基于风险分层的骨髓增生异常综合征治疗策略:异基因造血干细胞移植与化疗的优势与局限性比较
Treatment Strategies for Myelodysplastic Syndromes Based on Risk Stratification: A Comparison of the Advantages and Limitations between Allogeneic Hematopoietic Stem Cell Transplantation and Chemotherapy
摘要: 骨髓增生异常综合征(MDS)是一组以无效造血、血细胞减少和高风险向急性髓系白血病(AML)转化为特征的克隆性造血干细胞疾病,其治疗面临重大挑战,主要源于疾病的高度异质性及向AML转化倾向[1]。近年来,治疗模式从单纯支持治疗转向基于风险分层的个体化治疗。目前,异基因造血干细胞移植(allo-HSCT)仍是目前唯一可能治愈MDS的手段,尤其适用于高危患者,但其应用受限于移植相关并发症与供体可及性。化学治疗多作为姑息或桥接治疗手段,虽可缓解症状却难以显著提高长期生存率。本文系统比较allo-HSCT与化疗在长期生存率、安全性、治疗相关并发症及生活质量等方面的疗效差异,结合最新临床证据与指南,探讨两者的优劣势及治疗策略优化。
Abstract: Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, cytopenias, and a high risk of progression to acute myeloid leukemia (AML), with treatment posing significant challenges, mainly due to the high heterogeneity of the disease and its tendency to transform into AML [1]. In recent years, the treatment paradigm has shifted from purely supportive care to risk-stratified and individualized strategies. Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only potentially curative treatment, especially for high-risk patients, but its application is limited by transplant-related complications and donor availability. Chemotherapy is often used as palliative or bridging therapy, which can alleviate symptoms but hardly improves long-term survival. This article systematically compares the differences in long-term survival, safety, treatment-related complications, and quality of life between allo-HSCT and chemotherapy and discusses the advantages and disadvantages of both approaches as well as optimized treatment strategies, based on the latest clinical evidence and guidelines.
文章引用:杨菁清, 邓建川. 基于风险分层的骨髓增生异常综合征治疗策略:异基因造血干细胞移植与化疗的优势与局限性比较[J]. 临床医学进展, 2025, 15(12): 1905-1913. https://doi.org/10.12677/acm.2025.15123608

1. MDS疾病概述与分层治疗策略

() 疾病负担与临床挑战

骨髓增生异常综合征(MDS)是一组高度异质性的髓系恶性肿瘤,其临床过程及生存预后差异显著。根据WHO第五版分类[1],MDS已被重新命名为“骨髓增生异常性肿瘤”,但仍沿用MDS缩写,强调了其肿瘤本质,保持与骨髓增殖性肿瘤(MPN)命名的一致性,反映出对MDS恶性本质认识的深化。

MDS好发于老年人群[2],全球发病率约为4/100,000,并随年龄增长而显著上升,65岁及以上人群发病率高达25/100,000,这为治疗选择带来了特殊挑战。全球疾病负担研究显示[3],1991~2021年间MDS的发病率、死亡率和伤残调整寿命年(DALYs)持续增长,预计至2045年绝对病例数将继续上升。

() 分层治疗体系

MDS具有高度临床异质性,体现在临床表现、分子遗传特征和预后的多样性。约90%的MDS患者携带至少一种分子遗传学异常[4],其中53%仅存在基因突变,4%仅存在细胞遗传学改变,37%两者并存[5]。这种异质性决定治疗需“个体化”,当前主要治疗方案取决于疾病风险分层及转化为AML的风险。

MDS的分类体系已从传统形态学主导转向整合分子遗传学特征的精准模式,目前主要依据WHO第五版分类(2022)和国际共识分类(ICC)系统。在预后评估方面,修订版国际预后评分系统(IPSS-R)根据血细胞减少程度、骨髓原始细胞比例及细胞遗传学特征将MDS分为极低危、低危、中危、高危和极高危5个组别[6],已成为风险评估的标准工具。随着对分子遗传学认识的深入,TP53等特定基因突变已被证实可独立预测不良预后,现代分层体系开始整合分子标志物信息以优化治疗决策。分子国际预后评分系统(IPSS-M)在此基础上整合了31个基因突变,并将患者划分为6个风险等级。IPSS-M将TP53双等位基因突变列为最高风险组,显著影响移植时机的选择。与IPSS-R相比[7],IPSS-M提升了所有临床终点的预后分层能力和风险评估精度,为治疗决策提供更可靠依据。以上风险分层为化疗与移植的选择提供奠定基础。

2. 现有治疗方式

() 支持治疗

支持治疗是MDS管理的基石,无论其危险分层如何。其旨在管理疾病相关并发症,改善患者生活质量而非直接改变疾病进程。内容包括主动疾病监测、输血支持以及感染与出血的防治。

