肺动静脉畸形与缺血性卒中的相关性
The Correlation between Pulmonary Arteriovenous Malformations and Ischemic Stroke
DOI: 10.12677/acm.2025.15123613, PDF, HTML, XML,   
作者: 高 兰:西安医学院研究生院,陕西 西安;空军军医大学唐都医院神经内科,陕西 西安;杜 婴, 李 川, 姚 丹, 张 巍*:空军军医大学唐都医院神经内科,陕西 西安
关键词: 肺动静脉畸形急性缺血性卒中右向左分流造影超声心动图介入栓塞Pulmonary Arteriovenous Malformation Acute Ischemic Stroke Right-to-Left Shunt Contrast Echocardiography Interventional Embolization
摘要: 在缺血性卒中患者中,肺动静脉畸形(PAVMs)是一个不可忽视的病因。尤其是常规胸部计算机断层扫描(CT)难以检出的微小PAVMs,是缺血性脑卒中(AIS)的重要但常被忽视的病因。PAVMs可导致缺血性卒中、脑脓肿、体循环栓塞、咯血等多种并发症;经胸对比超声心动图(TTCE)在PAVMs筛查(尤其是微小PAVMs)中具有高灵敏性,是卒中患者的重要筛查工具;推荐将TTCE纳入常规筛查流程,加强对微小PAVMs的识别。介入栓塞仍是核心治疗,而不可栓塞人群需以二级预防、缺铁纠正与随访为主,未来研究需要建立大规模前瞻性队列,以明确微小PAVM的卒中风险与管理策略。
Abstract: Pulmonary arteriovenous malformations (PAVMs) are a non-negligible etiology in patients with ischemic stroke. In particular, micro PAVMs, which are difficult to detect on conventional chest computed tomography (CT) scans, are an important but often overlooked cause of ischemic stroke (AIS); PAVMs can lead to a variety of complications such as ischemic stroke, cerebral abscess, circulatory embolism, hemoptysis, and others; Transthoracic Contrast Echocardiography (TTCE) is a sensitive tool for the screening of PAVMs, particularly micro PAVMs; it is recommended that TTCE be incorporated into the routine screening process for stroke patients; and it is recommended that TTCE be incorporated into the routine screening process. TTCE is an important screening tool for stroke patients; it is recommended that TTCE be incorporated into the routine screening process to enhance the identification of small PAVMs. Interventional embolization remains the core treatment, and secondary prevention, correction of iron deficiency, and follow-up are needed for the nonembolizable population; future studies need to establish large prospective cohorts to clarify the risk of stroke and management strategies for micro-PAVMs.
文章引用:高兰, 杜婴, 李川, 姚丹, 张巍. 肺动静脉畸形与缺血性卒中的相关性[J]. 临床医学进展, 2025, 15(12): 1947-1955. https://doi.org/10.12677/acm.2025.15123613

1. 引言

缺血性脑卒中是老年人群致死致残的首要原因之一,尽管动脉粥样硬化、房颤、高血压等是常见病因,但仍有部分卒中归类为隐源性卒中(Embolic stroke of undetermined source, ESUS)。右向左分流(Right-to-left shunt, RLS)是其中重要的潜在机制,卵圆孔未闭(Patent foramen ovale, PFO)和肺动静脉畸形(The potential of covert pulmonary arteriovenous malformations, PAVMs)是最主要的解剖学基础,相较PFO,PAVMs更少被重视,尤其在老年患者中常被误诊或漏诊[1] [2]

PAVMs多见于遗传性出血性毛细血管扩张症(Hereditary hemorrhagic telangiectasia, HHT),但微小PAVM在人群中常独立存在,在缺血性脑卒中(Acute ischemic stroke, AIS)就诊人群中,占比更高,常导致微栓及感染相关风险(卒中、脑脓肿) [3]。微小PAVMs通常定义为供血动脉直径 < 2~3 mm的病灶,在胸部计算机断层扫描(Computed Tomography, CT)上常难以识别,但经胸对比超声心动图(Transthoracic contrast echocardiography, TTCE)能通过检出微气泡进入左心房提示其存在[4]。介入栓塞仍是核心治疗,能有效预防缺血性脑卒中复发,进一步降低卒中与脑脓肿风险,但应综合评估合并心肺疾病风险[5]

