|
[1]
|
Eslam, M., Sanyal, A.J., George, J., Sanyal, A., Neuschwander-Tetri, B., Tiribelli, C., et al. (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., et al. (2018) The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology, 67, 328-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Habibullah, M., Jemmieh, K., Ouda, A., Haider, M.Z., Malki, M.I. and Elzouki, A. (2024) Metabolic-Associated Fatty Liver Disease: A Selective Review of Pathogenesis, Diagnostic Approaches, and Therapeutic Strategies. Frontiers in Medicine, 11, Article ID: 1291501. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Amini-Salehi, E., Letafatkar, N., Norouzi, N., Joukar, F., Habibi, A., Javid, M., et al. (2024) Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis Comprising a Population of 78 Million from 38 Countries. Archives of Medical Research, 55, Article 103043. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wu, Y., Zheng, Q., Zou, B., Yeo, Y.H., Li, X., Li, J., et al. (2020) The Epidemiology of NAFLD in Mainland China with Analysis by Adjusted Gross Regional Domestic Product: A Meta-Analysis. Hepatology International, 14, 259-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Streba, L.A.M., Vere, C., Rogoveanu, I., et al. (2015) Nonalcoholic Fatty Liver Disease, Metabolic Risk Factors, and Hepatocellular Carcinoma: An Open Question. World Journal of Gastroenterology, 21, 4103-4110. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Teng, T., Qiu, S., Zhao, Y., Zhao, S., Sun, D., Hou, L., et al. (2022) Pathogenesis and Therapeutic Strategies Related to Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 23, Article 7841. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moretti, V., Romeo, S. and Valenti, L. (2024) The Contribution of Genetics and Epigenetics to MAFLD Susceptibility. Hepatology International, 18, 848-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kozlitina, J., Smagris, E., Stender, S., Nordestgaard, B.G., Zhou, H.H., Tybjærg-Hansen, A., et al. (2014) Exome-Wide Association Study Identifies a TM6SF2 Variant that Confers Susceptibility to Nonalcoholic Fatty Liver Disease. Nature Genetics, 46, 352-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, Y., Du, X., Kuppa, A., Feitosa, M.F., Bielak, L.F., O’Connell, J.R., et al. (2023) Genome-Wide Association Meta-Analysis Identifies 17 Loci Associated with Nonalcoholic Fatty Liver Disease. Nature Genetics, 55, 1640-1650. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, V.L., Kuppa, A., Oliveri, A., Chen, Y., Ponnandy, P., Patel, P.B., et al. (2025) Human Genetics of Metabolic Dysfunction-Associated Steatotic Liver Disease: From Variants to Cause to Precision Treatment. Journal of Clinical Investigation, 135, e186424. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Satterwhite, E., Sonoki, T., Willis, T.G., Harder, L., Nowak, R., Arriola, E.L., et al. (2001) The BCL11 Gene Family: Involvement of BCL11A in Lymphoid Malignancies. Blood, 98, 3413-3420. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Huang, P., Peslak, S.A., Ren, R., Khandros, E., Qin, K., Keller, C.A., et al. (2022) HIC2 Controls Developmental Hemoglobin Switching by Repressing BCL11A Transcription. Nature Genetics, 54, 1417-1426. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yin, J., Xie, X., Ye, Y., Wang, L. and Che, F. (2019) BCL11A: A Potential Diagnostic Biomarker and Therapeutic Target in Human Diseases. Bioscience Reports, 39, BSR20190604. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Peiris, H., Park, S., Louis, S., Gu, X., Lam, J.Y., Asplund, O., et al. (2018) Discovering Human Diabetes-Risk Gene Function with Genetics and Physiological Assays. Nature Communications, 9, Article No. 3855. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
范建高, 徐小元, 南月敏, 等. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版) [J]. 实用肝脏病杂志, 2024, 27(4): 494-510.