基于人群的研究[8] [9]表明,约半数MDS患者在确诊时即需输注红细胞(RBC),大多数未经治疗者贫血呈进行性加重。对于化疗或去甲基化药物(HMAs)所致中性粒细胞减少(尤其反复感染)的患者[1],可使用粒细胞集落刺激因子,并预防性使用抗生素。约40%的患者血小板计数 < 100 × 109/L [8],但仅5%在确诊时需要输注血小板。当血小板计数 > 20 × 109/L至30 × 109/L时严重出血症状罕见(但存在个体差异)。然而随着病程进展,症状性血小板减少症发生率逐渐增高,尤其在化疗和HMAs治疗期间。指南建议活动期治疗时根据触发值决定血小板输注[10],慢性血小板减少则主要依据出血症状判断。此外,铁过载在MDS患者中较为常见。一项随机对照实验[11]显示,铁螯合治疗可延长无事件生存期更长,且安全性可控。推荐铁蛋白超过2500 ng/mL时实施该治疗。

() 去甲基化药物:标准治疗基石

DNA甲基化作为基因转录的重要调节因子,在血液系统恶性肿瘤的发生发展中发挥关键作用。基因启动子附近DNA甲基化可导致靶基因的稳定转录沉默,这一表观遗传改变与肿瘤进展和分化停滞密切相关。然而,该过程在DNA合成阶段具有可逆性,因此成为潜在的治疗靶点。HMAs通过抑制DNA甲基转移酶[12] [13],逆转肿瘤相关基因的异常甲基化状态,重新激活因表观遗传沉默失活的抑癌基因。

基于上述机制,阿扎胞苷与地西他滨分别于2004年和2006年获美国FDA批准用于MDS治疗。目前HMAs已成为高危MDS (HR-MDS)的一线标准治疗,其核心优势在于:

(1) 作用机制独特:通过表观遗传调控而非细胞毒性发挥抗肿瘤效应;

(2) 安全性较好:骨髓抑制程度相对较轻,尤其适合老年或伴有合并症的患者;

(3) 循证医学支持:AZA-001研究:与传统治疗方案相比,阿扎胞苷可显著延长中高危MDS患者的生存期,降低患者死亡风险;并且阿扎胞苷起效时间更短,可显著延长MDS进展至AML的时间[14]

此外,另一项随机试验也证明了地西他滨在改善MDS患者预后中的有效性[15]

然而必须指出,HMAs的长期疗效仍存在显著局限性:

(1) 缓解深度不足:HAMs的血液学缓解率约为40%,完全缓解率仅8% [10]

(2) 持续应答有限:治疗反应通常是暂时性的,疾病最终仍会进展[16]

(3) 生存改善瓶颈:阿扎胞苷的AZA-001研究显示,尽管治疗组中位生存期有所延长,但5年生存率仍不足20% [14]

尽管AZA-001研究证实了阿扎胞苷的生存获益,但真实世界数据尚未能确认这种治疗的稳固生存优势[17]。这直接反映了多数患者最终耐药、疾病进展的现实。HMAs治疗失败者预后极差,中位总生存期(OS)仅为4至6个月,目前尚无药物在HMAs失败后被证实可更显著延长OS [18]

() 联合化疗方案的进展

对于不适合进行异基因造血干细胞移植的MDS患者,联合化疗是一项重要的治疗选择[19]。年轻、体能状态良好的HR-MDS患者,尤其是原始细胞比例 > 10%或具有不良遗传学特征者,可考虑强化疗方案(如AML型诱导化疗)。联合化疗在血液学改善和完全缓解率方面展现出显著优势,有助于为高危患者带来生存获益。另外,作为移植前桥接[20],联合化疗能够有效降低肿瘤负荷,使患者达到最佳移植前状态,从而提高移植成功率和长期生存机会。然而,联合化疗也存在一定局限性。虽然其可诱导较高缓解率,但复发率高,持续缓解时间较短,即使初始治疗获得完全缓解(CR),绝大多数患者最终仍会复发,尤其是TP53突变患者。此外,高强度化疗常伴随显著的治疗毒性,包括严重感染、出血风险增加和器官功能损伤,对老年患者影响尤甚。治疗相关死亡率也不容忽视,老年患者往往难以耐受其骨髓抑制作用[6]。70岁以上患者接受强化疗的死亡率可达30% [21],风险远大于潜在收益,因此使用人群有限。

() 异基因造血干细胞移植

allo-HSCT是目前唯一可能实现治愈MDS的治疗手段,不受基础疾病风险分层限制,尤其对于高风险或其他治疗无效的进展期患者更具有关键治疗价值,可改善OS和无进展生存期[22] [23]。其核心在于通过根治性治疗实现疾病深度缓解、持久控制恶性克隆并重建正常造血,突破传统治疗的生存瓶颈。多项研究表明,对于符合移植条件的HR-MDS患者,应在确诊后尽早接受异基因造血干细胞移植[24]。近期证据[25]进一步提示,对于具有不良预后分子特征的较低危患者,在疾病进展前进行移植可能获得更好的生存获益。TP53突变、复杂核型等是移植后复发的主要风险因素,移植前应全面评估突变谱,指导预处理强度及移植后干预策略。减低强度预处理方案(RIC)的应用,使移植适应症扩展至存在合并症或体能状态较差的患者群体[26]。一项针对60岁以上老年MDS患者的研究显示,采用RIC后进行allo-HSCT可为老年MDS患者提供长期生存[27] [28]。患者10年长期总体生存率可达50%左右,表明该策略在实现长期疾病缓解方面具有显著效果。