2. PAVMs概述(定义、病理生理)

PAVMs是低压和高流量的异常血管结构,其特征在于直接的肺动脉-静脉连接,从而绕过正常的肺毛细血管的过滤功能,形成右向左分流,使静脉血中的血栓、气泡、细菌直接进入体循环,引发缺血性脑卒中、脑脓肿及体循环栓塞[4]

PAVMs可因血管壁薄弱及血流高速而自发破裂,引起咯血甚至致命性出血,妊娠期和老年伴肺动脉高压(Pulmonary Hypertension PH)的患者风险更高[6]

部分患者因血流动力学改变出现双向分流,长期血流量增大可致心排量增高、右心扩大和心功能异常[7]

合并HHT的PAVMs患者常与脑、肝等器官动静脉畸形(Vascular anomaly malformations, AVM)共存,可能加重系统性血流动力学负担,增加卒中与出血风险[8]

3. PAVMs与HHT (流行病学、遗传学)

PAVMs总体患病率估计约为38/10万,提示该病并非常见,但临床上易漏诊且不少患者在出现并发症前无明显呼吸症状[9]

在HHT人群里,15%~50%可见PAVMs;而在所有PAVM患者中,70%可由HHT解释,基因型不同使PAVMs风险不同,ENG突变约62%可见PAVMs,ACVRL1约10%,SMAD4少见但在合并青年息肉综合征时提示风险增加[10] [11]

然而,临床卒中就诊队列中,非HHT、散发性PAVMs占比较高,提示散发性/非HHT PAVM在卒中人群中更为常见、且更易被忽视[12]。美国与荷兰的连续病例系列显示,非HHT PAVMs可占全部PAVMs的约22%,且更常见为孤立单发病灶[9]

在年龄方面,PAVMs相关AIS患者在发病年龄上显著年轻(住院年龄中位数约57.5岁对比其他病因AIS约72.5岁),导致失能寿命年负担更高[9]。在性别分布方面,女性总体检出率更高(约女性:男性 = 1.5~2:1),且许多病例在成人期才被发现[13] [14]

4. PAVMs的临床表现与并发症

PAVMs的临床表现异质性大,从无症状到严重低氧及卒中不等;其全身并发症涉及神经系统(卒中、脑脓肿)、循环系统(体循环栓塞、肺高压)、呼吸系统(低氧血症、咯血)及妊娠期风险。

4.1. 临床表现

合并PAVMs的患者早期缺乏典型症状。有研究显示,在207例PAVMs患者中,53.6%的患者是在常规健康检查中首次被诊断为PAVMs。不同程度的呼吸困难是最常见的呼吸症状,是患者就诊的主要原因,约占44.9%。然而,由于PAVMs的呼吸症状较为隐匿,导致其在临床上经常被忽视[15] [16]。其他常见的呼吸系统表现包括劳力性呼吸困难、运动耐量下降、低氧血症与杵状指,这些症状与右向左分流量呈一定相关性,但并非所有大分流患者都出现典型表现[7]。部分患者因鼻衄、皮肤或黏膜毛细血管扩张而提示可能存在HHT,进而通过系统筛查发现合并的PAVMs [7]

4.2. 神经系统并发症

PAVMs最重要的临床后果之一是AIS。PAVMs造成的右向左分流使静脉端微栓子、气泡和细菌绕过滤肺毛细血管过滤进入体循环,是AIS与脑脓肿的解剖学基础与生理通道。

在AIS影像学表型方面,AIS的影像学表型常呈皮质/皮质下的非腔隙性梗死,可多灶,且后循环受累并不罕见,与矛盾性栓塞分布一致[17]

多项研究显示,PAVMs患者卒中的发生率明显高于普通人群,且发病年龄显著提前,常出现在40~60岁[2]

脑脓肿是PAVMs另一神经系统高危并发症,相对一般人群,HHT人群脑脓肿比值比约30,在合并PAVMs的HHT患者中累积发生率约6% [18] [19]。PAVMs患者脑脓肿发生率显著高于普通人群,常与口腔感染或牙科操作有关。临床上遇到不明原因脑脓肿应积极评估潜在PAVM/HHT [20]

4.3. 循环系统并发症

PAVMs可导致体循环栓塞,表现为外周动脉栓塞或心肌梗死。虽然较卒中少见,但一旦发生常伴严重后果[21]

慢性右向左分流导致低氧刺激,机体通过红细胞增多维持动脉血氧含量;但红细胞增多亦会增加血液黏稠度与血栓倾向[22] [23]

部分患者还会进展为肺动脉高压,加重心脏负荷,引起右心扩大及心功能异常[7] [24]

