|
[1]
|
邢强, 孙海龙, 占丹玲, 胡婧, 刘凯(2017). 执行功能对言语顿悟问题解决的影响: 基于行为与ERPs的研究. 心理学报, 49(7), 909-919.
|
|
[2]
|
Alvarez, J. A., & Emory, E. (2006). Executive Function and the Frontal Lobes: A Meta-Analytic Review. Neuropsychology Review, 16, 17-42.[CrossRef] [PubMed]
|
|
[3]
|
Anderson, M. C., & Hulbert, J. C. (2021). Active Forgetting: Adaptation of Memory by Prefrontal Control. Annual Review of Psychology, 72, 1-36.[CrossRef] [PubMed]
|
|
[4]
|
Anderson, M. C., & Levy, B. J. (2009). Suppressing Unwanted Memories. Current Directions in Psychological Science, 18, 189-194.[CrossRef]
|
|
[5]
|
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the Right Inferior Frontal Cortex. Trends in Cognitive Sciences, 8, 170-177.[CrossRef] [PubMed]
|
|
[6]
|
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the Right Inferior Frontal Cortex: One Decade On. Trends in Cognitive Sciences, 18, 177-185.[CrossRef] [PubMed]
|
|
[7]
|
Arpaia, P., Cuocolo, R., Fullin, A., Gargiulo, L., Mancino, F., Moccaldi, N. et al. (2024). Executive Functions Assessment Based on Wireless EEG and 3D Gait Analysis during Dual-Task: A Feasibility Study. IEEE Journal of Translational Engineering in Health and Medicine, 12, 268-278.[CrossRef] [PubMed]
|
|
[8]
|
Baddeley, A. D., & Hitch, G. J. (1994). Developments in the Concept of Working Memory. Neuropsychology, 8, 485-493.[CrossRef]
|
|
[9]
|
Best, J. R., & Miller, P. H. (2010). A Developmental Perspective on Executive Function: Development of Executive Functions. Child Development, 81, 1641-1660.[CrossRef] [PubMed]
|
|
[10]
|
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior Cingulate Cortex and Response Conflict: Effects of Frequency, Inhibition and Errors. Cerebral Cortex, 11, 825-836.[CrossRef] [PubMed]
|
|
[11]
|
Bridgett, D. J., Oddi, K. B., Laake, L. M., Murdock, K. W., & Bachmann, M. N. (2013). Integrating and Differentiating Aspects of Self-Regulation: Effortful Control, Executive Functioning, and Links to Negative Affectivity. Emotion, 13, 47-63.[CrossRef] [PubMed]
|
|
[12]
|
Caciagli, L., Paquola, C., He, X., Vollmar, C., Centeno, M., Wandschneider, B. et al. (2023). Disorganization of Language and Working Memory Systems in Frontal versus Temporal Lobe Epilepsy. Brain, 146, 935-953.[CrossRef] [PubMed]
|
|
[13]
|
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of Performance. Science, 280, 747-749.[CrossRef] [PubMed]
|
|
[14]
|
Chuah, Y. M. L., Venkatraman, V., Dinges, D. F., & Chee, M. W. L. (2006). The Neural Basis of Interindividual Variability in Inhibitory Efficiency after Sleep Deprivation. The Journal of Neuroscience, 26, 7156-7162.[CrossRef] [PubMed]
|
|
[15]
|
Clayson, P. E., Baldwin, S. A., Rocha, H. A., & Larson, M. J. (2021). The Data-Processing Multiverse of Event-Related Potentials (ERPs): A Roadmap for the Optimization and Standardization of ERP Processing and Reduction Pipelines. NeuroImage, 245, Article 118712.[CrossRef] [PubMed]
|
|
[16]
|
D’Esposito, M., & Postle, B. R. (2015). The Cognitive Neuroscience of Working Memory. Annual Review of Psychology, 66, 115-142.[CrossRef] [PubMed]
