|
[1]
|
Jimenez, S.A., Mendoza, F.A. and Piera-Velazquez, S. (2025) A Review of Recent Studies on the Pathogenesis of Systemic Sclerosis: Focus on Fibrosis Pathways. Frontiers in Immunology, 16, Article ID: 1551911. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Khanna, D., Tashkin, D.P., Denton, C.P., Renzoni, E.A., Desai, S.R. and Varga, J. (2020) Etiology, Risk Factors, and Biomarkers in Systemic Sclerosis with Interstitial Lung Disease. American Journal of Respiratory and Critical Care Medicine, 201, 650-660. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nihtyanova, S.I. and Denton, C.P. (2020) Pathogenesis of Systemic Sclerosis Associated Interstitial Lung Disease. Journal of Scleroderma and Related Disorders, 5, 6-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Doskaliuk, B., Kreminska, I., Fedorchenko, Y., Zaiats, L. and Yatsyshyn, R. (2024) Systemic Sclerosis Associated Respiratory Involvement: Scopus-Based Analysis of Articles in 2013-2022. Rheumatology International, 44, 693-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hu, M., Yao, Z., Xu, L., Peng, M., Deng, G., Liu, L., et al. (2023) M2 Macrophage Polarization in Systemic Sclerosis Fibrosis: Pathogenic Mechanisms and Therapeutic Effects. Heliyon, 9, e16206. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nagy, L., Nagy, G., Juhász, T., Fillér, C., Szűcs, G., Szekanecz, Z., et al. (2025) Comparative Evaluation of Bleomycin-and Collagen-V-Induced Models of Systemic Sclerosis: Insights into Fibrosis and Autoimmunity for Translational Research. International Journal of Molecular Sciences, 26, Article No. 2618. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Campochiaro, C. and Allanore, Y. (2021) An Update on Targeted Therapies in Systemic Sclerosis Based on a Systematic Review from the Last 3 Years. Arthritis Research & Therapy, 23, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Colina, M. and Campana, G. (2025) Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. Journal of Clinical Medicine, 14, Article No. 1735. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Masoumi, M., Bodaghi, A.B., Khorramdelazad, H., Ebadi, E., Houshmandfar, S., Saeedi-Boroujeni, A., et al. (2024) Unraveling the Immunometabolism Puzzle: Deciphering Systemic Sclerosis Pathogenesis. Heliyon, 10, e35445. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tezcan, D., Sivrikaya, A., Ergün, D., Özer, H., Eryavuz Onmaz, D., Körez, M.K., et al. (2021) Evaluation of Serum Interleukin-6 (IL-6), IL-13, and IL-17 Levels and Computed Tomography Finding in Interstitial Lung Disease Associated with Connective Tissue Disease Patients. Clinical Rheumatology, 40, 4713-4724. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yang, X., Yang, J., Xing, X., Wan, L. and Li, M. (2014) Increased Frequency of Th17 Cells in Systemic Sclerosis Is Related to Disease Activity and Collagen Overproduction. Arthritis Research & Therapy, 16, R4. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dai, B., Ding, L., Zhao, L., Zhu, H. and Luo, H. (2022) Contributions of Immune Cells and Stromal Cells to the Pathogenesis of Systemic Sclerosis: Recent Insights. Frontiers in Pharmacology, 13, Article ID: 826839. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mouawad, J.E. and Feghali-Bostwick, C. (2023) The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. International Journal of Molecular Sciences, 24, Article No. 2963. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Carvalheiro, T., Zimmermann, M., Radstake, T.R.D.J. and Marut, W. (2020) Novel Insights into Dendritic Cells in the Pathogenesis of Systemic Sclerosis. Clinical and Experimental Immunology, 201, 25-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Frasca, L. and Lande, R. (2020) Toll-Like Receptors in Mediating Pathogenesis in Systemic Sclerosis. Clinical and Experimental Immunology, 201, 14-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Woo, S., Gandhi, S., Ghincea, A., Saber, T., Lee, C.J. and Ryu, C. (2023) Targeting the NLRP3 Inflammasome and Associated Cytokines in Scleroderma Associated Interstitial Lung Disease. Frontiers in Cell and Developmental Biology, 11, Article ID: 1254904. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Massagué, J. and Sheppard, D. (2023) TGF-β Signaling in Health and Disease. Cell, 186, 4007-4037. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