特别在HHT背景下,PAVMs可与肝动静脉畸形、内皮功能异常共同增加肺循环阻力,导致右心压力负荷上升、右心增大和心功能不全[8] [24]

4.4. 呼吸系统并发症

PAVMs的右向左分流使部分静脉血未经肺毛细血管过滤直接进入体循环,导致低氧血症。同时因为PAVMs主要分布在下叶,且在直立位时下叶血流增加,导致通气/灌注失衡,从而也会引起低氧血症[25]。PAVMs患者的低氧血症表现为动脉血氧饱和度下降,随着右向左分流增加,即使在安静状态也可能出现氧饱和度下降;运动、妊娠状态下更易加剧,出现紫绀、呼吸困难等表现[22] [26]

另一个严重的呼吸系统并发症是大咯血和致命性出血。PAVMs的血管壁薄弱,孕期血流动力学负荷增加或伴随肺动脉高压时,破裂风险大幅上升,可导致致命性大出血和血胸[14] [27]。综上,PAVMs的循环和呼吸系统并发症往往相互交织:低氧与红细胞增多症加重血栓风险,肺动脉高压与妊娠期循环负荷增加则显著提高出血风险。因此,临床需在卒中预防之外,重视循环及呼吸并发症的早期识别和个体化干预。

5. PAVMs的诊断与筛查

5.1. 实验室与基础检查

PAVMs患者可表现为低氧血症、继发性红细胞增多症,但这些指标敏感性和特异性有限,不能单独用于诊断。血气分析与血氧监测可提示低氧状态,但无法明确RLS的解剖学基础[28]

5.2. 影像学检查

5.2.1. 胸部CT与CT血管造影(Computed Tomography Angiography, CTA)

胸部CT/CTA是诊断可见PAVMs的金标准,可明确显示供血动脉、瘘体及引流静脉,适用于评估供血动脉直径 ≥ 2~3 mm的病灶[26]

HHT指南推荐低剂量非增强胸部CT作为孕期和一般人群疑似PAVMs的成像选择(必要时再加CTA),强调辐射与时机管理[11]

然而,CT/CTA的局限性在于对微小PAVMs (供血动脉直径 < 2~3 mm)检出率有限,部分患者在CT上阴性,但仍有卒中或脑脓肿等临床表现[12] [26]

5.2.2. 磁共振成像(Magnetic Resonance Imaging, MRI)/磁共振血管成像(Magnetic Resonance Angiography, MRA)

MRI/MRA在卒中患者中可用于脑内并发症评估(如多灶梗死、脑脓肿),但在直接检出PAVMs方面敏感性不足,更多作为辅助工具[11]

5.2.3. TTCE (经胸对比超声心动图)

TTCE筛查PAVMs的敏感性97% (95% CI 93.6~98.3)、阴性预测值99%,显著优于其他非侵入性方法[29]。微小PAVMs在年轻或隐源性卒中(ESUS)中是被低估的病因之一,即便不可栓塞的微小PAVMs亦可能持续带来微栓/感染相关风险(卒中、脑脓肿)在CT阴性/微小PAVMs患者中,TTCE能通过检出微气泡进入左心房提示其存在,是目前唯一可快速发现微小分流的方法,因此在AIS/ESUS评估中,纳入TTCE常规筛查可减少漏诊[26] [30]

TTCE依据左心房出现微泡的时间/数量进行分级;分级越高,后续CT/造影发现可治疗PAVMs的概率越大;而低级别阳性多提示微小通道,应随访与择期复评[26] [31]

5.2.4. 经食道对比超声心动图(Transesophageal Contrast Echocardiography, TECE)

TECE可在左房–肺静脉入径视图下直视微泡进入左心,有助于区分心内分流(如PFO)与肺内分流,并在低级别分流时提高阳性预测值[4]。在TTCE阳性但CT阴性、或分流分级低而临床风险高时,TECE可降低假阳性[31]

5.3. 分层化PAVMs筛查与诊断

强推荐行TTCE (首选筛查):1) 隐源性卒中/ESUS或≤60岁AIS且无明确病因者[4] [20]。2) 低氧/直立性低氧、红细胞增多或运动耐量下降提示右向左分流者[25] [26] [31]。3) HHT线索或家族史(反复鼻衄、皮肤/黏膜毛细血管扩张) [22] [32]。4) 既往脑脓肿或需高菌血症风险操作者[7] [22]。获益:先验概率高;TTCE高敏感、无辐射、低成本;阳性可导向HRCT/CTA定位与经导管栓塞,降低卒中/脑脓肿风险。风险:主要为假阳性引发的追加TEE/CT;对比微泡总体安全。

