GLP-1受体激动剂治疗阿尔茨海默病的研究进展
Research Progress of GLP-1 Receptor Agonists in the Treatment of Alzheimer’s Disease
摘要: 胰高血糖素样肽1受体激动剂(Glucagon-like peptide-1 receptor agonists, GLP-1RAs)是一类安全有效的降糖药物,具有外周和中枢的双重作用。随着对该类药物作用机制的深入研究,现已有大量的研究表明GLP-1RAs除了具有良好的降糖效果外,还具有心血管保护作用以及肾脏保护作用,而GLP-1RAs是否具有神经保护作用,则是一个新的探索领域。2型糖尿病(T2DM)作为痴呆的危险因素,已被证实和痴呆之间具有共同的病理生理机制。在人脑中,GLP-1R被发现存在于海马、丘脑、纹状体、杏仁核、下丘脑、颞叶皮质等调控认知功能的中枢及边缘神经系统结构区域,且GLP-1R的表达已被观察到在特定的细胞亚型中对记忆和学习功能有至关重要的影响,大量的动物模型及一些临床研究已经展现了GLP-1RAs潜在的神经保护作用,随着对GLP-1RAs神经保护机制及作用效果的研究,GLP-1RAs或可能成为防治认知障碍的新药物,尽管其确切机制尚未完全确定。在本综述中,我们旨在探讨GLP-1RAs治疗阿尔茨海默症的相关机制,并介绍其目前在临床研究中的相关进展。
Abstract: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of safe and effective hypoglycemic agents that exert dual effects on both the peripheral and central nervous systems. With advances in understanding their mechanisms of action, numerous studies have demonstrated that GLP-1RAs not only provide effective glycemic control but also offer cardiovascular and renal protective benefits. The potential neuroprotective effects of GLP-1RAs represent a novel area of investigation. Type 2 diabetes mellitus (T2DM), a known risk factor for dementia, shares common pathophysiological mechanisms with neurodegenerative diseases. In the human brain, GLP-1 receptors (GLP-1Rs) are expressed in central and peripheral nervous system regions involved in cognitive functions, including the hippocampus, thalamus, striatum, amygdala, hypothalamus, and temporal lobe cortex. The expression of GLP-1Rs in specific neuronal subtypes has been shown to play a critical role in memory and learning processes. Numerous animal studies and some clinical trials have demonstrated the potential neuroprotective effects of GLP-1RAs. As research into the neuroprotective mechanisms and effects of GLP-1RAs progresses, these agents may emerge as promising therapeutics for preventing cognitive impairment, although their precise mechanisms remain to be fully elucidated. This review aims to explore the mechanisms by which GLP-1RAs may treat Alzheimer’s disease and to summarize current advances in clinical research.
文章引用:勾琳娜, 李兴升. GLP-1受体激动剂治疗阿尔茨海默病的研究进展[J]. 临床医学进展, 2025, 15(12): 2047-2055. https://doi.org/10.12677/acm.2025.15123625

1. 引言

胰高血糖素样肽1受体激动剂(Glucagon-like peptide-1 receptor agonists, GLP-1RAs)是一类安全有效的降糖药物,具有外周和中枢的双重作用,具体表现为刺激葡萄糖依赖性胰岛素分泌与生物合成,抑制胰高血糖素的分泌与胃排空,同时减少食物摄入[1],从而有效降低糖尿病患者HAb1C和FPG,其促胰岛素分泌作用具有血糖依赖性,因此有效避免了传统抗糖尿病药物容易发生低血糖不良反应的风险。胰高血糖素样肽1受体(GLP-1R)广泛分布于胰腺、肺、脑、心脏、肾和胃肠等组织细胞膜上,随着对该类药物作用机制的深入研究,现已有大量的研究表明GLP-1RAs除了具有良好的降糖效果外,还具有心血管保护作用以及肾脏保护作用,而GLP-1RAs是否具有神经保护作用,则是一个新的探索领域。研究发现,在人脑中,GLP-1R广泛存在于海马、丘脑、纹状体、杏仁核、下丘脑、颞叶皮质等调控认知功能的中枢及边缘神经系统结构区域,且GLP-1R的表达已被观察到在特定的细胞亚型中对记忆和学习功能有至关重要的影响,大量的动物模型及一些临床研究已经展现了GLP-1RAs潜在的神经保护作用[2]。研究表明GLP-1RAs能逆转脑内Aβ的生成和沉积,并减轻由此产生的神经损伤,改善胆碱能功能[3]-[5],还能减少阿尔兹海默病(Alzheimer’s disease, AD)大鼠脑内Tau蛋白的异常磷酸化,提高学习记忆能力[6]