|
|
[17]
|
Deldar, Z., Gevers-Montoro, C., Khatibi, A., & Ghazi-Saidi, L. (2021). The Interaction between Language and Working Memory: A Systematic Review of fMRI Studies in the Past Two Decades. AIMS Neuroscience, 8, 1-32.[CrossRef] [PubMed]
|
|
[18]
|
Dhir, S., Teo, W., Chamberlain, S. R., Tyler, K., Yücel, M., & Segrave, R. A. (2021). The Effects of Combined Physical and Cognitive Training on Inhibitory Control: A Systematic Review and Meta-Analysis. Neuroscience & Biobehavioral Reviews, 128, 735-748.[CrossRef] [PubMed]
|
|
[19]
|
Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64, 135-168.[CrossRef] [PubMed]
|
|
[20]
|
Doebel, S. (2020). Rethinking Executive Function and Its Development. Perspectives on Psychological Science, 15, 942-956.[CrossRef] [PubMed]
|
|
[21]
|
Egner, T., & Hirsch, J. (2005). Cognitive Control Mechanisms Resolve Conflict through Cortical Amplification of Task-Relevant Information. Nature Neuroscience, 8, 1784-1790.[CrossRef] [PubMed]
|
|
[22]
|
Ferguson, H. J., Brunsdon, V. E. A., & Bradford, E. E. F. (2021). The Developmental Trajectories of Executive Function from Adolescence to Old Age. Scientific Reports, 11, Article No. 1382.[CrossRef] [PubMed]
|
|
[23]
|
Friedman, N. P., & Robbins, T. W. (2022). The Role of Prefrontal Cortex in Cognitive Control and Executive Function. Neuropsychopharmacology, 47, 72-89.[CrossRef] [PubMed]
|
|
[24]
|
Frost, A., Moussaoui, S., Kaur, J., Aziz, S., Fukuda, K., & Niemeier, M. (2021). Is the N-Back Task a Measure of Unstructured Working Memory Capacity? Towards Understanding Its Connection to Other Working Memory Tasks. Acta Psychologica, 219, Article 103398.[CrossRef] [PubMed]
|
|
[25]
|
Garavan, H., Ross, T. J., Kaufman, J., & Stein, E. A. (2003). A Midline Dissociation between Error-Processing and Response-Conflict Monitoring. NeuroImage, 20, 1132-1139.[CrossRef] [PubMed]
|
|
[26]
|
Gioia, G. A., Isquith, P. K., Retzlaff, P. D., & Espy, K. A. (2002). Confirmatory Factor Analysis of the Behavior Rating Inventory of Executive Function (BRIEF) in a Clinical Sample. Child Neuropsychology, 8, 249-257.[CrossRef] [PubMed]
|
|
[27]
|
Grandjean, A., Suarez, I., & Casini, L. (2023). The Effect of Reducing Attentional Resources on Selective Suppression in the Simon Task. Quarterly Journal of Experimental Psychology, 76, 361-380.[CrossRef] [PubMed]
|
|
[28]
|
Han, Y., Dai, Z., Ridwan, M. C., Lin, P., Zhou, H., Wang, H. et al. (2020). Connectivity of the Frontal Cortical Oscillatory Dynamics Underlying Inhibitory Control during a Go/No-Go Task as a Predictive Biomarker in Major Depression. Frontiers in Psychiatry, 11, Article ID: 707.[CrossRef] [PubMed]
|
|
[29]
|
Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, D., & Brem, S. (2015). Cognitive Flexibility in Adolescence: Neural and Behavioral Mechanisms of Reward Prediction Error Processing in Adaptive Decision Making during Development. NeuroImage, 104, 347-354.[CrossRef] [PubMed]
|
|
[30]
|