可考虑行TTCE (风险–获益权衡):60岁且传统危险因素存在,但表型不典型或反复TIA [4] [20]。获益:在中等先验概率人群,延迟3~8心动周期或MBs ≥ 3的阳性更具治疗意义,可精准进入HRCT/CTA或cTEE路径。风险:阳性后追加影像与可能的TEE;通过严格判读时序与分级降低过度检查。

6. PAVMs与急性缺血性卒中(AIS)

PAVMs通过RLS使静脉端的微栓子、气泡与病原体绕过滤肺毛细血管过滤,直接进入体循环,是AIS与脑脓肿的关键解剖——生理通路;与常见的心内分流(如PFO)不同,PAVMs在卒中实践中更易漏诊,常在复发或并发症出现时才被识别[1] [2]

6.1. 流行病学与临床相关性

在美国2005~2014年427万余例AIS住院样本中,PAVMs相关AIS的住院检出率极低但逐年上升(2005年197/百万→2014年368/百万),且患者更年轻(中位57.5岁vs 72.5岁) [2]。PAVMs患者卒中的发生率明显高于普通人群,且发病年龄显著提前,常出现在40~60岁[2]

在既往文献中,PAVMs相关临床卒中率常 > 10%,而沉默性脑梗死负担几乎是临床卒中的两倍[9]。在未确诊PAVMs的人群中,卒中常为首发表现,多数患者在卒中前长期缺乏典型呼吸症状,导致筛查延迟[15] [16]

在AIS影像学表型方面,AIS的影像学表型常呈皮质/皮质下的非腔隙性梗死,可多灶,且后循环受累并不罕见,与矛盾性栓塞分布一致,相对少见近端大血管闭塞[9] [17]

6.2. PAVMs引起AIS的因素

6.2.1. PAVMs相关性因素

(1) 供血动脉直径(Feeding Artery Diameter, FAD)与风险

FAD ≥ 3 mm的病灶更可能出现卒中/脑脓肿,但小口径病灶(≤3 mm)同样可导致TIA/卒中/脑脓肿,关键机制在于右向左分流的存在,而非单纯病灶大小[32]

(2) 多发性PAVMs

在回顾性横断研究中,多发PAVMs的脑梗死发生率约60%,而单发约32%;另有研究显示多发者缺血性卒中患病率近乎翻倍(28% vs 14%) [9] [33]

流行病学上,非HHT患者的PAVMs多为孤立、单侧[9];而HHT更常见多发、双侧累及,这与全身性血管异常的遗传背景一致[26]

(3) 分流强度与低氧血症

RLS使静脉血未经肺毛细血管过滤进入体循环并造成低氧。基于全国住院样本的多因素分析显示:低氧血症是PAVMs相关AIS的最强独立风险标志物(OR ≈ 8.4, 95% CI 6.3~11.2) [9]

6.2.2. 非PAVMs相关性因素

(1) 缺铁——血小板活化通路

PAVMs合并AIS人群中,常规卒中危险因素较少[9]。铁/缺铁状态与AIS显著相关,并通过增强血小板对5-羟色胺(5-Hydroxytryptamine, 5-HT)的聚集反应提高了微栓形成概率[2]。Shovlin等人报告,到65岁,未经治疗的PAVMs的患者中有25%患有AIS,与没有铁缺乏的人相比,缺铁患者的发病率要高得多[34]

(2) 其他机制与触发因素

RLS允许静脉血栓、细菌、血管活性物质进入体循环,引发AIS/脑脓肿;口腔/牙科操作与菌血症相关事件在HHT/PAVMs人群中更常见[20]

此外,部分患者可能存在高凝/内皮损伤背景(如同型半胱氨酸升高等),共同提高血栓风险[35]

6.3. 微小PAVMs与AIS

微小PAVMs通常定义为供血动脉直径 < 2~3 mm的病灶,在CT上常难以识别[4]。微小PAVMs在人群中大多独立存在,在卒中患者中是被低估的病因之一[3],在CT阴性/微小PAVMs患者中,TTCE能通过检出微气泡进入左心房提示其存在,是目前唯一可快速发现微小分流的方法,因此在AIS/ESUS评估中,纳入TTCE常规筛查可减少漏诊[26] [30]