3. 联合化疗与allo-HSCT的直接对比研究

() 生存率Meta分析

多项研究表明allo-HSCT显示出显著的生存优势。一项前瞻性研究[29]证实,低中危患者接受HSCT后完全缓解率显著高于支持治疗或化疗组(53.8%对33%;P < 0.05),4年总生存率亦明显改善(79%对56%;P < 0.05)。另一项研究[30]证实,allo-HSCT组的总生存率和无白血病生存率分别为47.9%和35.8%,均优于非移植组,且所有亚组(包括年龄、疾病风险和MDS对HMAs的反应性)均移植显示生存获益。对于老年MDS患者,与持续阿扎胞苷治疗相比,采用RIC的allo-HSCT显著改善无事件生存率[31]。一项针对TP53突变MDS患者的系统评价[32]显示,虽然allo-HSCT对TP53突变MDS患者的预后仍然很差,三年总生存率为21%,但仍优于姑息治疗。更重要的是,allo-HSCT相对于非移植治疗的生存优势不受TP53等位基因状态影响,且不局限于特定TP53突变MDS亚组[33]。这些前瞻性供体与非供体对照研究确立了在同种异体HLA配型相合供体存在的情况下,allo-HSCT作为老年MDS患者首选治疗的地位。

() 治疗相关死亡率(TRM)

MDS患者死亡主要有两大原因:MDS相关并发症和AML转化。一项欧洲研究[34]中,低危MDS患者中位OS为4.7年,感染是第二大死因。一项研究[35]表明,在有明确死亡原因记录的病例中,约1/3 MDS患者死于血细胞减少和MDS相关并发症。allo-HSCT是MDS患者的一种治愈性治疗策略[31],但TRM限制了其在老年MDS患者中的广泛应用。有研究显示,allo-HSCT后1年TRM累积发生率为19%。对于TP53突变的MDS患者[32],allo-HSCT后的3年总生存率仅为21%,表明该类突变可能与更高TRM相关。同样,复杂核型MDS (CK-MDS)患者的移植结果也不理想[36]。采用RIC和单倍体相合供者的使用虽然提高了移植患者数量和生存率[37],但TRM仍然是主要限制因素。总之,allo-HSCT为MDS患者提供了潜在的治愈机会,但其TRM仍然是一个重要限制因素,尤其是在老年患者和特定遗传亚群中。相比之下,化疗虽然避免了allo-HSCT的高TRM,但无法提供治愈。MDS的治疗需要在疗效和风险之间取得谨慎的平衡。

() 继发恶性肿瘤长期风险

继发恶性肿瘤是MDS长期生存的重要威胁。有研究[38]表明,allo-HSCT治疗后,非血液系统恶性肿瘤的10年累积发病率为4.23%,显著高于普通人群(2.3%)。但文献中未提及allo-HSCT与化疗后继发肿瘤风险的直接对比数据。尽管allo-HSCT本身可能带来继发肿瘤风险,但相较化疗后进展为继发性AML风险且化学敏感性低的局限性,移植在总体生存获益上仍显示优势。多数证据间接表明,虽然两种治疗方式都可能增加继发肿瘤风险[39]-[41],但allo-HSCT通过提供更持久的疾病控制,可能在总体风险获益比上优于化疗,特别是对于HR-MDS患者。需要指出的是,现有文献中缺乏直接比较allo-HSCT与单纯化疗后继发恶性肿瘤发生率的前瞻性研究数据,未来需要更多针对性研究来精确量化这种差异。

() 生活质量

健康相关生活质量(HRQoL)已成为MDS诊疗质量的指南推荐评估指标[42],更被选定为未来MDS临床试验和日常实践的核心结局指标。allo-HSCT与化疗在治疗期间对患者的生活质量均产生显著影响。在allo-HSCT期间,由于预处理毒性反应及造血重建延迟,在短期内HRQoL普遍下降[43]

然而,allo-HSCT通过潜在治愈性和长期生存优势,长远来看,可能间接提升生活质量[44]。然而大多数患者因身体状况实在无法耐受allo-HSCT的情况,只能依赖姑息疗法,这间接提示化疗可能无法提供持久的生存或生活质量获益。目前尚缺乏直接对比allo-HSCT与化疗后生活质量评分(如EQ-5D等)的前瞻性数据,未来需更多研究纳入标准化HRQoL评估以明确差异。