阿尔茨海默病(Alzheimer’s disease, AD)是全球最常见的神经退行性疾病,是痴呆最常见的类型。2型糖尿病(T2DM)作为痴呆的危险因素,可以通过T2DM和痴呆之间共同的病理生理机制来解释,这些机制包括高胰岛素血症和胰岛素抵抗、糖代谢受损、β淀粉样蛋白沉积、tau蛋白过度磷酸化、脑炎症、线粒体功能障碍或微血管改变[1]。近年来,基于AD与T2DM所致痴呆具有共同特征的研究进展,GLP-1RAs作为T2DM的有效药物,参与多种可能对阿尔茨海默病有益的生物学途径,包括改善血脑屏障完整性和维护血管健康,促进小胶质细胞和星形胶质细胞的内稳态,对适应性免疫细胞(包括自然杀伤细胞和活化调节性T细胞)的积极作用,提高突触活力等[7]-[16]。目前世界范围内已有不少正在进行的关于GLP-1RAs改善认知功能的临床研究,其中evoke和evoke+试验是第一个大规模的全球试验,旨在研究司美格鲁肽(semaglutide)对早期生物标志物证实的AD患者的疾病改善潜力,包括探索semaglutide对神经炎症在内的多种病理生理过程的血浆和CSF生物标志物的影响,该试验的主要阶段预计于2025年完成,52周的延期将持续到2026年10月。无独有偶,福建医科大学附属协和医院团队也已公示一项“Semaglutide通过改善胰岛素抵抗和能量代谢提高阿尔茨海默病患者认知能力”的Ⅲ期临床试验。由于治疗AD的传统药物疗效欠佳,且近年来新药研发困难重重,故对当下新型药物潜在治疗作用的研究或可为阿尔兹海默病的防治提供新思路。

2. 阿尔兹海默病的主要发病机制

AD的发病机制尚不清楚,近年来存在诸多的研究热点,β淀粉样蛋白的异常沉积、Tau蛋白的异常磷酸化、神经炎症反应、胆碱能系统失调、氧化应激与线粒体功能障碍、胰岛素抵抗、谷氨酸兴奋性毒性、基因突变假说以及肠道菌群紊乱等机制在AD的发生发展中扮演了重要角色。这些机制相互交织,形成复杂的病理网络,共同推动疾病进展。

3. GLP-1RAs治疗阿尔茨海默症的作用机制

GLP-1RAs通过多靶点、多通路机制干预AD核心病理进程,包括抑制神经炎症、减少Aβ和Tau病理积累、激活神经保护性信号通路(如AMPK)、改善脑能量代谢及胰岛素敏感性,最终改善突触功能和认知能力[12] [17]-[20]。其机制不仅限于单一通路,而是通过多重作用形成协同效应,为AD的治疗提供了潜在疾病修饰策略。

3.1. GLP-1RAs改善胰岛素抵抗

胰岛素长期以来一直被认为与阿尔茨海默病相关,有研究表明,患有阿尔茨海默病的成年人在身体外周组织中的胰岛素功能失调会通过多种机制如葡萄糖神经毒性、血管损伤以及晚期糖基化终产物的积累对大脑功能产生负面影响[21]。胰岛素还参与蛋白质稳态调节,影响β淀粉样蛋白的清除以及tau蛋白的磷酸化[22]。有证据表明,全身胰岛素抵抗或高循环胰岛素水平会通过下调内皮胰岛素受体来影响血脑屏障的功能,从而降低血脑屏障对胰岛素的通透性。这种通透性的变化可能导致脑内胰岛素水平降低以及胰岛素促进的神经和神经胶质活动减少[23]。大脑中葡萄糖代谢的失调是 AD 发病和进展的关键问题[24]-[28],脑内葡萄糖代谢异常与大脑胰岛素和胰岛素样生长因子(IGF)抵抗有关,这种抵抗破坏了调节神经元存活、能量产生、基因表达和可塑性的信号通路[17]。过去几年的研究表明,即使在没有并发T2DM的情况下,AD患者的大脑也会发生胰岛素抵抗[29]。GLP-1受体激动剂可能通过增强胰岛素信号通路的敏感性,改善脑胰岛素抵抗[30]。此外,GLP-1受体激动剂还能促进葡萄糖依赖性胰岛素分泌,间接增加脑内葡萄糖代谢,改善脑组织的能量供应[18]。最新的GLP-1RAs通过偏向性激动(选择性激活下游信号通路)显示出更强的减重效果和改善胰岛素反应的能力,这种机制可能通过增加cAMP产生、减少受体内化等方式,增强GLP-1R的信号传导,从而更有效地改善胰岛素敏感性[31]

