|
[1]
|
中国中西医结合学会血液病专业委员会. 肿瘤放化疗后白细胞减少症中西医结合治疗专家共识(2022年版) [J]. 中华肿瘤防治杂志, 2022, 29(23): 1641-1646+1652.
|
|
[2]
|
Shi, C., Han, W., Zhang, M., Zang, R., Du, K., Li, L., et al. (2020) Sulfated Polymannuroguluronate TGC161 Ameliorates Leukopenia by Inhibiting CD4+ T Cell Apoptosis. Carbohydrate Polymers, 247, Article 116728. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Aapro, M.S., Chaplin, S., Cornes, P., Howe, S., Link, H., Koptelova, N., et al. (2023) Cost-Effectiveness of Granulocyte Colony-Stimulating Factors (g-CSFs) for the Prevention of Febrile Neutropenia (FN) in Patients with Cancer. Supportive Care in Cancer, 31, Article No. 581. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bryer, E. and Henry, D. (2018) Chemotherapy-Induced Anemia: Etiology, Pathophysiology, and Implications for Contemporary Practice. International Journal of Clinical Transfusion Medicine, 6, 21-31. [Google Scholar] [CrossRef]
|
|
[5]
|
Chen, J., Dong, Y., Peng, J., et al. (2020) Notch Signaling Mitigates Chemotherapy Toxicity by Accelerating Hematopoietic Stem Cells Proliferation via C-Myc. American Journal of Translational Research, 12, 6723-6739.
|
|
[6]
|
Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., et al. (2022) Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduction and Targeted Therapy, 7, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, Q., Ye, H., Wang, Q., Li, W., Yu, B., Bai, Y., et al. (2021) Chinese Herbal Medicine for Chemotherapy-Induced Leukopenia: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. Frontiers in Pharmacology, 12, Article ID: 573500. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Páral, P., Faltusová, K., Molík, M., Renešová, N., Šefc, L. and Nečas, E. (2018) Cell Cycle and Differentiation of Sca-1+ and Sca-1− Hematopoietic Stem and Progenitor Cells. Cell Cycle, 17, 1979-1991. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
van den Boogaard, W.M.C., Komninos, D.S.J. and Vermeij, W.P. (2022) Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers, 14, Article 627. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shao, L., Wang, Y., Chang, J., et al. (2013) Hematopoietic Stem Cell Senescence and Cancer Therapy-Induced Long-Term Bone Marrow Injury. Translational Cancer Research, 2, 397-411.
|
|
[11]
|
Guillon, J., Petit, C., Toutain, B., Guette, C., Lelièvre, E. and Coqueret, O. (2019) Chemotherapy-Induced Senescence, an Adaptive Mechanism Driving Resistance and Tumor Heterogeneity. Cell Cycle, 18, 2385-2397. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lucas, D. (2017) The Bone Marrow Microenvironment for Hematopoietic Stem Cells. In: Birbrair, A., Ed., Advances in Experimental Medicine and Biology, Springer International Publishing, 5-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Muguruma, Y., Yahata, T., Miyatake, H., Sato, T., Uno, T., Itoh, J., et al. (2006) Reconstitution of the Functional Human Hematopoietic Microenvironment Derived from Human Mesenchymal Stem Cells in the Murine Bone Marrow Compartment. Blood, 107, 1878-1887. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
周倍伊. 间充质干细胞在骨髓造血微环境对造血的调控作用及其研究进展[J]. 广西中医药大学学报, 2019, 22(3): 46-49.
