High Combustion Activity of CH4 and Catalluminescence Properties of CO Oxidation over Porous Co3O4 Nanorods. Applied Catalysis B: Environment and Energy, 110, 133-140. [Google Scholar] [CrossRef]
|
|
[16]
|
Long, Y., Zhu, X., Gao, C., Si, W., Li, J. and Peng, Y. (2025) Modulation of Co Spin State at Co3O4 Crystalline-Amorphous Interfaces for CO Oxidation and N2O Decomposition. Nature Communications, 16, Article No. 1048. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yao, D., Cao, S., Wei, P., Zhang, P., Cheng, F., Zeng, Y., et al. (2025) Efficient Catalytic Decomposition of N2O over Neodymium-Modified Co3O4 Catalysts. Chemical Engineering Journal, 521, Article ID: 167174. [Google Scholar] [CrossRef]
|
|
[18]
|
Sun, Y., Wu, Y., Zhang, Z., Wu, X., Wang, H. and Wu, Z. (2024) Ce‐Pr Co‐Doped Co3O4 with Enriched Oxygen Vacancies for the Efficient Decomposition of N2O. ChemCatChem, 17, e202401060. [Google Scholar] [CrossRef]
|
|
[19]
|
Bao, L., Zhu, S., Chen, Y., Wang, Y., Meng, W., Xu, S., et al. (2022) Anionic Defects Engineering of Co3O4 Catalyst for Toluene Oxidation. Fuel, 314, Article ID: 122774. [Google Scholar] [CrossRef]
|
|
[20]
|
Meng, W., Song, X., Bao, L., Chen, B., Ma, Z., Zhou, J., et al. (2024) Synergistic Doping and De-Doping of Co3O4 Catalyst for Effortless Formaldehyde Oxidation. Chemical Engineering Journal, 494, Article ID: 153028. [Google Scholar] [CrossRef]
|
|
[21]
|
Sun, L., Liang, X., Liu, H., Cao, H., Liu, X., Jin, Y., et al. (2023) Activation of Co-O Bond in (110) Facet Exposed Co3O4 by Cu Doping for the Boost of Propane Catalytic Oxidation. Journal of Hazardous Materials, 452, Article ID: 131319. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhao, Q., Zheng, Y., Song, C., Liu, Q., Ji, N., Ma, D., et al. (2020) Novel Monolithic Catalysts Derived from In-Situ Decoration of Co3O4 and Hierarchical Co3O4@MnOx on Ni Foam for VOC Oxidation. Applied Catalysis B: Environment and Energy, 265, Article ID: 118552. [Google Scholar] [CrossRef]
|
|
[23]
|
Xu, D., Li, J., Li, B., Zhao, H., Zhu, H., Kou, J., et al. (2022) Selective Oxidation of Alcohols to High Value-Added Carbonyl Compounds Using Air over Co-Co3O4@NC Catalysts. Chemical Engineering Journal, 434, Article ID: 134545. [Google Scholar] [CrossRef]
|
|
[24]
|
Teng, Y., Song, L.X., Wang, L.B. and Xia, J. (2014) Face-Raised Octahedral Co3O4 Nanocrystals and Their Catalytic Activity in the Selective Oxidation of Alcohols. The Journal of Physical Chemistry C, 118, 4767-4773. [Google Scholar] [CrossRef]
|
|
[25]
|
Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., Wang, S., et al. (2016) Plasma‐Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie International Edition, 55, 5277-5281. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, X., Cheng, J., Li, H., Xu, Y., Tu, W. and Zhou, J. (2023) Self-Supported N-Doped Hierarchical Co3O4 Electrocatalyst with Abundant Oxygen Vacancies for Acidic Water Oxidation. Chemical Engineering Journal, 465, Article ID: 142745. [Google Scholar] [CrossRef]
|
|
[27]
|
Chen, X., Xu, X., Shao, C., Ke, Z., Cheng, Y., Jin, H., et al. (2024) Facet-Dependent Lattice Oxygen Activation on Oxygen-Defective Co3O4 for Electrocatalytic Oxygen Evolution Reaction. ACS Energy Letters, 9, 2182-2192. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, Y., Li, F., Meng, X., Li, S., Zeng, J. and Chen, Y. (2018) Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis, 8, 1913-1920. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhang, Q., Yang, P., Zhang, H., Zhao, J., Shi, H., Huang, Y., et al. (2022) Oxygen Vacancies in Co3O4 Promote CO2 Photoreduction. Applied Catalysis B: Environment and Energy, 300, Article ID: 120729. [Google Scholar] [CrossRef]
|
|
[30]
|
Huang, J., Ren, H., Chen, K. and Shim, J. (2014) Controlled Synthesis of Porous Co3O4 Micro/Nanostructures and Their Photocatalysis Property. Superlattices and Microstructures, 75, 843-856. [Google Scholar] [CrossRef]
|