3.2. GLP-1RAs的抗炎作用

神经炎症是中枢神经系统中由小胶质细胞和星形胶质细胞介导为主的先天性和复杂的免疫反应[32],该过程的特点是在感染、创伤、缺血性损伤和毒素等多种可能的病理损伤下,活化的小胶质细胞会表现出一系列相关的表型,以小胶质细胞和星形胶质细胞为主的固有免疫细胞被激活产生促炎性细胞因子、趋化因子、小分子信使以及活性氧物质,另一部分被激活的小胶质细胞亚型(通常被称为“替代激活”或“抗炎”型),它们会分泌抗炎细胞因子,并表现出其他修复功能[33],当抗炎与促炎信号之间的平衡(如在阿尔茨海默病中所见)被打破,大脑则出现慢性炎症[34]-[36]。脑内慢性炎症被认为不仅与神经退行性变有关,还会加剧β-淀粉样蛋白和tau蛋白的病变,这表明炎症是阿尔茨海默病发病机制的根本触发因素[35] [37]。GLP-1RAs通过调节小胶质细胞极化、抑制炎症和氧化应激、改善线粒体功能、激活特定信号通路以及多靶点协同作用等多种机制减少神经炎症,从而发挥神经保护作用[38]-[41]。在抑制神经炎症方面GLP-1RAs能抑制小胶质细胞中NLRP3炎症小体的激活,减少神经炎症反应,RNA测序显示GLP-1RAs可降低脑内小胶质细胞的NLRP3表达,从而减轻Aβ诱导的神经毒性[12] [19]。在脊髓损伤(SCI)模型中,GLP-1R激活通过PI3K/ARAP3/RhoA信号通路靶向小胶质细胞,调节小胶质细胞极化,将促炎的M1型小胶质细胞逆转为抗炎的M2型,从而减轻神经炎症[39]。此外,GLP-1R激活还能抑制小胶质细胞中反应性星形胶质细胞的产生,减少反应性星形胶质细胞激活[39]

3.3. GLP-1RAs抗氧化应激与改善线粒体功能

氧化应激是活性氧(ROS)和活性氮(RNS)物质的产生与抗氧化防御之间严重失衡的状态,导致生物大分子(如蛋白质、脂质、DNA/RNA)发生氧化或硝化损伤[42]。这些损伤不仅见于晚期AD,也在轻度认知障碍(aMCI)甚至无症状的临床前AD (PCAD)阶段就已出现,说明氧化应激是早期事件[43]。AD患者的线粒体功能障碍导致电子传递链(ETC)异常,ATP生成减少,同时伴随活性氧(ROS)过度产生。Aβ在线粒体内积累会进一步加剧ROS生成,形成氧化应激的恶性循环,从而损伤神经元[44] [45]。GLP-1RAs通过激活PI3K/Akt信号通路,减轻Aβ诱导的星形胶质细胞糖酵解下降,从而提高氧化磷酸化(OXPHOS)水平并减少活性氧(ROS)产生,提升星形胶质细胞的糖酵解能力改善了星形胶质细胞对神经元的支持作用并促进神经保护效应[46]。另有研究显示,在Aβ处理后的星形胶质细胞中,GLP-1RAs能拮抗活性氧(ROS)的过度产生、线粒体膜电位(MMP)崩溃及细胞毒性,同时,GLP-1RAs通过cAMP/PKA通路增强了受损星形胶质细胞对神经元的支持能力[47]