|
|
[15]
|
Pitt, L.A., Tikhonova, A.N., Hu, H., Trimarchi, T., King, B., Gong, Y., et al. (2015) CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. Cancer Cell, 27, 755-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Takasugi, M., Yoshida, Y., Hara, E. and Ohtani, N. (2022) The Role of Cellular Senescence and SASP in Tumour Microenvironment. The FEBS Journal, 290, 1348-1361. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lucas, D., Scheiermann, C., Chow, A., Kunisaki, Y., Bruns, I., Barrick, C., et al. (2013) Chemotherapy-Induced Bone Marrow Nerve Injury Impairs Hematopoietic Regeneration. Nature Medicine, 19, 695-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ashok, D., Polcik, L., Dannewitz Prosseda, S. and Hartmann, T.N. (2022) Insights into Bone Marrow Niche Stability: An Adhesion and Metabolism Route. Frontiers in Cell and Developmental Biology, 9, Article ID: 798604. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ceneri, E., De Stefano, A., Casalin, I., Finelli, C., Curti, A., Paolini, S., et al. (2025) Signaling Pathways and Bone Marrow Microenvironment in Myelodysplastic Neoplasms. Advances in Biological Regulation, 95, Article 101071. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Schneider, M., Allman, A. and Maillard, I. (2023) Regulation of Immune Cell Development, Differentiation and Function by Stromal Notch Ligands. Current Opinion in Cell Biology, 85, Article 102256. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xing, W., Yang, J., Zheng, Y., Yao, L., Peng, X., Chen, Y., et al. (2024) The Role of the Notch Signaling Pathway in the Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells. Frontiers in Bioscience-Landmark, 29, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, L., Tang, P., Li, S., Qin, X., Yang, H., Wu, C., et al. (2017) Notch Signaling Pathway Networks in Cancer Metastasis: A New Target for Cancer Therapy. Medical Oncology, 34, Article No. 180. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Uenishi, G.I., Jung, H.S., Kumar, A., Park, M.A., Hadland, B.K., McLeod, E., et al. (2018) NOTCH Signaling Specifies Arterial-Type Definitive Hemogenic Endothelium from Human Pluripotent Stem Cells. Nature Communications, 9, Article No. 1828. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shao, L., Paik, N.Y., Sanborn, M.A., Bandara, T., Vijaykumar, A., Sottoriva, K., et al. (2023) Hematopoietic Jagged1 Is a Fetal Liver Niche Factor Required for Functional Maturation and Engraftment of Fetal Hematopoietic Stem Cells. Proceedings of the National Academy of Sciences, 120, e2210058120. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Thambyrajah, R., Maqueda, M., Neo, W.H., Imbach, K., Guillén, Y., Grases, D., et al. (2024) Cis Inhibition of NOTCH1 through JAGGED1 Sustains Embryonic Hematopoietic Stem Cell Fate. Nature Communications, 15, Article No. 1604. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pereira, A.L., Galli, S. and Nombela‐Arrieta, C. (2024) Bone Marrow Niches for Hematopoietic Stem Cells. HemaSphere, 8, e133. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
He, X., Hu, W., Zhang, Y., Chen, M., Ding, Y., Yang, H., et al. (2023) Cellular Senescence in Skeletal Disease: Mechanisms and Treatment. Cellular & Molecular Biology Letters, 28, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, H., Bi, X., Zhang, R., Yuan, H., Xu, J., Zhang, K., et al. (2023) Adipose-Derived Mesenchymal Stem Cell Facilitate Hematopoietic Stem Cell Proliferation via the Jagged-1/Notch-1/Hes Signaling Pathway. Stem Cells International, 2023, Article ID: 1068405. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gumede, D.B., Abrahamse, H. and Houreld, N.N. (2024) Targeting Wnt/β-Catenin Signaling and Its Interplay with TGF-β and Notch Signaling Pathways for the Treatment of Chronic Wounds. Cell Communication and Signaling, 22, Article No. 244. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
曾妙, 甘家丽, 黄培锋, 等. 中医药防治化疗后骨髓抑制疗效及药理机制研究进展[J]. 辽宁中医杂志, 2020, 47(10): 213-216.
|
|
[31]
|
武凤震. 基于数据挖掘的骨髓抑制组方用药规律研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2018.
|
|
[32]
|
丁香, 王丽帆, 刘志强, 等. 当归补血汤干预NRF2-Notch信号调控辐射旁效应“毒损髓络”的机制研究[J]. 时珍国医国药, 2018, 29(5): 1042-1045.
|
|
[33]
|
周灵通. 固本增骨方含药血清调节Notch通路干预大鼠BMSCs成骨分化的机制研究[D]: [硕士学位论文]. 兰州: 甘肃中医药大学, 2018.
|
|
[34]
|
王立芳, 徐振晔, 司海龙, 等. 双黄升白颗粒对化疗所致骨髓抑制Lewis肺癌荷瘤鼠Notch信号通路的双重调控作用[J]. 上海中医药大学学报, 2015, 29(6): 45-49.