6.4. 急性期处理与再灌注治疗

在全国住院样本中,合并PAVMs的AIS患者静脉溶栓比例与非PAVMs人群相近(5.9% vs 5.8%),但机械取栓更少被实施(0% vs 0.7%),与其“非近端大血管闭塞、以微栓为主”的病理生理相符[2]

7. PAVMs的治疗与长期管理

7.1. 介入栓塞(首选治疗)

介入栓塞的目标是阻断“供血动脉–瘘体–引流静脉”通路,降低右向左分流量,以减少AIS/脑脓肿与低氧并发症,并改善运动耐量与生活质量。

对于CT可见、解剖上可介入的PAVMs (包括微小PAVMs),国际指南与影像学共识建议优先经导管栓塞——即便无症状,也应考虑积极处理[13]。联合栓塞 + 标准抗血栓二级预防较“单纯药物”显著降低AIS再发[2]。建议术后6~12个月进行影像学复评,其后每3~5年复评;当出现TTCE分级升高、血氧下降或症状复现时,应提前评估[13] [36]

7.2. 微小PAVMs管理

相当一部分患有微小PAVMs的AIS患者无法接受栓塞治疗,这类患者造影/CT难以显示可治疗的供血动脉,因此标准栓塞路径受限[3]

此类患者应强化二级预防:以抗血小板为主个体化权衡出血风险[9],控制牙科与口腔感染以减少菌血症与脑脓肿[20]。纠正缺铁可减少AIS发生概率。铁/缺铁状态与AIS显著相关,并通过增强血小板对5-HT的聚集反应提高了微栓形成概率[2]

7.3. 合并PH/心肺合并症时的策略

对合并PH或显著心肺合并症(右心功能不全、弥散功能受损、顽固低氧等)的PAVM患者,治疗目标需在“降低右向左分流、减少卒中/脑脓肿风险”与“避免加重肺循环后负荷、诱发低氧/出血事件”之间取得平衡。因此需多学科综合评估进行权衡[11] [13] [36]

以低氧/出血为主表型者,可考虑分步/分期选择性栓塞以减少一次性分流骤降引起的血流动力学波动[13] [37]。若以PH为主,应并行规范PH治疗并个体化设定栓塞策略与节奏[11]

7.4. 抗血小板/抗凝与出血风险平衡

基于全国住院样本的AIS-PAVMs分析显示,PAVMs队列长期抗凝比例更高,且独立相关于更高的出血/贫血负担[9]。多项HHT人群的系统/范围综述与回顾性研究同样报道:抗血小板/抗凝可加重鼻衄与消化道出血,约三分之一患者因出血不得不中止治疗,需要个体化的风险——获益评估[38]

因此,PAVMs/AIS二级预防常以抗血小板为主;是否抗凝需结合个体血栓指征(如房颤、静脉血栓史等)与出血风险(HHT鼻衄/消化道出血、缺铁性贫血等)综合权衡,避免不必要的双联或抗凝[2] [23] [39]。HHT指南与近年综述均强调:当有明确血栓学指征时可使用抗栓药物,但临床上需更严格的出血监测与止血共识路径[11]

8. 未解问题与争议

不可栓塞/未可视化PAVMs的最佳二级预防策略:抗血小板vs抗凝:在已确认或强怀疑肺内分流所致反常性栓塞而无其他抗凝指征(如房颤、VTE)时,缺乏针对PAVMs的随机对照证据;目前多依循AIS二级预防指南作个体化决策,倾向抗血小板优先以降低HHT/鼻衄/消化道出血负担[20] [22]

缺铁纠正对卒中再发的因果效应与效应量:观察性证据提示缺铁–血小板活化/高FVIII通路与卒中/血栓风险相关[34] [35],但铁剂补充降低卒中复发尚缺乏前瞻性量化数据。

TTCE (+)/CTA (–)人群的自然史与阈值化干预:需要明确不同MBs分级/气泡到达时序与后续出现“可治疗病灶”的概率、卒中/脑脓肿风险的剂量–反应关系,从而制定分级随访频率与触发介入的证据化阈值[11] [13] [15] [18] [22]

9. 总结与展望

PAVMs是可治疗且常被忽视的卒中病因,在非HHT卒中人群中,存在大量CT不可见的微小PAVMs。TTCE在检出此类分流中具有重要价值,应作为优先筛查工具。治疗方面,介入栓塞是首选,但对于不可栓塞的微小PAVMs,未来需优化筛查策略,并探索微小PAVMs的介入可行性与药物策略,以降低卒中复发风险。