Hester, R., Fassbender, C., & Garavan, H. (2004). Individual Differences in Error Processing: A Review and Reanalysis of Three Event-Related fMRI Studies Using the GO/NOGO Task. Cerebral Cortex, 14, 986-994.[CrossRef] [PubMed]
|
|
[31]
|
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive Functions and Self-Regulation. Trends in Cognitive Sciences, 16, 174-180.[CrossRef] [PubMed]
|
|
[32]
|
Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive Training Leads to Sustained Enhancement of Poor Working Memory in Children. Developmental Science, 12, 9-15.[CrossRef] [PubMed]
|
|
[33]
|
Hommel, B. E., Ruppel, R., & Zacher, H. (2022). Assessment of Cognitive Flexibility in Personnel Selection: Validity and Acceptance of a Gamified Version of the Wisconsin Card Sorting Test. International Journal of Selection and Assessment, 30, 126-144.[CrossRef]
|
|
[34]
|
Ishihara, T., Miyazaki, A., Tanaka, H., & Matsuda, T. (2020). Identification of the Brain Networks That Contribute to the Interaction between Physical Function and Working Memory: An fMRI Investigation with over 1,000 Healthy Adults. NeuroImage, 221, Article 117152.[CrossRef] [PubMed]
|
|
[35]
|
Jia, L., Qin, X., Cui, J., Zheng, Q., Yang, T., Wang, Y. et al. (2021). An ERP Study on Proactive and Reactive Response Inhibition in Individuals with Schizotypy. Scientific Reports, 11, Article No. 8394.[CrossRef] [PubMed]
|
|
[36]
|
Jiao, L., Liu, C., de Bruin, A., & Chen, B. (2020). Effects of Language Context on Executive Control in Unbalanced Bilinguals: An ERPs Study. Psychophysiology, 57, e13653.[CrossRef] [PubMed]
|
|
[37]
|
Johann, V., Könen, T., & Karbach, J. (2020). The Unique Contribution of Working Memory, Inhibition, Cognitive Flexibility, and Intelligence to Reading Comprehension and Reading Speed. Child Neuropsychology, 26, 324-344.[CrossRef] [PubMed]
|
|
[38]
|
Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain General and Domain Preferential Brain Regions Associated with Different Types of Task Switching: A Meta‐Analysis. Human Brain Mapping, 33, 130-142.[CrossRef] [PubMed]
|
|
[39]
|
Kirkham, R., Kooijman, L., Albertella, L., Myles, D., Yücel, M., & Rotaru, K. (2024). Immersive Virtual Reality-Based Methods for Assessing Executive Functioning: Systematic Review. JMIR Serious Games, 12, e50282.[CrossRef] [PubMed]
|
|
[40]
|
Kräplin, A., Scherbaum, S., Kraft, E., Rehbein, F., Bühringer, G., Goschke, T. et al. (2021). The Role of Inhibitory Control and Decision-Making in the Course of Internet Gaming Disorder. Journal of Behavioral Addictions, 9, 990-1001.[CrossRef] [PubMed]
|
|
[41]
|
Li, X., O’Sullivan, M. J., & Mattingley, J. B. (2022). Delay Activity during Visual Working Memory: A Meta-Analysis of 30 fMRI Experiments. NeuroImage, 255, Article 119204.[CrossRef] [PubMed]
|
|
[42]
|
Logan, G. D. (1994). On the Ability to Inhibit Thought or Action: A Users’ Guide to the Stop Signal Paradigm. In D. Dagenbach, & T. H. Carr (Eds.), Inhibitory Processes in Attention, Memory, and Learning (pp. 189-239). Academic Press.