|
|
[35]
|
许崇艳, 马志强, 牛占恩. 八珍汤对急性白血病化疗后骨髓抑制的疗效观察及部分机制探析[J]. 世界中医药, 2019, 14(8): 2077-2082.
|
|
[36]
|
汪旭, 郝晓蓓, 杨敏, 潘娅岚, 王庆, 徐桂华. 扶正补血食疗方含药血清干预Notch通路调控骨髓造血干细胞化疗后损伤的机制研究[J]. 中医药信息, 2022, 39(2): 18-24.
|
|
[37]
|
Wang, D., Jing, L., Zhao, Z., Huang, S., Xie, L., Hu, S., et al. (2024) MicroRNA-124a Promoted the Differentiation of Bone Marrow Mesenchymal Stem Cells into Neurons through Notch Signal Pathway. European Journal of Medical Research, 29, Article No. 472. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
肖晶晶, 刘晓岚, 黄剑英, 等. 黄芪皂苷Ⅳ调控miR-21抑制Notch信号通路对骨质疏松症大鼠BMSCs成骨分化的影响[J]. 中南大学学报(医学版), 2025, 50(7): 1126-1136.
|
|
[39]
|
Wang, J., Du, M. and Zheng, Y. (2024) Effect of Ginsenoside Rg1 on Hematopoietic Stem Cells in Treating Aplastic Anemia in Mice via MAPK Pathway. World Journal of Stem Cells, 16, 591-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Nie, R., Wang, H., Wang, S., Luo, H., Chen, C., Jing, Z., et al. (2025) Interaction between Notch Signaling Pathway and Bioactive Compounds and Its Intervention on Cancer. Frontiers in Nutrition, 12, Article ID: 1647661. [Google Scholar] [CrossRef]
|
|
[41]
|
庄语, 于冬冬, 程相琨, 等. 针灸拮抗CTX荷瘤小鼠骨髓细胞中jag1、Notch2和numb1/2 mRNA的作用机制研究[J]. 中医药学报, 2022, 50(7): 26-30.
|
|
[42]
|
刘海伟. 针灸对CTX化疗小鼠骨髓造血微环境中黏附分子及造血因子的影响[D]: [博士学位论文]. 武汉: 湖北中医药大学, 2016.
|
|
[43]
|
叶强, 高彤, 梁花花, 等. 艾灸足三里对化疗后骨髓抑制小鼠Notch信号通路的影响[J]. 中国中医基础医学杂志, 2020, 26(12): 1803-1807.
|
|
[44]
|
Duncan, A.W., Rattis, F.M., DiMascio, L.N., Congdon, K.L., Pazianos, G., Zhao, C., et al. (2005) Integration of Notch and Wnt Signaling in Hematopoietic Stem Cell Maintenance. Nature Immunology, 6, 314-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
郝治, 龚海峰, 刘丽梅, 等. 中药油剂愈溃油对大鼠糖尿病皮肤溃疡模型创面愈合及Wnt、Notch通路的影响[J]. 四川中医, 2022, 40(8): 51-56.
|
|
[46]
|
徐相雯. Wnt/Notch通路介导的血管稳态在番茄红素改善DEHP致小鼠脾脏损伤中的作用研究[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2025.
|
|
[47]
|
王立芳, 双黄升白颗粒对肿瘤化疗骨髓抑制期造血干细胞微环境Wnt、Notch信号通路的调控[Z]. 上海: 上海中医药大学附属龙华医院. 2015-12-01.
|
|
[48]
|
Lyu, Z., Shen, M., Zhang, Y., Gao, H., Liang, M., Chen, Y., et al. (2025) TGF-β1-Triggered Maladaptive Bone Marrow Endothelium Impedes Hematopoietic Recovery. Signal Transduction and Targeted Therapy, 10, Article No. 332. [Google Scholar] [CrossRef]
|
|
[49]
|
倪钰莹, 孙彤彤, 范淑月, 等. 麻黄细辛附子汤干预Notch通路调控Treg细胞纠正Th2偏移的研究[J]. 中国中医急症, 2023, 32(2): 200-203+216.
|
|
[50]
|
陈子锴, 江蓉星, 方锐洁, 等. 活血通络汤对激素性股骨头坏死造模兔PDGF、BMP-2及Notch3的影响[J]. 辽宁中医杂志, 2019, 46(1): 186-190+225.
|