除了治疗相关的生理与心理负担外,经济毒性已成为影响MDS患者生活质量的重要非临床因素之一。经济毒性主要指因疾病诊疗对患者及其家庭造成的客观经济负担和主观财务压力,包含客观和主观两个维度[45]。客观上指实际产生的医疗费用负担,客观包含患者因医疗支出产生的心理压力和经济忧虑[45] [46]。allo-HSCT作为高成本干预手段,对多数患者家庭构成显著经济压力。相比之下,化疗虽然单次费用较低,但长期累积成本亦不容忽视,尤其对于需终身治疗的较低危患者。随着治疗技术进步,MDS患者的生存期延长,长期生存者管理日益成为临床关注的重点。allo-HSCT后长期生存者常面临各种远期并发症,其生活质量在移植后数年仍可能持续受到影响。化疗长期生存者则面临治疗相关毒性及器官功能受损等。因此,建议在MDS患者[47],尤其是接受allo-HSCT的患者中,建立系统化的长期随访机制,在延长生存时间的同时,全面提升患者的长期生命质量。

4. 移植后复发管理策略与治疗

allo-HSCT后复发是MDS患者治疗失败的主要原因,其临床管理面临严峻挑战。MDS移植后复发的管理核心策略在于快速降低肿瘤负荷(减瘤)与重建移植物抗白血病(GVL)效应,并强调基于分子学监测的抢先干预和针对显性复发的分层治疗策略。

(一) 抢先干预

前瞻性研究[48]表明,allo-HSCT后微小残留病灶(MRD)检测对预测MDS复发具有重要预后价值。移植后MRD持续存在是预后不良的独立危险因素[49],通过动态监测MRD有助于早期识别高复发风险患者,为抢先干预提供依据。有研究显示[50],复发患者的T细胞嵌合体呈进行性下降趋势;同时,MDS相关基因突变在移植后MRD监测中也具有预后价值[51]。因此,建议在移植后定期监测供者T细胞嵌合体并结合下一代测序(NGS)追踪特定基因突变以评估MRD。对于早期或低肿瘤负荷复发,抢先干预是基石。减停免疫抑制剂(IS)是首选策略,其目的在于解除对供者免疫细胞的抑制,从而恢复GVL效应。供者淋巴细胞输注(DLI)是alloHCT后预防复发的标准治疗[52],但其应用受到移植物抗宿主病(GvHD)风险的限制。研究显示[48],通过分次输注DLI可在保留GVL效应的同时有效降低GVHD的发生风险。

(二) 桥接治疗

对于已出现血液学复发的患者,通常需要桥接治疗。HMAs联合维奈克拉被广泛应用,维奈克拉作为BCL-2抑制剂[53],与HMA联用可发挥协同作用,可再次诱导深度缓解。该方案对TP53突变患者也显示出良好疗效。另一重要策略是HMA与DLI的联合应用。先使用HMA降低肿瘤负荷并调节免疫微环境,后续进行DLI。一项前瞻性研究[54]结果显示,该联合方案相较于单用DLI或HMA有更高的缓解率和更低的GVHD发生率。

针对特定分子亚型的精准治疗也为移植后复发患者提供了新的方向。对于存在IDH2突变的MDS患者,IDH2抑制剂即使是在移植后复发的情境下[55],也能提供高效且相对低毒的治疗选择。此外,研究表明PD-1/PD-L1等免疫检查点抑制剂在MDS治疗中显示出潜力[56] [57],但其在移植后复发背景下的应用效果及安全性仍需进一步验证。对于部分选择合适的患者,二次移植可作为挽救性治疗手段之一。

MDS具有高度异质性,单一靶向或免疫治疗策略难以适用于所有患者。未来治疗策略的制定需依赖于更为精细的分子分型及生物标志物指导,以实现个体化精准治疗。

5. 总结与讨论

allo-HSCT和化学治疗在MDS治疗中各有明确的定位与价值。本文通过综合分析现有临床研究及指南,系统比较了两种策略在生存获益、治疗相关风险及生活质量等多方面的差异。随着移植技术进步和适应症拓宽,allo-HSCT凭借其治愈潜力在中高危MDS患者中占据不可替代的地位;而化疗则作为重要姑息或桥接手段,适用于无法接受移植的患者。IPSS-R系统虽最初用于新诊断MDS患者的预后风险评估,但多项研究已证实其在预测移植后结局方面也具有重要价值。其中,核型异常与TP53基因突变均为提示复发的重要危险因素,具有同等的预后判断作用。未来应进一步优化风险分层模型,整合分子遗传标志物,推动个体化治疗策略的发展。同时,通过创新移植技术与支持治疗以降低TRM,并开展更多前瞻性研究直接比较两种策略在生存、安全性和生活质量等方面的差异,为临床实践提供更高级别的证据支持。进一步建立系统化随访体系,关注患者生理、心理及经济负担,实现全周期健康管理。通过上述努力,有望最终改善MDS患者的整体生存质量与长期预后。