NOTES

*通讯作者。

参考文献

[1] Albers, G.W., Bernstein, R., Brachmann, J., Camm, A.J., Fromm, P., Goto, S., et al. (2021) Reexamination of the Embolic Stroke of Undetermined Source Concept. Stroke, 52, 2715-2722. [Google Scholar] [CrossRef] [PubMed]
[2] Topiwala, K.K., Patel, S.D., Pervez, M., Shovlin, C.L. and Alberts, M.J. (2021) Ischemic Stroke in Patients with Pulmonary Arteriovenous Fistulas. Stroke, 52, e311-e315. [Google Scholar] [CrossRef] [PubMed]
[3] Lim, K.H., Kim, S.M., Park, S., Kim, E.K., Chang, S., Lee, S., et al. (2022) Significance of Transesophageal Contrast Echocardiography with the Agitated Saline Test for Diagnosing Pulmonary Arteriovenous Malformations. Frontiers in Cardiovascular Medicine, 9, Article 975901. [Google Scholar] [CrossRef] [PubMed]
[4] Majumdar, S. and McWilliams, J.P. (2020) Approach to Pulmonary Arteriovenous Malformations: A Comprehensive Update. Journal of Clinical Medicine, 9, Article 1927. [Google Scholar] [CrossRef] [PubMed]
[5] Trerotola, S.O. and Pyeritz, R.E. (2010) PAVM Embolization: An Update. American Journal of Roentgenology, 195, 837-845. [Google Scholar] [CrossRef] [PubMed]
[6] Faughnan, M.E., Palda, V.A., Garcia-Tsao, G., Geisthoff, U.W., McDonald, J., Proctor, D.D., et al. (2009) International Guidelines for the Diagnosis and Management of Hereditary Haemorrhagic Telangiectasia. Journal of Medical Genetics, 48, 73-87. [Google Scholar] [CrossRef] [PubMed]
[7] Kritharis, A., Al-Samkari, H. and Kuter, D.J. (2018) Hereditary Hemorrhagic Telangiectasia: Diagnosis and Management from the Hematologist’s Perspective. Haematologica, 103, 1433-1443. [Google Scholar] [CrossRef] [PubMed]
[8] Aagaard, K.S., Kjeldsen, A.D., Tørring, P.M. and Green, A. (2018) Comorbidity among HHT Patients and Their Controls in a 20 Years Follow-Up Period. Orphanet Journal of Rare Diseases, 13, Article No. 223. [Google Scholar] [CrossRef] [PubMed]
[9] Topiwala, K.K., Patel, S.D., Saver, J.L., Streib, C.D. and Shovlin, C.L. (2022) Ischemic Stroke and Pulmonary Arteriovenous Malformations. Neurology, 98, 188-198. [Google Scholar] [CrossRef] [PubMed]
[10] Bofarid, S., Hosman, A.E., Mager, J.J., Snijder, R.J. and Post, M.C. (2021) Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. International Journal of Molecular Sciences, 22, 3471. [Google Scholar] [CrossRef] [PubMed]
[11] Faughnan, M.E., Mager, J.J., Hetts, S.W., Palda, V.A., Lang-Robertson, K., Buscarini, E., et al. (2020) Second International Guidelines for the Diagnosis and Management of Hereditary Hemorrhagic Telangiectasia. Annals of Internal Medicine, 173, 989-1001. [Google Scholar] [CrossRef] [PubMed]
[12] Danyalian, A., Sankari, A. and Hernandez, F. (2024) Pulmonary Arteriovenous Malformation. StatPearls.
[13] Pillai, A.K., Steigner, M.L., Aghayev, A., Ahmad, S., Ferencik, M., Kandathil, A., et al. (2024) ACR Appropriateness Criteria® Pulmonary Arteriovenous Malformation (PAVM): 2023 Update. Journal of the American College of Radiology, 21, S268-S285. [Google Scholar] [CrossRef] [PubMed]
[14] Lukic, A., Cmelak, L., Draženović, D., Kojundzic, H., Lukic, I.K. and Gluncic, V. (2023) Pulmonary Arteriovenous Malformation Unmasked by Pregnancy: A Review of Pulmonary Arteriovenous Malformations and Cardiovascular and Respiratory Changes in Pregnancy. Case Reports in Pulmonology, 2023, Article ID: 5469592. [Google Scholar] [CrossRef] [PubMed]