|
|
[43]
|
Malambo, C., Nová, A., Clark, C., & Musálek, M. (2022). Associations between Fundamental Movement Skills, Physical Fitness, Motor Competency, Physical Activity, and Executive Functions in Pre-School Age Children: A Systematic Review. Children, 9, Article 1059.[CrossRef] [PubMed]
|
|
[44]
|
Meiran, N. (1996). Reconfiguration of Processing Mode Prior to Task Performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423-1442.[CrossRef]
|
|
[45]
|
Menon, V., & D’Esposito, M. (2022). The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacology, 47, 90-103.[CrossRef] [PubMed]
|
|
[46]
|
Miles, S., Howlett, C. A., Berryman, C., Nedeljkovic, M., Moseley, G. L., & Phillipou, A. (2021). Considerations for Using the Wisconsin Card Sorting Test to Assess Cognitive Flexibility. Behavior Research Methods, 53, 2083-2091.[CrossRef] [PubMed]
|
|
[47]
|
Milner, B. (1971). Interhemispheric Differences in the Localization of Psychological Processes in Man. British Medical Bulletin, 27, 272-277.[CrossRef] [PubMed]
|
|
[48]
|
Mirabella, G. (2021). Inhibitory Control and Impulsive Responses in Neurodevelopmental Disorders. Developmental Medicine & Child Neurology, 63, 520-526.[CrossRef] [PubMed]
|
|
[49]
|
Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of Gratification in Children. Science, 244, 933-938.[CrossRef] [PubMed]
|
|
[50]
|
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognitive Psychology, 41, 49-100.[CrossRef] [PubMed]
|
|
[51]
|
Mofrad, F. T., Jahn, A., & Schiller, N. O. (2020). Dual Function of Primary Somatosensory Cortex in Cognitive Control of Language: Evidence from Resting State fMRI. Neuroscience, 446, 59-68.[CrossRef] [PubMed]
|
|
[52]
|
Monsell, S. (2003). Task Switching. Trends in Cognitive Sciences, 7, 134-140.[CrossRef] [PubMed]
|
|
[53]
|
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-Analytic Evidence for a Superordinate Cognitive Control Network Subserving Diverse Executive Functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241-268.[CrossRef] [PubMed]
|
|
[54]
|
Otstavnov, N., Riaz, A., Moiseeva, V., & Fedele, T. (2024). Temporal and Spatial Information Elicit Different Power and Connectivity Profiles during Working Memory Maintenance. Journal of Cognitive Neuroscience, 36, 290-302.[CrossRef] [PubMed]
|
|
[55]
|
Perone, S., Simmering, V. R., & Buss, A. T. (2021). A Dynamical Reconceptualization of Executive-Function Development. Perspectives on Psychological Science, 16, 1198-1208.[CrossRef] [PubMed]
|
|
[56]
|
Postle, B. R., Brush, L. N., & Nick, A. M. (2004). Prefrontal Cortex and the Mediation of Proactive Interference in Working Memory. Cognitive, Affective, & Behavioral Neuroscience, 4, 600-608.[CrossRef] [PubMed]
|
|
[57]
|
Pupíková, M., Šimko, P., Gajdoš, M., & Rektorová, I. (2021). Modulation of Working Memory and Resting-State fMRI by tDCS of the Right Frontoparietal Network. Neural Plasticity, 2021, 1-9.[CrossRef] [PubMed]
|
|
[58]
|
Rogers, R. D., & Monsell, S. (1995). Costs of a Predictible Switch between Simple Cognitive Tasks. Journal of Experimental Psychology: General, 124, 207-231.[CrossRef]
|
|
[59]
|
Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right Inferior Prefrontal Cortex Mediates Response Inhibition While Mesial Prefrontal Cortex Is Responsible for Error Detection. NeuroImage, 20, 351-358.[CrossRef] [PubMed]
|
|
[60]
|
Sakai, K. (2008). Task Set and Prefrontal Cortex. Annual Review of Neuroscience, 31, 219-245.[CrossRef] [PubMed]
|
|
[61]
|