NOTES

*通讯作者。

参考文献

[1] Garcia‐Manero, G. (2023) Myelodysplastic Syndromes: 2023 Update on Diagnosis, Risk‐Stratification, and Management. American Journal of Hematology, 98, 1307-1325. [Google Scholar] [CrossRef] [PubMed]
[2] Rotter, L.K., Shimony, S., Ling, K., Chen, E., Shallis, R.M., Zeidan, A.M., et al. (2023) Epidemiology and Pathogenesis of Myelodysplastic Syndrome. The Cancer Journal, 29, 111-121. [Google Scholar] [CrossRef] [PubMed]
[3] Gou, X., Chen, Z. and Shangguan, Y. (2025) Global, Regional, and National Burden of Myelodysplastic Syndromes and Myeloproliferative Neoplasms, 1990-2021: An Analysis from the Global Burden of Disease Study 2021. Frontiers in Oncology, 15, Article ID: 1559382. [Google Scholar] [CrossRef] [PubMed]
[4] Schulz, E., Aplan, P.D., Freeman, S.D. and Pavletic, S.Z. (2023) Moving toward a Conceptualization of Measurable Residual Disease in Myelodysplastic Syndromes. Blood Advances, 7, 4381-4394. [Google Scholar] [CrossRef] [PubMed]
[5] Garcia-Gisbert, N., Garcia-Ávila, S., Merchán, B., Salido, M., Fernández-Rodríguez, C., Gibert, J., et al. (2022) Molecular and Cytogenetic Characterization of Myelodysplastic Syndromes in Cell-Free DNA. Blood Advances, 6, 3178-3188. [Google Scholar] [CrossRef] [PubMed]
[6] Thalla, R., Mack, R., Kosti-Schwartz, J., Breslin, P. and Zhang, J. (2025) Advances and Challenges in the Treatment of Myelodysplastic Syndromes. Experimental Hematology & Oncology, 14, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
[7] Aguirre, L.E., Al Ali, N., Sallman, D.A., Ball, S., Jain, A.G., Chan, O., et al. (2023) Assessment and Validation of the Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. Leukemia, 37, 1530-1539. [Google Scholar] [CrossRef] [PubMed]
[8] Moreno Berggren, D., Folkvaljon, Y., Engvall, M., Sundberg, J., Lambe, M., Antunovic, P., et al. (2018) Prognostic Scoring Systems for Myelodysplastic Syndromes (MDS) in a Population‐Based Setting: A Report from the Swedish MDS Register. British Journal of Haematology, 181, 614-627. [Google Scholar] [CrossRef] [PubMed]
[9] Malcovati, L., Germing, U., Kuendgen, A., Della Porta, M.G., Pascutto, C., Invernizzi, R., et al. (2007) Time-Dependent Prognostic Scoring System for Predicting Survival and Leukemic Evolution in Myelodysplastic Syndromes. Journal of Clinical Oncology, 25, 3503-3510. [Google Scholar] [CrossRef] [PubMed]
[10] Hellström-Lindberg, E.S. and Kröger, N. (2023) Clinical Decision-Making and Treatment of Myelodysplastic Syndromes. Blood, 142, 2268-2281. [Google Scholar] [CrossRef] [PubMed]
[11] Angelucci, E., Li, J., Greenberg, P., Wu, D., Hou, M., Montaňo Figueroa, E.H., et al. (2020) Iron Chelation in Transfusion-Dependent Patients with Low-to Intermediate-1-Risk Myelodysplastic Syndromes: A Randomized Trial. Annals of Internal Medicine, 172, 513-522. [Google Scholar] [CrossRef] [PubMed]
[12] Zhang, Y., Yu, W., Yuan, D., Ma, W., Tu, Y. and He, B. (2025) Epigenetic Therapy for Leukemias: A Comprehensive Review from Biological Markers to Practice. Biotechnology Advances, 83, Article ID: 108626. [Google Scholar] [CrossRef] [PubMed]
[13] Ebelt, N.D. and Manuel, E.R. (2022) 5-Azacytidine-Mediated Modulation of the Immune Microenvironment in Murine Acute Myeloid Leukemia. Cancers, 15, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
[14] Fenaux, P., Mufti, G.J., Hellstrom-Lindberg, E., Santini, V., Finelli, C., Giagounidis, A., et al. (2009) Efficacy of Azacitidine Compared with That of Conventional Care Regimens in the Treatment of Higher-Risk Myelodysplastic Syndromes: A Randomised, Open-Label, Phase III Study. The Lancet Oncology, 10, 223-232. [Google Scholar] [CrossRef] [PubMed]
[15] Kantarjian, H., Issa, J.J., Rosenfeld, C.S., Bennett, J.M., Albitar, M., DiPersio, J., et al. (2006) Decitabine Improves Patient Outcomes in Myelodysplastic Syndromes: Results of a Phase III Randomized Study. Cancer, 106, 1794-1803. [Google Scholar] [CrossRef] [PubMed]