3.4. GLP-1RAs减少Aβ聚集和tau蛋白过度磷酸化

淀粉样蛋白假说(Amyloid Cascade Hypothesis)作为AD发病机制的主流理论已主导该研究领域数十年[48]。该假说认为,β-淀粉样蛋白(Aβ)的病理积累是AD发病的核心驱动因素,这一过程源于β-和γ-分泌酶(secretases)对淀粉样前体蛋白(APP)的连续蛋白水解作用[49],而主要的病理积累过程是由Aβ产生和Aβ清除之间的不平衡所驱动的[48]。Tau是一种微管相关蛋白,在维持神经元微管稳定性及促进轴突生长方面具有重要作用[50]。Tau蛋白主要包括t-tau蛋白和p-tau蛋白,在AD中,过量的p-tau蛋白异常聚集在神经细胞内积累成神经元纤维缠结(Neurofibrillary tangles, NFT),导致神经元功能受损和通讯障碍,最终引发神经元丢失和脑萎缩[51],而神经元纤维缠结(NFTs)形成以及随后的神经元功能障碍和神经退行性变均被认为是Aβ产生和Aβ清除之间失衡的下游过程[48]。早期有研究探讨了利拉鲁肽对晚期阿尔茨海默病的小鼠是否具有神经修复作用。该研究对14月龄APP/PS1和同窝对照组小鼠腹腔注射利拉鲁肽(25 nmol/kg bw),时间为两个月,发现利拉鲁肽能够改善APP/PS1小鼠的空间记忆能力,Aβ斑块的总体负荷减少了33%,炎症减少了30%,而齿状回的神经元祖细胞计数增加了50%,与APP/PS1生理盐水组小鼠相比,APP/PS1利拉鲁肽组小鼠的LTP显著增强,并与海马和皮质中突触数量的增加相印证[5]。最近的研究显示血浆GLP-1在AD模型小鼠中的水平与AD患者的Aβ负荷呈负相关,GLP-1RAs通过增强GLP-1信号传导,激活5' AMP活化蛋白激酶(AMPK)信号通路,特别是CaMKK2-AMPK轴,这一过程可减少β-分泌酶1 (BACE1)对淀粉样前体蛋白(APP)的切割,从而降低Aβ的产生[20]。除此之外,GLP-1RAs可通过调节胰岛素信号通路和抑制炎症反应,直接或间接降低Tau蛋白的过度磷酸化,减缓NFT的形成[52] [53]。在Tau蛋白病转基因小鼠(hTauP301L)模型中,利拉鲁肽降低了病理特异性Tau蛋白磷酸化,并改善了运动功能[53]

3.5. GLP-1RAs在不同人群中神经保护作用的差异机制

GLP-1RAs作为治疗T2DM的有效药物,在不同人群尤其是糖尿病患者与非糖尿病患者中的神经保护作用机制上可能存在差异。高血糖和胰岛素抵抗是糖尿病相关认知功能障碍的重要诱因,在临床观察中,GLP-1RAs (如semaglutide和tirzepatide)在2型糖尿病和肥胖患者中显示出预防痴呆的潜在作用[51],这表明代谢状态可能影响GLP-1RAs的神经保护效果。糖尿病患者存在系统性慢性炎症,GLP-1RAs通过抑制T细胞介导的炎症反应和减少促炎细胞因子(如IL-6、TNF-α)的产生,减轻神经炎症[54],非糖尿病患者中,GLP-1RAs的抗炎作用可能更多通过直接调节小胶质细胞活化和血脑屏障完整性实现[55]

4. GLP-1RAs在AD治疗中面临的挑战

GLP-1RAs通过多靶点、多通路机制干预AD核心病理进程已在多个临床前研究被证实,但其在AD治疗仍面临许多挑战。

4.1. BBB穿透效率问题

GLP-1RAs的神经保护作用需通过血脑屏障(BBB)作用于脑内靶点,但天然GLP-1难以有效穿透BBB,因此,GLP-1RAs在阿尔茨海默病(AD)治疗中的BBB穿透效率是一个关键问题。近期开发的GLP-1/GIP双受体激动剂(如利拉鲁肽)显示出更高的BBB穿透效率,在AD动物模型中能更有效地改善神经退行性病变,在动物模型中显示出优于单一GLP-1RAs的神经保护效果,为AD治疗提供新方向[56] [57]

4.2. 生物标志物与个体化治疗

目前缺乏可靠的生物标志物预测GLP-1RAs的疗效。血浆GLP-1水平与Aβ负荷的负相关性局限于临床前研究,还需更多临床数据支持。evoke和evoke + 试验探索了semaglutide对早期生物标志物证实的AD患者包括神经炎症在内的多种病理生理过程的血浆和CSF生物标志物的影响,这一大规模临床试验有望补充这一空白。