De Pieri, A., Korman, B.D., Jüngel, A. and Wuertz-Kozak, K. (2021) Engineering Advanced in Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Advanced Biology, 5, Article ID: 2000168. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Del Galdo, F., Lescoat, A., Conaghan, P.G., Bertoldo, E., Čolić, J., Santiago, T., et al. (2025) EULAR Recommendations for the Treatment of Systemic Sclerosis: 2023 Update. Annals of the Rheumatic Diseases, 84, 29-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Takada, T., Aoki, A., Shima, K. and Kikuchi, T. (2024) Advancements in the Treatment of Interstitial Lung Disease in Systemic Sclerosis with the Approval of Mycophenolate Mofetil. Respiratory Investigation, 62, 1242-1246. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tashkin, D.P., Roth, M.D., Clements, P.J., Furst, D.E., Khanna, D., Kleerup, E.C., et al. (2016) Mycophenolate Mofetil versus Oral Cyclophosphamide in Scleroderma-Related Interstitial Lung Disease (SLS II): A Randomised Controlled, Double-Blind, Parallel Group Trial. The Lancet Respiratory Medicine, 4, 708-719. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Volkmann, E.R. (2023) Combining Rituximab with Mycophenolate for the Treatment of Interstitial Lung Disease. European Respiratory Journal, 61, Article ID: 2300614. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Roofeh, D., Lin, C.J.F., Goldin, J., Kim, G.H., Furst, D.E., Denton, C.P., et al. (2021) Tocilizumab Prevents Progression of Early Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis & Rheumatology, 73, 1301-1310. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fragoulis, G.E., Nikiphorou, E., Dey, M., Zhao, S.S., Courvoisier, D.S., Arnaud, L., et al. (2023) 2022 EULAR Recommendations for Screening and Prophylaxis of Chronic and Opportunistic Infections in Adults with Autoimmune Inflammatory Rheumatic Diseases. Annals of the Rheumatic Diseases, 82, 742-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jang, J.H., Her, M., Oh, J.H., Park, J.H., Jung, S.Y., Ko, J., et al. (2025) Rituximab in Systemic Sclerosis-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Science Progress, 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Macrea, M., Ghazipura, M., Herman, D., Barnes, H., Knight, S.L., Silver, R.M., et al. (2024) Rituximab in Patients with Systemic Sclerosis-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society, 21, 317-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xu, L., Wang, F. and Luo, F. (2022) Rituximab for the Treatment of Connective Tissue Disease-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article ID: 1019915. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nie, Y., Zhang, N., Li, J., Wu, D., Yang, Y., Zhang, L., et al. (2024) Hypogammaglobulinemia and Infection Events in Patients with Autoimmune Diseases Treated with Rituximab: 10 Years Real-Life Experience. Journal of Clinical Immunology, 44, Article No. 179. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Distler, O., Highland, K.B., Gahlemann, M., Azuma, A., Fischer, A., Mayes, M.D., et al. (2019) Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. New England Journal of Medicine, 380, 2518-2528. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Allanore, Y., Vonk, M.C., Distler, O., Azuma, A., Mayes, M.D., James, A., et al. (2025) Continued Nintedanib in Patients with Systemic Sclerosis-Associated Interstitial Lung Disease: 3-Year Data from SENSCIS-ON. RMD Open, 11, e005086. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Viswanathan, V.K., Ghoshal, A.G., Mohan, A., Patil, K., Bhargave, C., Choudhari, S., et al. (2024) Patient Profile-Based Management with Nintedanib in Patients with Idiopathic Pulmonary Fibrosis. Pulmonary Therapy, 10, 377-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Khanna, D., Albera, C., Fischer, A., Khalidi, N., Raghu, G., Chung, L., et al. (2016) An Open-Label, Phase II Study of the Safety and Tolerability of Pirfenidone in Patients with Scleroderma-Associated Interstitial Lung Disease: The LOTUSS Trial. The Journal of Rheumatology, 43, 1672-1679. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Acharya, N., Sharma, S.K., Mishra, D., Dhooria, S., Dhir, V. and Jain, S. (2020) Efficacy and Safety of Pirfenidone in Systemic Sclerosis-Related Interstitial Lung Disease—A Randomised Controlled Trial. Rheumatology International, 40, 703-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Birnhuber, A., Jandl, K., Biasin, V., Fließer, E., Valzano, F., Marsh, L.M., et al. (2022) Pirfenidone Exacerbates Th2-Driven Vasculopathy in a Mouse Model of Systemic Sclerosis-Associated Interstitial Lung Disease. European Respiratory Journal, 60, Article ID: 2102347. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Fuster-Martínez, I. and Calatayud, S. (2024) The Current Landscape of Antifibrotic Therapy across Different Organs: A Systematic Approach. Pharmacological Research, 205, Article ID: 107245. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Martín-López, M. and Carreira, P.E. (2023) The Impact of Progressive Pulmonary Fibrosis in Systemic Sclerosis-Associated Interstitial Lung Disease. Journal of Clinical Medicine, 12, Article No. 6680. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Panopoulos, S., Tzilas, V., Bournia, V., Tektonidou, M.G. and Sfikakis, P.P. (2024) Tocilizumab plus Nintedanib for Progressive Interstitial Lung Disease in Systemic Sclerosis: A One-Year Observational Study. Rheumatology International, 44, 1959-1966. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Peltzer, J., Aletti, M., Frescaline, N., Busson, E., Lataillade, J. and Martinaud, C. (2018) Mesenchymal Stromal Cells Based Therapy in Systemic Sclerosis: Rational and Challenges. Frontiers in Immunology, 9, Article No. 2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Abril, A., Mira-Avendano, I., Durand, N., Baig, H., Lee, A., Baer, M. and Zubair, A. (2023) Phase I Study to Evaluate the Safety of Allogeneic Bone Marrow Derived Mesenchymal Stem Cells for Interstitial Lung Disease in Patients with Connective Tissue Disorders. Arthritis & Rheumatology, 75, 2987-2989.
|
|
[40]
|
da Silva, M.M.A., Rocco, P.R.M. and Cruz, F.F. (2025) Challenges and Limitations of Mesenchymal Stem Cell Therapy for Lung Diseases in Clinical Trials. Expert Opinion on Emerging Drugs, 30, 83-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Shaikh, S.B. and Bhandary, Y.P. (2020) Crispr/Cas9 Genome Editing Tool: A Promising Tool for Therapeutic Applications on Respiratory Diseases. Current Gene Therapy, 20, 333-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tan, C., Wang, J., Ye, X., Kasimu, K., Li, Y., Luo, F., et al. (2025) Genome-Wide CRISPR/Cas9 Screening Identifies Key Profibrotic Regulators of TGF-β1-Induced Epithelial-Mesenchymal Transformation and Pulmonary Fibrosis. Frontiers in Molecular Biosciences, 12, Article ID: 1507163. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Aljabali, A.A.A., El-Tanani, M. and Tambuwala, M.M. (2024) Principles of CRISPR-Cas9 Technology: Advancements in Genome Editing and Emerging Trends in Drug Delivery. Journal of Drug Delivery Science and Technology, 92, Article ID: 105338. [Google Scholar] [CrossRef]