|
|
[17]
|
Godoy-Matos, A.F., Silva Júnior, W.S. and Valerio, C.M. (2020) NAFLD as a Continuum: From Obesity to Metabolic Syndrome and Diabetes. Diabetology & Metabolic Syndrome, 12, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sakurai, Y., Kubota, N., Yamauchi, T. and Kadowaki, T. (2021) Role of Insulin Resistance in MAFLD. International Journal of Molecular Sciences, 22, Article 4156. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Carlsson, B., Lindén, D., Brolén, G., Liljeblad, M., Bjursell, M., Romeo, S., et al. (2020) Review Article: The Emerging Role of Genetics in Precision Medicine for Patients with Non‐Alcoholic Steatohepatitis. Alimentary Pharmacology & Therapeutics, 51, 1305-1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Shang, S., Li, X., Azzo, A., Truong, T., Dozmorov, M., Lyons, C., et al. (2023) MBD2a-NuRD Binds to the Methylated Γ-Globin Gene Promoter and Uniquely Forms a Complex Required for Silencing of HbF Expression. Proceedings of the National Academy of Sciences, 120, e2302254120. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Horton, J.R., Yu, M., Zhou, J., Tran, M., Anakal, R.R., Lu, Y., et al. (2025) Multimeric Transcription Factor BCL11A Utilizes Two Zinc-Finger Tandem Arrays to Bind Clustered Short Sequence Motifs. Nature Communications, 16, Article No. 3672. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
陈艳敏, 杜诗蓓, 金倩涯, 等. BCL11A基因在实体肿瘤恶性进程中的研究进展[J]. 中华转移性肿瘤杂志, 2021, 4(1): 66-69.
|
|
[23]
|
Simonis-Bik, A.M., Nijpels, G., van Haeften, T.W., Houwing-Duistermaat, J.J., Boomsma, D.I., Reiling, E., et al. (2009) Gene Variants in the Novel Type 2 Diabetes Loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B Affect Different Aspects of Pancreatic β-Cell Function. Diabetes, 59, 293-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liang, F., Kume, S. and Koya, D. (2009) SIRT1 and Insulin Resistance. Nature Reviews Endocrinology, 5, 367-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hebbar, P., Abubaker, J.A., Abu-Farha, M., Tuomilehto, J., Al-Mulla, F. and Thanaraj, T.A. (2019) A Perception on Genome-Wide Genetic Analysis of Metabolic Traits in Arab Populations. Frontiers in Endocrinology, 10, Article ID: 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jonsson, A., Ladenvall, C., Ahluwalia, T.S., Kravic, J., Krus, U., Taneera, J., et al. (2013) Effects of Common Genetic Variants Associated with Type 2 Diabetes and Glycemic Traits on α-and β-Cell Function and Insulin Action in Humans. Diabetes, 62, 2978-2983. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tang, L., Wang, L., Ye, H., Xu, X., Hong, Q., Wang, H., et al. (2014) BCL11A Gene DNA Methylation Contributes to the Risk of Type 2 Diabetes in Males. Experimental and Therapeutic Medicine, 8, 459-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Benitez, C.M., Qu, K., Sugiyama, T., Pauerstein, P.T., Liu, Y., Tsai, J., et al. (2014) An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development. PLOS Genetics, 10, e1004645. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina, C., Welch, R.P., et al. (2010) Twelve Type 2 Diabetes Susceptibility Loci Identified through Large-Scale Association Analysis. Nature Genetics, 42, 579-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, M., Zhao, Y., He, Y., Zhang, L., Liu, J., Zheng, S., et al. (2023) The Bidirectional Relationship between NAFLD and Type 2 Diabetes: A Prospective Population-Based Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 33, 1521-1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cernea, S. (2024) NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life, 14, Article 272. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 6613827. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Younossi, Z.M., Golabi, P., de Avila, L., Paik, J.M., Srishord, M., Fukui, N., et al. (2019) The Global Epidemiology of NAFLD and NASH in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Journal of Hepatology, 71, 793-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mantovani, A., Petracca, G., Beatrice, G., Tilg, H., Byrne, C.D. and Targher, G. (2020) Non-Alcoholic Fatty Liver Disease and Risk of Incident Diabetes Mellitus: An Updated Meta-Analysis of 501 022 Adult Individuals. Gut, 70, 962-969. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., et al. (2012) Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science, 337, 1190-1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Matthew, T., Richard Humbert, E., Robert, E., et al. (2020) The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science, 369, 1318-1330.
|