4.3. GLP-1RAs副作用及耐受性

在老年人群中,AD患病率随年龄增长而显著增加,30%的65岁个体存在老年斑(SPs),而80岁时这一比例升至50%~60% [58]。GLP-1RAs的主要副作用集中在胃肠道反应,如恶心、呕吐和腹泻,这些症状在老年患者中可能更为明显[59]。长期使用GLP-1RAs可能导致体重显著下降,在老年人群的使用中需考虑营养不良和少肌症的风险。因此,老年患者使用GLP-1RAs需个体化评估,同时重点关注胃肠道反应及营养状态。

5. 讨论

阿尔茨海默病病因尚不明确,发病机制高度复杂,目前针对患有AD或轻度认知障碍(MCI)的患者开展的众多旨在清除大脑中各种形式Aβ的临床试验结果并不理想,尽管观察到患者的淀粉样蛋白负荷有所降低,但他们的认知功能似乎并未得到改善[60] [61],因此,多靶点、多机制治疗策略亟需被提出。GLP-1RAs通过多靶点、多通路机制干预AD核心病理进程已在多个临床前研究被证实,同时,虽观察到GLP-1RAs通过AMPK等通路发挥作用,但其在AD中的详细神经保护机制仍需深入探索。同时值得我们注意的是,GLP-1RAs可通过降低血糖和体重间接影响AD风险,这些因素是否为主要中介因素尚不明确,还需更多的研究排除混杂效应。目前,GLP-1RAs治疗AD患者的临床证据仍不充分,现有支持性证据主要来自动物模型和小规模临床试验,大规模III期随机对照试验结果尚未公布,其真实的疗效仍需进一步验证。我们相信在不远的将来,随着科学家们不断探索,以及更多验证GLP-1RAs治疗作用的临床试验得到开展,能够进一步找到GLP-1RAs在AD患者中治疗的有效证据。