[15] Shovlin, C.L., Jackson, J.E., Bamford, K.B., Jenkins, I.H., Benjamin, A.R., Ramadan, H., et al. (2008) Primary Determinants of Ischaemic Stroke/Brain Abscess Risks Are Independent of Severity of Pulmonary Arteriovenous Malformations in Hereditary Haemorrhagic Telangiectasia. Thorax, 63, 259-266. [Google Scholar] [CrossRef] [PubMed]
[16] Kofoed, M.S., Tørring, P.M., Christensen, A.A., Lange, B., Kjeldsen, A.D. and Nielsen, T.H. (2023) High Risk of Ischaemic Stroke Amongst Patients with Hereditary Haemorrhagic Telangiectasia. European Journal of Neurology, 31, e16128. [Google Scholar] [CrossRef] [PubMed]
[17] Ramaswamy, S., Marczak, I., Mulatu, Y., Eldokmak, M., Bezalel, A., Otto, A., et al. (2024) Ischemic Strokes Due to Pulmonary Arteriovenous Malformations: A Systematic Review. Brain Circulation, 10, 213-219. [Google Scholar] [CrossRef] [PubMed]
[18] Roberts, J.I., Woodward, K., Kirton, A. and Esser, M.J. (2022) Pearls & Oy-Sters: Cerebral Abscess Secondary to Pulmonary Arteriovenous Malformation in Hereditary Hemorrhagic Telangiectasia. Neurology, 98, 292-295. [Google Scholar] [CrossRef] [PubMed]
[19] Bodilsen, J., Madsen, T., Brandt, C.T., Müllertz, K., Wiese, L., Demirci, S.T., et al. (2023) Pulmonary Arteriovenous Malformations in Patients with Previous Brain Abscess: A Cross‐Sectional Population‐Based Study. European Journal of Neurology, 31, e16176. [Google Scholar] [CrossRef] [PubMed]
[20] Boother, E.J., Brownlow, S., Tighe, H.C., Bamford, K.B., Jackson, J.E. and Shovlin, C.L. (2017) Cerebral Abscess Associated with Odontogenic Bacteremias, Hypoxemia, and Iron Loading in Immunocompetent Patients with Right-to-Left Shunting through Pulmonary Arteriovenous Malformations. Clinical Infectious Diseases, 65, 595-603. [Google Scholar] [CrossRef] [PubMed]
[21] Lacombe, P., Lacout, A., Marcy, P., Binsse, S., Sellier, J., Bensalah, M., et al. (2013) Diagnosis and Treatment of Pulmonary Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia: An Overview. Diagnostic and Interventional Imaging, 94, 835-848. [Google Scholar] [CrossRef] [PubMed]
[22] Cartin-Ceba, R., Swanson, K.L. and Krowka, M.J. (2013) Pulmonary Arteriovenous Malformations. Chest, 144, 1033-1044. [Google Scholar] [CrossRef] [PubMed]
[23] Shovlin, C.L. (2014) Pulmonary Arteriovenous Malformations. American Journal of Respiratory and Critical Care Medicine, 190, 1217-1228. [Google Scholar] [CrossRef] [PubMed]
[24] Chen, W., Long, Y., Chen, D., Hao, S., Guan, L. and Zhou, D. (2024) Pulmonary Hypertension Exacerbated by Hereditary Hemorrhagic Telangiectasia Combined with Pulmonary Arteriovenous Fistula and Pregnancy Status: A Case Report. International Journal of Cardiology Cardiovascular Risk and Prevention, 22, Article ID: 200300. [Google Scholar] [CrossRef] [PubMed]
[25] Hashmi, A.T., Batool, A., Khalid, M.O., Raheja, H., Sadiq, A. and Hollander, G. (2021) Multiple Strokes Due to Pulmonary Arteriovenous Malformation. Radiology Case Reports, 16, 2362-2365. [Google Scholar] [CrossRef] [PubMed]
[26] Saboo, S.S., Chamarthy, M., Bhalla, S., Park, H., Sutphin, P., Kay, F., et al. (2018) Pulmonary Arteriovenous Malformations: Diagnosis. Cardiovascular Diagnosis and Therapy, 8, 325-337. [Google Scholar] [CrossRef] [PubMed]
[27] Di Guardo, F., Lo Presti, V., Costanzo, G., Zambrotta, E., Di Gregorio, L.M., Basile, A., et al. (2019) Pulmonary Arteriovenous Malformations (PAVMs) and Pregnancy: A Rare Case of Hemothorax and Review of the Literature. Case Reports in Obstetrics and Gynecology, 2019, Article ID: 8165791. [Google Scholar] [CrossRef] [PubMed]