[16] Zhu, J., Wang, Q., Ren, H., Dong, Y., Yin, Y., Wang, Q., et al. (2023) Low-Dose Decitabine-Intensified Modified Conditioning Regimen Alleviates aGVHD in AML/MDS Patients Treated with Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 14, Article ID: 1274492. [Google Scholar] [CrossRef] [PubMed]
[17] Ball, B.J., Famulare, C.A., Stein, E.M., Tallman, M.S., Derkach, A., Roshal, M., et al. (2020) Venetoclax and Hypomethylating Agents (HMAs) Induce High Response Rates in MDS, Including Patients after HMA Therapy Failure. Blood Advances, 4, 2866-2870. [Google Scholar] [CrossRef] [PubMed]
[18] Zeidan, A.M., Stahl, M., Sekeres, M.A., Steensma, D.P., Komrokji, R.S. and Gore, S.D. (2017) A Call for Action: Increasing Enrollment of Untreated Patients with Higher‐Risk Myelodysplastic Syndromes in First‐Line Clinical Trials. Cancer, 123, 3662-3672. [Google Scholar] [CrossRef] [PubMed]
[19] Sun, Y., Xu, L., Liu, K., Zhang, X., Yan, C., Jin, J., et al. (2021) Pre‐Transplantation Cytoreduction Does Not Benefit Advanced Myelodysplastic Syndrome Patients after Myeloablative Transplantation with Grafts from Family Donors. Cancer Communications, 41, 333-344. [Google Scholar] [CrossRef] [PubMed]
[20] Zugasti, I., Lopez-Guerra, M., Castaño-Díez, S., Esteban, D., Avendaño, A., Pomares, H., et al. (2025) Hypomethylating Agents plus Venetoclax for High-Risk MDS and CMML as Bridge Therapy to Transplant: A GESMD Study. Experimental Hematology & Oncology, 14, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
[21] Kröger, N. (2025) Treatment of High-Risk Myelodysplastic Syndromes. Haematologica, 110, 339-349.
[22] de Witte, T., Bowen, D., Robin, M., Malcovati, L., Niederwieser, D., Yakoub-Agha, I., et al. (2017) Allogeneic Hematopoietic Stem Cell Transplantation for MDS and CMML: Recommendations from an International Expert Panel. Blood, 129, 1753-1762. [Google Scholar] [CrossRef] [PubMed]
[23] Gournay, V. and Robin, M. (2023) Allogeneic Hematopoietic Stem Cell Transplantation for Myelodysplastic Syndromes. Bulletin du Cancer, 110, 1168-1175. [Google Scholar] [CrossRef] [PubMed]
[24] Li, H., Hu, F., Gale, R.P., Sekeres, M.A. and Liang, Y. (2022) Myelodysplastic Syndromes. Nature Reviews Disease Primers, 8, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
[25] Robin, M. and Fenaux, P. (2020) Which Lower Risk Myelodysplastic Syndromes Should Be Treated with Allogeneic Hematopoietic Stem Cell Transplantation? Leukemia, 34, 2552-2560. [Google Scholar] [CrossRef] [PubMed]
[26] Yucel, O.K., Saliba, R.M., Rondon, G., Ahmed, S., Alousi, A., Bashir, Q., et al. (2017) Cytogenetics and Comorbidity Predict Outcomes in Older Myelodysplastic Syndrome Patients after Allogeneic Stem Cell Transplantation Using Reduced Intensity Conditioning. Cancer, 123, 2661-2670. [Google Scholar] [CrossRef] [PubMed]
[27] Niederwieser, C., Iacobelli, S., Franke, G., Koster, L., van Os, M., Platzbecker, U., et al. (2024) Reduced Intensity versus Myeloablative Conditioning for MDS: Long-Term Results of an EBMT Phase III Study (RICMAC). Bone Marrow Transplantation, 59, 1084-1091. [Google Scholar] [CrossRef] [PubMed]
[28] Scott, B.L., Pasquini, M.C., Fei, M., Fraser, R., Wu, J., Devine, S.M., et al. (2021) Myeloablative versus Reduced-Intensity Conditioning for Hematopoietic Cell Transplantation in Acute Myelogenous Leukemia and Myelodysplastic Syndromes—Long-Term Follow-Up of the BMT CTN 0901 Clinical Trial. Transplantation and Cellular Therapy, 27, 483.e1-483.e6. [Google Scholar] [CrossRef] [PubMed]
[29] Yu, Z.P., Ding, J.H., Sun, A.N., Ge, Z., Chen, B.A. and Wu, D.P. (2017) A Randomized Study Comparing Stem Cell Transplantation versus Conventional Therapy for Low-and Intermediate-Risk Myelodysplastic Syndromes Patients. Stem Cells and Development, 26, 1132-1139. [Google Scholar] [CrossRef] [PubMed]