NOTES

*通讯作者。

参考文献

[1] Monney, M., Jornayvaz, F.R. and Gariani, K. (2023) GLP-1 Receptor Agonists Effect on Cognitive Function in Patients with and without Type 2 Diabetes. Diabetes & Metabolism, 49, Article 101470. [Google Scholar] [CrossRef] [PubMed]
[2] Hamilton, A. and Hölscher, C. (2009) Receptors for the Incretin Glucagon-Like Peptide-1 Are Expressed on Neurons in the Central Nervous System. NeuroReport, 20, 1161-1166. [Google Scholar] [CrossRef] [PubMed]
[3] Li, Y., Duffy, K.B., Ottinger, M.A., Ray, B., Bailey, J.A., Holloway, H.W., et al. (2010) GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease. Journal of Alzheimers Disease, 19, 1205-1219. [Google Scholar] [CrossRef] [PubMed]
[4] McClean, P.L., Parthsarathy, V., Faivre, E. and Hölscher, C. (2011) The Diabetes Drug Liraglutide Prevents Degenerative Processes in a Mouse Model of Alzheimer’s Disease. The Journal of Neuroscience, 31, 6587-6594. [Google Scholar] [CrossRef] [PubMed]
[5] McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67. [Google Scholar] [CrossRef] [PubMed]
[6] Li, L., Zhang, Z.F., Holscher, C., et al. (2012) (Val(8)) Glucagon-Like Peptide-1 Prevents Tau Hyperphosphorylation, Impairment of Spatial Learning and Ultra-Structural Cellular Damage Induced by Streptozotocin in Rat Brains. European Journal of Pharmacology, 674, 280-286.
[7] Li, Z., Chen, X., Vong, J.S.L., et al. (2021) Systemic GLP-1R agonist Treatment Reverses Mouse Glial and Neurovascular Cell Transcriptomic Aging Signatures in a Genome-Wide Manner. Communications Biology, 4, Article No. 656.
[8] During, M.J., Cao, L., Zuzga, D.S., Francis, J.S., Fitzsimons, H.L., Jiao, X., et al. (2003) Glucagon-Like Peptide-1 Receptor Is Involved in Learning and Neuroprotection. Nature Medicine, 9, 1173-1179. [Google Scholar] [CrossRef] [PubMed]
[9] Bae, C.S. and Song, J. (2017) The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 Controls Insulin Resistance, Neuroinflammation and Neurogenesis in the Brain. International Journal of Molecular Sciences, 18, Article 2493. [Google Scholar] [CrossRef] [PubMed]
[10] Yun, S.P., Kam, T.I., Panicker, N., et al. (2018) Block of A1 Astrocyte Conversion by Microglia Is Neuroprotective in Models of Parkinson’s Disease. Nature Medicine, 24, 931-938. [Google Scholar] [CrossRef] [PubMed]
[11] Zhao, L., Li, Z., Vong, J.S.L., Chen, X., Lai, H., Yan, L.Y.C., et al. (2020) Pharmacologically Reversible Zonation-Dependent Endothelial Cell Transcriptomic Changes with Neurodegenerative Disease Associations in the Aged Brain. Nature Communications, 11, Article No. 4413. [Google Scholar] [CrossRef] [PubMed]
[12] Park, J.S., Kam, T.I., Lee, S., et al. (2021) Blocking Microglial Activation of Reactive Astrocytes Is Neuroprotective in Models of Alzheimer’s Disease. Acta Neuropathologica Communications, 9, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
[13] Rode, A.K.O., Buus, T.B., Mraz, V., Al-Jaberi, F.A.H., Lopez, D.V., Ford, S.L., et al. (2022) Induced Human Regulatory T Cells Express the Glucagon-Like Peptide-1 Receptor. Cells, 11, Article 2587. [Google Scholar] [CrossRef] [PubMed]
[14] Zhang, Q., Liu, C., Shi, R., et al. (2022) Blocking C3d(+)/GFAP(+) A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging and Disease, 13, 943-959.
[15] De Barra, C., Khalil, M., Mat, A., O’Donnell, C., Shaamile, F., Brennan, K., et al. (2023) Glucagon-Like Peptide-1 Therapy in People with Obesity Restores Natural Killer Cell Metabolism and Effector Function. Obesity, 31, 1787-1797. [Google Scholar] [CrossRef] [PubMed]
[16] Xu, W.L., von Strauss, E., Qiu, C.X., Winblad, B. and Fratiglioni, L. (2009) Uncontrolled Diabetes Increases the Risk of Alzheimer’s Disease: A Population-Based Cohort Study. Diabetologia, 52, 1031-1039. [Google Scholar] [CrossRef] [PubMed]
[17] Frölich, L., Blum-Degen, D., Bernstein, H.-., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998) Brain Insulin and Insulin Receptors in Aging and Sporadic Alzheimer’s Disease. Journal of Neural Transmission, 105, 423-438. [Google Scholar] [CrossRef] [PubMed]