[28] Gawecki, F., Strangeways, T., Amin, A., Perks, J., McKernan, H., Thurainatnam, S., et al. (2019) Exercise Capacity Reflects Airflow Limitation Rather than Hypoxaemia in Patients with Pulmonary Arteriovenous Malformations. QJM: An International Journal of Medicine, 112, 335-342. [Google Scholar] [CrossRef] [PubMed]
[29] van Gent, M.W.F., Post, M.C., Luermans, J.G.L.M., Snijder, R.J., Westermann, C.J.J., Plokker, H.W.M., et al. (2008) Screening for Pulmonary Arteriovenous Malformations Using Transthoracic Contrast Echocardiography: A Prospective Study. European Respiratory Journal, 33, 85-91. [Google Scholar] [CrossRef] [PubMed]
[30] Scarpato, B.M., McDonald, J., Bayrak-Toydemir, P., Elliott, C.G., Cahill, B.C., Emerson, L.L., et al. (2023) The Shunt of It. Chest, 163, e201-e205. [Google Scholar] [CrossRef] [PubMed]
[31] Gazzaniga, P., Buscarini, E., Leandro, G., Reduzzi, L., Grosso, M., Pongiglione, G., et al. (2008) Contrast Echocardiography for Pulmonary Arteriovenous Malformations Screening: Does Any Bubble Matter? European Journal of Echocardiography, 10, 513-518. [Google Scholar] [CrossRef] [PubMed]
[32] Ma, X., Li, L., Yu, D., Jie, B. and Jiang, S. (2022) Management of Pulmonary Arteriovenous Malformations Involves Additional Factors Aside from the Diameter of Feeding Arteries: A 3-Year Case-Case Retrospective Analysis. Respiratory Research, 23, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
[33] Lu, W., Dai, H., Li, Y. and Meng, X. (2024) Neurological and Cardiopulmonary Manifestations of Pulmonary Arteriovenous Malformations. Frontiers in Medicine, 11, Article 1449496. [Google Scholar] [CrossRef] [PubMed]
[34] Shovlin, C.L., Chamali, B., Santhirapala, V., Livesey, J.A., Angus, G., Manning, R., et al. (2014) Ischaemic Strokes in Patients with Pulmonary Arteriovenous Malformations and Hereditary Hemorrhagic Telangiectasia: Associations with Iron Deficiency and Platelets. PLOS ONE, 9, e88812. [Google Scholar] [CrossRef] [PubMed]
[35] Ananiadis, T., Faughnan, M.E., Clark, D., Prabhudesai, V., Kim, H., Lawton, M.T., et al. (2022) Neurovascular Complications and Pulmonary Arteriovenous Malformation Feeding Artery Size. Annals of the American Thoracic Society, 19, 1432-1435. [Google Scholar] [CrossRef] [PubMed]
[36] Yap, C.W., Wee, B.B.K., Yee, S.Y., Tiong, V., Chua, Y.X., Teo, L., et al. (2022) The Role of Interventional Radiology in the Diagnosis and Treatment of Pulmonary Arteriovenous Malformations. Journal of Clinical Medicine, 11, Article 6282. [Google Scholar] [CrossRef] [PubMed]
[37] Botsford, A., Tradi, F., Loubet, A., Tantawi, S., Soulez, G., Giroux, M., et al. (2024) Transarterial Embolization of Simple Pulmonary Arteriovenous Malformations: Long-Term Outcomes of 0.018-Inch Coils versus Vascular Plugs. Journal of Vascular and Interventional Radiology, 35, 349-360. [Google Scholar] [CrossRef] [PubMed]
[38] Virk, Z.M., Zhang, E., Rodriguez-Lopez, J., Witkin, A., Wong, A.K., Luther, J., et al. (2023) Safety, Tolerability, and Effectiveness of Anticoagulation and Antiplatelet Therapy in Hereditary Hemorrhagic Telangiectasia. Journal of Thrombosis and Haemostasis, 21, 26-36. [Google Scholar] [CrossRef] [PubMed]
[39] Zhang, E., Virk, Z.M., Rodriguez-Lopez, J. and Al-Samkari, H. (2023) Anticoagulation and Antiplatelet Therapy in Hereditary Hemorrhagic Telangiectasia: A Scoping Review. Thrombosis Research, 226, 150-155. [Google Scholar] [CrossRef] [PubMed]