[30] Kroger, N., Brand, R., van Biezen, A., Zander, A., Dierlamm, J., Niederwieser, D., et al. (2009) Risk Factors for Therapy-Related Myelodysplastic Syndrome and Acute Myeloid Leukemia Treated with Allogeneic Stem Cell Transplantation. Haematologica, 94, 542-549. [Google Scholar] [CrossRef] [PubMed]
[31] Kröger, N., Sockel, K., Wolschke, C., Bethge, W., Schlenk, R.F., Wolf, D., et al. (2021) Comparison between 5-Azacytidine Treatment and Allogeneic Stem-Cell Transplantation in Elderly Patients with Advanced MDS According to Donor Availability (Vidazaallo Study). Journal of Clinical Oncology, 39, 3318-3327. [Google Scholar] [CrossRef] [PubMed]
[32] Shahzad, M., Iqbal, Q., Tariq, E., Ammad-Ud-Din, M., Butt, A., Mushtaq, A.H., et al. (2024) Outcomes with Allogeneic Hematopoietic Stem Cell Transplantation in Tp53-Mutated Myelodysplastic Syndrome: A Systematic Review and Meta-analysis. Critical Reviews in Oncology/Hematology, 196, Article ID: 104310. [Google Scholar] [CrossRef] [PubMed]
[33] Versluis, J., Saber, W., Tsai, H.K., Gibson, C.J., Dillon, L.W., Mishra, A., et al. (2023) Allogeneic Hematopoietic Cell Transplantation Improves Outcome in Myelodysplastic Syndrome across High-Risk Genetic Subgroups: Genetic Analysis of the Blood and Marrow Transplant Clinical Trials Network 1102 Study. Journal of Clinical Oncology, 41, 4497-4510. [Google Scholar] [CrossRef] [PubMed]
[34] Mądry, K., Lis, K., Fenaux, P., Bowen, D., Symeonidis, A., Mittelman, M., et al. (2022) Cause of Death and Excess Mortality in Patients with Lower‐Risk Myelodysplastic Syndromes (MDS): A Report from the European MDS Registry. British Journal of Haematology, 200, 451-461. [Google Scholar] [CrossRef] [PubMed]
[35] Jain, A.G., Ball, S., Aguirre, L., Al Ali, N., Kaldas, D., Tinsley-Vance, S., et al. (2024) Patterns of Lower Risk Myelodysplastic Syndrome Progression: Factors Predicting Progression to High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Haematologica, 109, 2157-2164. [Google Scholar] [CrossRef] [PubMed]
[36] Shimomura, Y., Komukai, S., Kitamura, T., Tachibana, T., Kurosawa, S., Itonaga, H., et al. (2023) The Prognosis and Risk Factors for Patients with Complex Karyotype Myelodysplastic Syndrome Undergoing Allogeneic Haematopoietic Stem Cell Transplantation. British Journal of Haematology, 204, 612-622. [Google Scholar] [CrossRef] [PubMed]
[37] Vittayawacharin, P., Kongtim, P. and Ciurea, S.O. (2022) Allogeneic Stem Cell Transplantation for Patients with Myelodysplastic Syndromes. American Journal of Hematology, 98, 322-337. [Google Scholar] [CrossRef] [PubMed]
[38] Park, S., Park, S. and Han, S. (2022) Risk of Secondary Nonhematologic Malignancies after Allogeneic Stem Cell Transplantation: A Nationwide Case‐Control Cohort Study. International Journal of Cancer, 151, 1024-1032. [Google Scholar] [CrossRef] [PubMed]
[39] Mina, A., Greenberg, P.L. and Deeg, H.J. (2024) How I Reduce and Treat Posttransplant Relapse of MDS. Blood, 143, 1344-1354. [Google Scholar] [CrossRef] [PubMed]
[40] Notarantonio, A.B., Robin, M. and D’Aveni, M. (2024) Current Challenges in Conditioning Regimens for MDS Transplantation. Blood Reviews, 67, Article ID: 101223. [Google Scholar] [CrossRef] [PubMed]
[41] Arellano-Ballestero, H., Sabry, M. and Lowdell, M.W. (2023) A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells, 12, Article No. 633. [Google Scholar] [CrossRef] [PubMed]
[42] Stojkov, I., Conrads-Frank, A., Rochau, U., Arvandi, M., Koinig, K.A., Schomaker, M., et al. (2023) Determinants of Low Health-Related Quality of Life in Patients with Myelodysplastic Syndromes: EUMDS Registry Study. Blood Advances, 7, 2772-2783. [Google Scholar] [CrossRef] [PubMed]
[43] Wang, Y., Huang, R., Wang, Z., Xiong, J., Wang, X. and Zhang, X. (2023) Facing Challenges with Hope: Universal Immune Cells for Hematologic Malignancies. Cancer Biology & Medicine, 20, 229-247. [Google Scholar] [CrossRef] [PubMed]