[18] Tschöp, M., Nogueiras, R. and Ahrén, B. (2023) Gut Hormone-Based Pharmacology: Novel Formulations and Future Possibilities for Metabolic Disease Therapy. Diabetologia, 66, 1796-1808. [Google Scholar] [CrossRef] [PubMed]
[19] Zhang, Q., Li, Q., Liu, S., Zheng, H., Ji, L., Yi, N., et al. (2022) Glucagon-Like Peptide-1 Receptor Agonist Attenuates Diabetic Neuropathic Pain via Inhibition of Nod-Like Receptor Protein 3 Inflammasome in Brain Microglia. Diabetes Research and Clinical Practice, 186, Article 109806. [Google Scholar] [CrossRef] [PubMed]
[20] Zhang, Y., Chen, H., Feng, Y., Liu, M., Lu, Z., Hu, B., et al. (2025) Activation of AMPK by GLP-1R Agonists Mitigates Alzheimer-Related Phenotypes in Transgenic Mice. Nature Aging, 5, 1097-1113. [Google Scholar] [CrossRef] [PubMed]
[21] Hamed, S.A. (2017) Brain Injury with Diabetes Mellitus: Evidence, Mechanisms and Treatment Implications. Expert Review of Clinical Pharmacology, 10, 409-428. [Google Scholar] [CrossRef] [PubMed]
[22] Kellar, D. and Craft, S. (2020) Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. The Lancet Neurology, 19, 758-766. [Google Scholar] [CrossRef] [PubMed]
[23] Heni, M., Schöpfer, P., Peter, A., Sartorius, T., Fritsche, A., Synofzik, M., et al. (2014) Evidence for Altered Transport of Insulin across the Blood-Brain Barrier in Insulin-Resistant Humans. Acta Diabetologica, 51, 679-681. [Google Scholar] [CrossRef] [PubMed]
[24] Baglietto-Vargas, D., Shi, J., Yaeger, D.M., Ager, R. and LaFerla, F.M. (2016) Diabetes and Alzheimer’s Disease Crosstalk. Neuroscience & Biobehavioral Reviews, 64, 272-287. [Google Scholar] [CrossRef] [PubMed]
[25] Mamelak, M. (2017) Energy and the Alzheimer Brain. Neuroscience & Biobehavioral Reviews, 75, 297-313. [Google Scholar] [CrossRef] [PubMed]
[26] Peng, S., Eidelberg, D. and Ma, Y. (2014) Brain Network Markers of Abnormal Cerebral Glucose Metabolism and Blood Flow in Parkinson’s Disease. Neuroscience Bulletin, 30, 823-837. [Google Scholar] [CrossRef] [PubMed]
[27] Berti, V., Mosconi, L. and Pupi, A. (2014) Brain: Normal Variations and Benign Findings in Fluorodeoxyglucose-PET/Computed Tomography Imaging. PET Clinics, 9, 129-140.
[28] Carpenter, K.L., Jalloh, I., Gallagher, C.N., et al. (2014) (13)C-Labelled Microdialysis Studies of Cerebral Metabolism in TBI Patients. European Journal of Pharmaceutical Sciences, 57, 87-97.
[29] Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H., Ahima, R.S., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. [Google Scholar] [CrossRef] [PubMed]
[30] Abdul-Ghani, M., Maffei, P. and DeFronzo, R.A. (2024) Managing Insulin Resistance: The Forgotten Pathophysiological Component of Type 2 Diabetes. The Lancet Diabetes & Endocrinology, 12, 674-680. [Google Scholar] [CrossRef] [PubMed]
[31] Wong, S., Le, G.H., Dri, C.E., Teopiz, K.M. and McIntyre, R.S. (2025) Evaluating Biased Agonism of Glucagon-Like Peptide-1 (GLP-1) Receptors to Improve Cellular Bioenergetics: A Systematic Review. Diabetes, Obesity and Metabolism, 27, 6105-6115. [Google Scholar] [CrossRef] [PubMed]
[32] Paouri, E. and Georgopoulos, S. (2019) Systemic and CNS Inflammation Crosstalk: Implications for Alzheimer’s Disease. Current Alzheimer Research, 16, 559-574. [Google Scholar] [CrossRef] [PubMed]
[33] Kopp, K.O., Glotfelty, E.J., Li, Y. and Greig, N.H. (2022) Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists and Neuroinflammation: Implications for Neurodegenerative Disease Treatment. Pharmacological Research, 186, Article 106550. [Google Scholar] [CrossRef] [PubMed]
[34] Leng, F. and Edison, P. (2021) Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nature Reviews Neurology, 17, 157-172. [Google Scholar] [CrossRef] [PubMed]
[35] Kinney, J.W., Bemiller, S.M., Murtishaw, A.S., Leisgang, A.M., Salazar, A.M. and Lamb, B.T. (2018) Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimers & Dementia: Translational Research & Clinical Interventions, 4, 575-590. [Google Scholar] [CrossRef] [PubMed]
[36] Meraz-Rios, M.A., Toral-Rios, D., Franco-Bocanegra, D., et al. (2013) Inflammatory Process in Alzheimer’s Disease. Frontiers in Integrative Neuroscience, 7, Article 59.