|
|
[44]
|
Dai, W., Qiao, X., Fang, Y., Guo, R., Bai, P., Liu, S., et al. (2024) Epigenetics-Targeted Drugs: Current Paradigms and Future Challenges. Signal Transduction and Targeted Therapy, 9, Article No. 332. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Dees, C., Schlottmann, I., Funke, R., Distler, A., Palumbo-Zerr, K., Zerr, P., et al. (2014) The Wnt Antagonists DKK1 and SFRP1 Are Downregulated by Promoter Hypermethylation in Systemic Sclerosis. Annals of the Rheumatic Diseases, 73, 1232-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Huber, L.C., Distler, J.H.W., Moritz, F., Hemmatazad, H., Hauser, T., Michel, B.A., et al. (2007) Trichostatin a Prevents the Accumulation of Extracellular Matrix in a Mouse Model of Bleomycin-Induced Skin Fibrosis. Arthritis & Rheumatism, 56, 2755-2764. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hemmatazad, H., Rodrigues, H.M., Maurer, B., Brentano, F., Pileckyte, M., Distler, J.H.W., et al. (2009) Histone Deacetylase 7, a Potential Target for the Antifibrotic Treatment of Systemic Sclerosis. Arthritis & Rheumatism, 60, 1519-1529. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Vichaikul, S., Gurrea-Rubio, M., Amin, M.A., Campbell, P.L., Wu, Q., Mattichak, M.N., et al. (2022) Inhibition of Bromodomain Extraterminal Histone Readers Alleviates Skin Fibrosis in Experimental Models of Scleroderma. JCI Insight, 7, e150871. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tsou, P., Campbell, P., Amin, M.A., Coit, P., Miller, S., Fox, D.A., et al. (2019) Inhibition of EZH2 Prevents Fibrosis and Restores Normal Angiogenesis in Scleroderma. Proceedings of the National Academy of Sciences, 116, 3695-3702. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Castelino, F.V., Bain, G., Pace, V.A., Black, K.E., George, L., Probst, C.K., et al. (2016) An Autotaxin/Lysophosphatidic Acid/Interleukin-6 Amplification Loop Drives Scleroderma Fibrosis. Arthritis & Rheumatology, 68, 2964-2974. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Khanna, D., Denton, C.P., Furst, D.E., Mayes, M.D., Matucci-Cerinic, M., Smith, V., et al. (2023) A 24-Week, Phase IIa, Randomized, Double-Blind, Placebo-Controlled Study of Ziritaxestat in Early Diffuse Cutaneous Systemic Sclerosis. Arthritis & Rheumatology, 75, 1434-1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Doskaliuk, B., Zaiats, L., Sahan, N., Fedorchenko, Y., Antymys, O. and Yatsyshyn, R. (2025) The Fibrosis Puzzle of Systemic Sclerosis-Associated ILD and the Quest for Targeted Interventions. Therapeutic Advances in Respiratory Disease, 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Katsumoto, T.R., Violette, S.M. and Sheppard, D. (2011) Blocking TGFβ via Inhibition of the αvβ6 Integrin: A Possible Therapy for Systemic Sclerosis Interstitial Lung Disease. International Journal of Rheumatology, 2011, Article ID: 208219. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Sime, P. and Jenkins, G. (2022) Goldilocks and the Three Trials: Clinical Trials Targeting the αvβ6 Integrin in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 206, 1062-1063. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Long, Y., Chen, W., Du, Q., Zuo, X. and Zhu, H. (2018) Ubiquitination in Scleroderma Fibrosis and Its Treatment. Frontiers in Immunology, 9, Article No. 2383. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Barde, F., Lorenzon, R., Vicaut, E., Rivière, S., Cacoub, P., Cacciatore, C., et al. (2024) Induction of Regulatory T Cells and Efficacy of Low-Dose Interleukin-2 in Systemic Sclerosis: Interventional Open-Label Phase 1-Phase 2a Study. RMD Open, 10, e003500. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Bergmann, C., Müller, F., Distler, J.H.W., Györfi, A., Völkl, S., Aigner, M., et al. (2023) Treatment of a Patient with Severe Systemic Sclerosis (SSc) Using CD19-Targeted CAR T Cells. Annals of the Rheumatic Diseases, 82, 1117-1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Mougiakakos, D., Krönke, G., Völkl, S., Kretschmann, S., Aigner, M., Kharboutli, S., et al. (2021) Cd19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. New England Journal of Medicine, 385, 567-569. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Merkt, W., Freitag, M., Claus, M., Kolb, P., Falcone, V., Röhrich, M., et al. (2024) Third-Generation CD19.CAR-T Cell-Containing Combination Therapy in Scl70+ Systemic Sclerosis. Annals of the Rheumatic Diseases, 83, 543-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Claus, M., Freitag, M., Ewald, M., Rodon, L., Deicher, F., Watzl, C., et al. (2024) Immunological Effects of CD19.CAR-T Cell Therapy in Systemic Sclerosis: An Extended Case Study. Arthritis Research & Therapy, 26, Article No. 211. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Khanna, D., Lescoat, A., Roofeh, D., Bernstein, E.J., Kazerooni, E.A., Roth, M.D., et al. (2021) Systemic Sclerosis-associated Interstitial Lung Disease: How to Incorporate Two Food and Drug Administration-Approved Therapies in Clinical Practice. Arthritis & Rheumatology, 74, 13-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Campochiaro, C., De Luca, G., Lazzaroni, M., Armentaro, G., Spinella, A., Vigone, B., et al. (2023) Real-Life Efficacy and Safety of Nintedanib in Systemic Sclerosis-Interstitial Lung Disease: Data from an Italian Multicentre Study. RMD Open, 9, e002850. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Benfaremo, D., Campochiaro, C., Kumánovics, G., Bergmann, C., Zanatta, E., Launay, D., et al. (2025) OP0085 Outcomes of Upfront Combination vs Monotherapy with Rituximab or Mycophenolate Mofetil for Systemic Sclerosis Interstitial Lung Disease (SSc-ILD): Results from an EUSTAR Cohort Study. Annals of the Rheumatic Diseases, 84, Article No. 75. [Google Scholar] [CrossRef]
|
|
[64]
|
Miquel, C., Faz-Lopez, B. and Guéry, J. (2023) Influence of X Chromosome in Sex-Biased Autoimmune Diseases. Journal of Autoimmunity, 137, Article ID: 102992. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Amin, R., Maiya, G.A., Mohapatra, A.K., Acharya, V., Alison, J.A., Dale, M., et al. (2022) Effect of a Home-Based Pulmonary Rehabilitation Program on Functional Capacity and Health-Related Quality of Life in People with Interstitial Lung Disease—A Randomized Controlled Trial Protocol. Respiratory Medicine, 201, Article ID: 106927. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wei, X. and Niu, X. (2023) T Follicular Helper Cells in Autoimmune Diseases. Journal of Autoimmunity, 134, Article ID: 102976. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Khanna, S.A., Nance, J.W. and Suliman, S.A. (2022) Correction to: Detection and Monitoring of Interstitial Lung Disease in Patients with Systemic Sclerosis. Current Rheumatology Reports, 24, 321-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Hata, A., Yanagawa, M., Honda, O., Miyata, T. and Tomiyama, N. (2019) Ultra-Low-Dose Chest Computed Tomography for Interstitial Lung Disease Using Model-Based Iterative Reconstruction with or without the Lung Setting. Medicine, 98, e15936. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Sanduzzi Zamparelli, S., Sanduzzi Zamparelli, A. and Bocchino, M. (2023) The Evolving Concept of the Multidisciplinary Approach in the Diagnosis and Management of Interstitial Lung Diseases. Diagnostics, 13, Article No. 2437. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Gazzar, M.A.E.T.E., Shimy, W.S.E., Elsaadany, H.M., Hantera, M.S. and Elshafey, B.I. (2025) Effect of Pulmonary Rehabilitation Program in Patients with Interstitial Lung Disease with or without Pulmonary Hypertension. The Egyptian Journal of Bronchology, 19, Article No. 48. [Google Scholar] [CrossRef]
|