[44] Zhang, X., Wang, J., Liu, Y., Liu, J., Wang, B., Zhang, Q., et al. (2022) Long-Term Survivors Demonstrate Superior Quality of Life after Haploidentical Stem Cell Transplantation to Matched Sibling Donor Transplantation. Journal of Translational Medicine, 20, Article No. 596. [Google Scholar] [CrossRef] [PubMed]
[45] Wang, Y., Xu, L., Wang, Y., Zhang, X., Liu, K., Zhang, Y., et al. (2025) Prognostic Value of Post-Transplantation Measurable Residual Disease in Patients with Myelodysplastic Syndrome: A Prospective Cohort Study. Chinese Journal of Cancer Research, 37, 534-546. [Google Scholar] [CrossRef
[46] Carrera, P.M., Curigliano, G., Santini, D., Sharp, L., Chan, R.J., Pisu, M., et al. (2024) ESMO Expert Consensus Statements on the Screening and Management of Financial Toxicity in Patients with Cancer. ESMO Open, 9, Article ID: 102992. [Google Scholar] [CrossRef] [PubMed]
[47] Smith, G.L., Banegas, M.P., Acquati, C., Chang, S., Chino, F., Conti, R.M., et al. (2022) Navigating Financial Toxicity in Patients with Cancer: A Multidisciplinary Management Approach. CA: A Cancer Journal for Clinicians, 72, 437-453. [Google Scholar] [CrossRef] [PubMed]
[48] Cusatis, R., Martens, M.J., Nakamura, R., Cutler, C.S., Saber, W., Lee, S.J., et al. (2022) Health‐Related Quality of Life in Reduced‐Intensity Hematopoietic Cell Transplantation Based on Donor Availability in Patients Aged 50-75 with Advanced Myelodysplastic Syndrome: BMT CTN 1102. American Journal of Hematology, 98, 229-250. [Google Scholar] [CrossRef] [PubMed]
[49] Ma, Y., Wei, Z., Xu, Y., Shi, J., Yi, H., Lai, Y., et al. (2023) Poor Pretransplantation Minimal Residual Disease Clearance as an Independent Prognostic Risk Factor for Survival in Myelodysplastic Syndrome with Excess Blasts: A Multicenter, Retrospective Cohort Study. Cancer, 129, 2013-2022. [Google Scholar] [CrossRef] [PubMed]
[50] Li, Z.P., Wang, J., Deng, L., Liu, X., Kong, F., Zhao, Y., et al. (2024) The Predictive Value of T-Cell Chimerism for Disease Relapse after Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 15, Article ID: 1382099. [Google Scholar] [CrossRef] [PubMed]
[51] Heuser, M., Heida, B., Büttner, K., Wienecke, C.P., Teich, K., Funke, C., et al. (2021) Posttransplantation MRD Monitoring in Patients with AML by Next-Generation Sequencing Using DTA and Non-DTA Mutations. Blood Advances, 5, 2294-2304. [Google Scholar] [CrossRef] [PubMed]
[52] McDougal, L.M., Baker, F.L., Gustafson, M.P., Katsanis, E. and Simpson, R.J. (2025) Exercise-Mobilized Donor Lymphocyte Infusions Enhanced with Cytokine Stimulation for the Prevention and Treatment of Leukemic Relapse after Allogeneic Hematopoietic Cell Transplantation. Frontiers in Immunology, 16, Article ID: 1563972. [Google Scholar] [CrossRef] [PubMed]
[53] Bazinet, A., Desikan, S.P., Li, Z., Rodriguez-Sevilla, J.J., Venugopal, S., Urrutia, S., et al. (2024) Cytogenetic and Molecular Associations with Outcomes in Higher-Risk Myelodysplastic Syndromes Treated with Hypomethylating Agents plus Venetoclax. Clinical Cancer Research, 30, 1319-1326. [Google Scholar] [CrossRef] [PubMed]
[54] Smallbone, P., Shigle, T.L., Paslovsky, O., Hosing, C., Alousi, A., Bashir, Q., et al. (2025) Maintenance Therapy with Oral Decitabine plus Cedazuridine after Allogeneic Stem Cell Transplantation for Myelodysplastic Syndrome. Haematologica, 110, 1798-1807. [Google Scholar] [CrossRef] [PubMed]
[55] Fathi, A.T., Kim, H.T., Soiffer, R.J., Levis, M.J., Li, S., Kim, A.S., et al. (2022) Enasidenib as Maintenance Following Allogeneic Hematopoietic Cell Transplantation for idh2-Mutated Myeloid Malignancies. Blood Advances, 6, 5857-5865. [Google Scholar] [CrossRef] [PubMed]
[56] Rodriguez-Sevilla, J.J. and Colla, S. (2024) T-Cell Dysfunctions in Myelodysplastic Syndromes. Blood, 143, 1329-1343. [Google Scholar] [CrossRef] [PubMed]
[57] Kannan, S., Vedia, R.A. and Molldrem, J.J. (2024) The Immunobiology of Myelodysplastic Neoplasms: A Mini-Review. Frontiers in Immunology, 15, Article ID: 1419807. [Google Scholar] [CrossRef] [PubMed]