[37] Sawikr, Y., Yarla, N.S., Peluso, I., et al. (2017) Neuroinflammation in Alzheimer’s Disease: The Preventive and Therapeutic Potential of Polyphenolic Nutraceuticals. Advances in Protein Chemistry and Structural Biology, 108, 33-57.
[38] Aviles-Olmos, I., Espinoza-Vinces, C., Portugal, L.R. and Luquin, M.R. (2025) Targeting Metabolic Dysfunction in Parkinson’s Disease: The Role of GLP-1 Agonists in Body Weight Regulation and Neuroprotection. Current Diabetes Reports, 25, Article No. 49. [Google Scholar] [CrossRef
[39] Qian, Z., Chen, H., Xia, M., Chang, J., Li, X., Ye, S., et al. (2022) Activation of Glucagon-Like Peptide-1 Receptor in Microglia Attenuates Neuroinflammation-Induced Glial Scarring via Rescuing Arf and Rho GAP Adapter Protein 3 Expressions after Nerve Injury. International Journal of Biological Sciences, 18, 1328-1346. [Google Scholar] [CrossRef] [PubMed]
[40] Foley, J.F. (2024) Systemic Inflammation from the Brain. Science Signaling, 17, eadn9627. [Google Scholar] [CrossRef] [PubMed]
[41] Cui, Q.N., Stein, L.M., Fortin, S.M. and Hayes, M.R. (2021) The Role of Glia in the Physiology and Pharmacology of Glucagon-Like Peptide-1: Implications for Obesity, Diabetes, Neurodegeneration and Glaucoma. British Journal of Pharmacology, 179, 715-726. [Google Scholar] [CrossRef] [PubMed]
[42] Butterfield, D.A. and Halliwell, B. (2019) Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nature Reviews Neuroscience, 20, 148-160. [Google Scholar] [CrossRef] [PubMed]
[43] Butterfield, D.A. and Boyd-Kimball, D. (2018) Oxidative Stress, Amyloid-Β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. Journal of Alzheimers Disease, 62, 1345-1367. [Google Scholar] [CrossRef] [PubMed]
[44] Park, M.W., Cha, H.W., Kim, J., Kim, J.H., Yang, H., Yoon, S., et al. (2021) NOX4 Promotes Ferroptosis of Astrocytes by Oxidative Stress-Induced Lipid Peroxidation via the Impairment of Mitochondrial Metabolism in Alzheimer’s Diseases. Redox Biology, 41, Article 101947. [Google Scholar] [CrossRef] [PubMed]
[45] Massaro, M., Baudo, G., Lee, H., Liu, H. and Blanco, E. (2025) Nuclear Respiratory Factor-1 (NRF1) Induction Drives Mitochondrial Biogenesis and Attenuates Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity. Neurotherapeutics, 22, e00513. [Google Scholar] [CrossRef] [PubMed]
[46] Zheng, J., Xie, Y., Ren, L., Qi, L., Wu, L., Pan, X., et al. (2021) GLP-1 Improves the Supportive Ability of Astrocytes to Neurons by Promoting Aerobic Glycolysis in Alzheimer’s Disease. Molecular Metabolism, 47, Article 101180. [Google Scholar] [CrossRef] [PubMed]
[47] Xie, Y., Zheng, J., Li, S., et al. (2021) GLP-1 Improves the Neuronal Supportive Ability of Astrocytes in Alzheimer’s Disease by Regulating Mitochondrial Dysfunction via the cAMP/PKA Pathway. Biochemical Pharmacology, 188, Article 114578.
[48] Hardy, J. and Selkoe, D.J. (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356. [Google Scholar] [CrossRef] [PubMed]
[49] Wu, T., Lin, D., Cheng, Y., Jiang, S., Riaz, M.W., Fu, N., et al. (2022) Amyloid Cascade Hypothesis for the Treatment of Alzheimer’s Disease: Progress and Challenges. Aging and Disease, 13, 1745-1758. [Google Scholar] [CrossRef] [PubMed]
[50] 冒春燕, 房荣华, 丛辉. 阿尔茨海默病的发病机制及诊疗的研究进展[J]. 江苏医药, 2025, 51(3): 300-304.
[51] Jia, B., Xu, Y. and Zhu, X. (2025) Cognitive Resilience in Alzheimer’s Disease: Mechanism and Potential Clinical Intervention. Ageing Research Reviews, 106, Article 102711. [Google Scholar] [CrossRef] [PubMed]
[52] Nowell, J., Blunt, E. and Edison, P. (2023) Incretin and Insulin Signaling as Novel Therapeutic Targets for Alzheimer’s and Parkinson’s Disease. Molecular Psychiatry, 28, 217-229. [Google Scholar] [CrossRef] [PubMed]
[53] Hansen, H.H., Barkholt, P., Fabricius, K., et al. (2016) The GLP-1 Receptor agonist Liraglutide Reduces Pathology-Specific Tau Phosphorylation and Improves Motor Function in a Transgenic hTauP301L Mouse Model of Tauopathy. Brain Research, 1634, 158-170.
[54] Wong, C.K., McLean, B.A., