|
[1]
|
Monney, M., Jornayvaz, F.R. and Gariani, K. (2023) GLP-1 Receptor Agonists Effect on Cognitive Function in Patients with and without Type 2 Diabetes. Diabetes & Metabolism, 49, Article 101470. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hamilton, A. and Hölscher, C. (2009) Receptors for the Incretin Glucagon-Like Peptide-1 Are Expressed on Neurons in the Central Nervous System. NeuroReport, 20, 1161-1166. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, Y., Duffy, K.B., Ottinger, M.A., Ray, B., Bailey, J.A., Holloway, H.W., et al. (2010) GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 19, 1205-1219. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
McClean, P.L., Parthsarathy, V., Faivre, E. and Hölscher, C. (2011) The Diabetes Drug Liraglutide Prevents Degenerative Processes in a Mouse Model of Alzheimer’s Disease. The Journal of Neuroscience, 31, 6587-6594. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, L., Zhang, Z.F., Holscher, C., et al. (2012) (Val(8)) Glucagon-Like Peptide-1 Prevents Tau Hyperphosphorylation, Impairment of Spatial Learning and Ultra-Structural Cellular Damage Induced by Streptozotocin in Rat Brains. European Journal of Pharmacology, 674, 280-286.
|
|
[7]
|
Li, Z., Chen, X., Vong, J.S.L., et al. (2021) Systemic GLP-1R agonist Treatment Reverses Mouse Glial and Neurovascular Cell Transcriptomic Aging Signatures in a Genome-Wide Manner. Communications Biology, 4, Article No. 656.
|
|
[8]
|
During, M.J., Cao, L., Zuzga, D.S., Francis, J.S., Fitzsimons, H.L., Jiao, X., et al. (2003) Glucagon-Like Peptide-1 Receptor Is Involved in Learning and Neuroprotection. Nature Medicine, 9, 1173-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bae, C.S. and Song, J. (2017) The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 Controls Insulin Resistance, Neuroinflammation and Neurogenesis in the Brain. International Journal of Molecular Sciences, 18, Article 2493. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yun, S.P., Kam, T.I., Panicker, N., et al. (2018) Block of A1 Astrocyte Conversion by Microglia Is Neuroprotective in Models of Parkinson’s Disease. Nature Medicine, 24, 931-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, L., Li, Z., Vong, J.S.L., Chen, X., Lai, H., Yan, L.Y.C., et al. (2020) Pharmacologically Reversible Zonation-Dependent Endothelial Cell Transcriptomic Changes with Neurodegenerative Disease Associations in the Aged Brain. Nature Communications, 11, Article No. 4413. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Park, J.S., Kam, T.I., Lee, S., et al. (2021) Blocking Microglial Activation of Reactive Astrocytes Is Neuroprotective in Models of Alzheimer’s Disease. Acta Neuropathologica Communications, 9, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rode, A.K.O., Buus, T.B., Mraz, V., Al-Jaberi, F.A.H., Lopez, D.V., Ford, S.L., et al. (2022) Induced Human Regulatory T Cells Express the Glucagon-Like Peptide-1 Receptor. Cells, 11, Article 2587. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, Q., Liu, C., Shi, R., et al. (2022) Blocking C3d(+)/GFAP(+) A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging and Disease, 13, 943-959.
|
|
[15]
|
De Barra, C., Khalil, M., Mat, A., O’Donnell, C., Shaamile, F., Brennan, K., et al. (2023) Glucagon-Like Peptide-1 Therapy in People with Obesity Restores Natural Killer Cell Metabolism and Effector Function. Obesity, 31, 1787-1797. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xu, W.L., von Strauss, E., Qiu, C.X., Winblad, B. and Fratiglioni, L. (2009) Uncontrolled Diabetes Increases the Risk of Alzheimer’s Disease: A Population-Based Cohort Study. Diabetologia, 52, 1031-1039. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Frölich, L., Blum-Degen, D., Bernstein, H.-., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998) Brain Insulin and Insulin Receptors in Aging and Sporadic Alzheimer’s Disease. Journal of Neural Transmission, 105, 423-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tschöp, M., Nogueiras, R. and Ahrén, B. (2023) Gut Hormone-Based Pharmacology: Novel Formulations and Future Possibilities for Metabolic Disease Therapy. Diabetologia, 66, 1796-1808. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, Q., Li, Q., Liu, S., Zheng, H., Ji, L., Yi, N., et al. (2022) Glucagon-Like Peptide-1 Receptor Agonist Attenuates Diabetic Neuropathic Pain via Inhibition of Nod-Like Receptor Protein 3 Inflammasome in Brain Microglia. Diabetes Research and Clinical Practice, 186, Article 109806. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, Y., Chen, H., Feng, Y., Liu, M., Lu, Z., Hu, B., et al. (2025) Activation of AMPK by GLP-1R Agonists Mitigates Alzheimer-Related Phenotypes in Transgenic Mice. Nature Aging, 5, 1097-1113. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hamed, S.A. (2017) Brain Injury with Diabetes Mellitus: Evidence, Mechanisms and Treatment Implications. Expert Review of Clinical Pharmacology, 10, 409-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kellar, D. and Craft, S. (2020) Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. The Lancet Neurology, 19, 758-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Heni, M., Schöpfer, P., Peter, A., Sartorius, T., Fritsche, A., Synofzik, M., et al. (2014) Evidence for Altered Transport of Insulin across the Blood-Brain Barrier in Insulin-Resistant Humans. Acta Diabetologica, 51, 679-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Baglietto-Vargas, D., Shi, J., Yaeger, D.M., Ager, R. and LaFerla, F.M. (2016) Diabetes and Alzheimer’s Disease Crosstalk. Neuroscience & Biobehavioral Reviews, 64, 272-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mamelak, M. (2017) Energy and the Alzheimer Brain. Neuroscience & Biobehavioral Reviews, 75, 297-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Peng, S., Eidelberg, D. and Ma, Y. (2014) Brain Network Markers of Abnormal Cerebral Glucose Metabolism and Blood Flow in Parkinson’s Disease. Neuroscience Bulletin, 30, 823-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Berti, V., Mosconi, L. and Pupi, A. (2014) Brain: Normal Variations and Benign Findings in Fluorodeoxyglucose-PET/Computed Tomography Imaging. PET Clinics, 9, 129-140.
|
|
[28]
|
Carpenter, K.L., Jalloh, I., Gallagher, C.N., et al. (2014) (13)C-Labelled Microdialysis Studies of Cerebral Metabolism in TBI Patients. European Journal of Pharmaceutical Sciences, 57, 87-97.
|
|
[29]
|
Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H., Ahima, R.S., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Abdul-Ghani, M., Maffei, P. and DeFronzo, R.A. (2024) Managing Insulin Resistance: The Forgotten Pathophysiological Component of Type 2 Diabetes. The Lancet Diabetes & Endocrinology, 12, 674-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wong, S., Le, G.H., Dri, C.E., Teopiz, K.M. and McIntyre, R.S. (2025) Evaluating Biased Agonism of Glucagon-Like Peptide-1 (GLP-1) Receptors to Improve Cellular Bioenergetics: A Systematic Review. Diabetes, Obesity and Metabolism, 27, 6105-6115. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Paouri, E. and Georgopoulos, S. (2019) Systemic and CNS Inflammation Crosstalk: Implications for Alzheimer’s Disease. Current Alzheimer Research, 16, 559-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kopp, K.O., Glotfelty, E.J., Li, Y. and Greig, N.H. (2022) Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists and Neuroinflammation: Implications for Neurodegenerative Disease Treatment. Pharmacological Research, 186, Article 106550. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Leng, F. and Edison, P. (2021) Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nature Reviews Neurology, 17, 157-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kinney, J.W., Bemiller, S.M., Murtishaw, A.S., Leisgang, A.M., Salazar, A.M. and Lamb, B.T. (2018) Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 4, 575-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Meraz-Rios, M.A., Toral-Rios, D., Franco-Bocanegra, D., et al. (2013) Inflammatory Process in Alzheimer’s Disease. Frontiers in Integrative Neuroscience, 7, Article 59.
|
|
[37]
|
Sawikr, Y., Yarla, N.S., Peluso, I., et al. (2017) Neuroinflammation in Alzheimer’s Disease: The Preventive and Therapeutic Potential of Polyphenolic Nutraceuticals. Advances in Protein Chemistry and Structural Biology, 108, 33-57.
|
|
[38]
|
Aviles-Olmos, I., Espinoza-Vinces, C., Portugal, L.R. and Luquin, M.R. (2025) Targeting Metabolic Dysfunction in Parkinson’s Disease: The Role of GLP-1 Agonists in Body Weight Regulation and Neuroprotection. Current Diabetes Reports, 25, Article No. 49. [Google Scholar] [CrossRef]
|
|
[39]
|
Qian, Z., Chen, H., Xia, M., Chang, J., Li, X., Ye, S., et al. (2022) Activation of Glucagon-Like Peptide-1 Receptor in Microglia Attenuates Neuroinflammation-Induced Glial Scarring via Rescuing Arf and Rho GAP Adapter Protein 3 Expressions after Nerve Injury. International Journal of Biological Sciences, 18, 1328-1346. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Foley, J.F. (2024) Systemic Inflammation from the Brain. Science Signaling, 17, eadn9627. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cui, Q.N., Stein, L.M., Fortin, S.M. and Hayes, M.R. (2021) The Role of Glia in the Physiology and Pharmacology of Glucagon-Like Peptide-1: Implications for Obesity, Diabetes, Neurodegeneration and Glaucoma. British Journal of Pharmacology, 179, 715-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Butterfield, D.A. and Halliwell, B. (2019) Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nature Reviews Neuroscience, 20, 148-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Butterfield, D.A. and Boyd-Kimball, D. (2018) Oxidative Stress, Amyloid-Β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 62, 1345-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Park, M.W., Cha, H.W., Kim, J., Kim, J.H., Yang, H., Yoon, S., et al. (2021) NOX4 Promotes Ferroptosis of Astrocytes by Oxidative Stress-Induced Lipid Peroxidation via the Impairment of Mitochondrial Metabolism in Alzheimer’s Diseases. Redox Biology, 41, Article 101947. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Massaro, M., Baudo, G., Lee, H., Liu, H. and Blanco, E. (2025) Nuclear Respiratory Factor-1 (NRF1) Induction Drives Mitochondrial Biogenesis and Attenuates Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity. Neurotherapeutics, 22, e00513. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zheng, J., Xie, Y., Ren, L., Qi, L., Wu, L., Pan, X., et al. (2021) GLP-1 Improves the Supportive Ability of Astrocytes to Neurons by Promoting Aerobic Glycolysis in Alzheimer’s Disease. Molecular Metabolism, 47, Article 101180. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Xie, Y., Zheng, J., Li, S., et al. (2021) GLP-1 Improves the Neuronal Supportive Ability of Astrocytes in Alzheimer’s Disease by Regulating Mitochondrial Dysfunction via the cAMP/PKA Pathway. Biochemical Pharmacology, 188, Article 114578.
|
|
[48]
|
Hardy, J. and Selkoe, D.J. (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wu, T., Lin, D., Cheng, Y., Jiang, S., Riaz, M.W., Fu, N., et al. (2022) Amyloid Cascade Hypothesis for the Treatment of Alzheimer’s Disease: Progress and Challenges. Aging and Disease, 13, 1745-1758. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
冒春燕, 房荣华, 丛辉. 阿尔茨海默病的发病机制及诊疗的研究进展[J]. 江苏医药, 2025, 51(3): 300-304.
|
|
[51]
|
Jia, B., Xu, Y. and Zhu, X. (2025) Cognitive Resilience in Alzheimer’s Disease: Mechanism and Potential Clinical Intervention. Ageing Research Reviews, 106, Article 102711. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nowell, J., Blunt, E. and Edison, P. (2023) Incretin and Insulin Signaling as Novel Therapeutic Targets for Alzheimer’s and Parkinson’s Disease. Molecular Psychiatry, 28, 217-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hansen, H.H., Barkholt, P., Fabricius, K., et al. (2016) The GLP-1 Receptor agonist Liraglutide Reduces Pathology-Specific Tau Phosphorylation and Improves Motor Function in a Transgenic hTauP301L Mouse Model of Tauopathy. Brain Research, 1634, 158-170.
|
|
[54]
|
Wong, C.K., McLean, B.A., Baggio, L.L., Koehler, J.A., Hammoud, R., Rittig, N., et al. (2024) Central Glucagon-Like Peptide 1 Receptor Activation Inhibits Toll-Like Receptor Agonist-Induced Inflammation. Cell Metabolism, 36, 130-143.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Sun, H., Hao, Y., Liu, H. and Gao, F. (2025) The Immunomodulatory Effects of GLP-1 Receptor Agonists in Neurogenerative Diseases and Ischemic Stroke Treatment. Frontiers in Immunology, 16, Article 1525623. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hölscher, C. (2025) Incretin Hormones GLP-1 and GIP Normalize Energy Utilization and Reduce Inflammation in the Brain in Alzheimer’s Disease and Parkinson’s Disease: From Repurposed GLP-1 Receptor Agonists to Novel Dual GLP-1/GIP Receptor Agonists as Potential Disease-Modifying Therapies. CNS Drugs, 39, 1201-1220. [Google Scholar] [CrossRef]
|
|
[57]
|
Ferrari, F., Moretti, A. and Villa, R.F. (2022) Incretin-Based Drugs as Potential Therapy for Neurodegenerative Diseases: Current Status and Perspectives. Pharmacology & Therapeutics, 239, Article 108277. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ferrer, I. (2023) Hypothesis Review: Alzheimer’s Overture Guidelines. Brain Pathology, 33, e13122. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Kim, J.A. and Yoo, H.J. (2025) Exploring the Side Effects of GLP-1 Receptor Agonist: To Ensure Its Optimal Positioning. Diabetes & Metabolism Journal, 49, 525-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Lannfelt, L., Relkin, N.R. and Siemers, E.R. (2014) Amyloid-ß-Directed Immunotherapy for Alzheimer’s Disease. Journal of Internal Medicine, 275, 284-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Small, S.A. and Duff, K. (2008) Linking Aβ and Tau in Late-Onset Alzheimer’s Disease: A Dual Pathway Hypothesis. Neuron, 60, 534-542. [Google Scholar] [CrossRef] [PubMed]
|