Salehinejad, M. A., Ghanavati, E., Rashid, M. H. A., & Nitsche, M. A. (2021). Hot and Cold Executive Functions in the Brain: A Prefrontal-Cingular Network. Brain and Neuroscience Advances, 5. https://pubmed.ncbi.nlm.nih.gov/33997292/
|
|
[62]
|
Sdoia, S., Zivi, P., & Ferlazzo, F. (2020). Anodal tDCS over the Right Parietal but Not Frontal Cortex Enhances the Ability to Overcome Task Set Inhibition during Task Switching. PLOS ONE, 15, e0228541.[CrossRef] [PubMed]
|
|
[63]
|
Spaniol, M., & Danielsson, H. (2022). A Meta‐Analysis of the Executive Function Components Inhibition, Shifting, and Attention in Intellectual Disabilities. Journal of Intellectual Disability Research, 66, 9-31.[CrossRef] [PubMed]
|
|
[64]
|
Stroop, J. R. (1935). Studies of Interference in Serial Verbal Reactions. Journal of Experimental Psychology, 18, 643-662.[CrossRef]
|
|
[65]
|
Theeuwes, J. (2010). Top-Down and Bottom-Up Control of Visual Selection. Acta Psychologica, 135, 77-99.[CrossRef] [PubMed]
|
|
[66]
|
Tsumura, K., Aoki, R., Takeda, M., Nakahara, K., & Jimura, K. (2021). Cross-Hemispheric Complementary Prefrontal Mechanisms during Task Switching under Perceptual Uncertainty. The Journal of Neuroscience, 41, 2197-2213.[CrossRef] [PubMed]
|
|
[67]
|
Vallesi, A., Visalli, A., Gracia-Tabuenca, Z., Tarantino, V., Capizzi, M., Alcauter, S. et al. (2022). Fronto-Parietal Homotopy in Resting-State Functional Connectivity Predicts Task-Switching Performance. Brain Structure and Function, 227, 655-672.[CrossRef] [PubMed]
|
|
[68]
|
van Ede, F., & Nobre, A. C. (2023). Turning Attention Inside Out: How Working Memory Serves Behavior. Annual Review of Psychology, 74, 137-165.[CrossRef] [PubMed]
|
|
[69]
|
Wegmann, E., Müller, S. M., Turel, O., & Brand, M. (2020). Interactions of Impulsivity, General Executive Functions, and Specific Inhibitory Control Explain Symptoms of Social-Networks-Use Disorder: An Experimental Study. Scientific Reports, 10, Article No. 3866.[CrossRef] [PubMed]
|
|
[70]
|
Wiebe, S. A., Sheffield, T. D., & Espy, K. A. (2012). Separating the Fish from the Sharks: A Longitudinal Study of Preschool Response Inhibition. Child Development, 83, 1245-1261.[CrossRef] [PubMed]
|
|
[71]
|
Xie, S., Gong, C., Lu, J., Li, H., Wu, D., Chi, X. et al. (2022). Enhancing Chinese Preschoolers’ Executive Function via Mindfulness Training: An fNIRS Study. Frontiers in Behavioral Neuroscience, 16, Article ID: 961797.[CrossRef] [PubMed]
|
|
[72]
|
Yang, Z., Zhuang, X., Sreenivasan, K., Mishra, V., Curran, T., & Cordes, D. (2020). A Robust Deep Neural Network for Denoising Task-Based fMRI Data: An Application to Working Memory and Episodic Memory. Medical Image Analysis, 60, Article 101622.[CrossRef] [PubMed]
|
|
[73]
|
Zelazo, P. D. (2020). Executive Function and Psychopathology: A Neurodevelopmental Perspective. Annual Review of Clinical Psychology, 16, 431-454.[CrossRef] [PubMed]
|
|
[74]
|
Zhang, Q., Wang, C., Zhao, Q., Yang, L., Buschkuehl, M., & Jaeggi, S. M. (2019). The Malleability of Executive Function in Early Childhood: Effects of Schooling and Targeted Training. Developmental Science, 22, 1-48.[CrossRef] [PubMed]
|
|
[75]
|
Zhang, Z., Peng, P., & Zhang, D. (2020). Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-Analysis of fMRI Studies. Journal of Autism and Developmental Disorders, 50, 4022-4038.[CrossRef] [PubMed]
|
|
[76]
|
Zhou, D., Cai, Q., Luo, J., Yi, Z., Li, Y., Seger, C. A. et al. (2021). The Neural Mechanism of Spatial-Positional Association in Working Memory: A fMRI Study. Brain and Cognition, 152, Article 105756.[CrossRef] [PubMed]
|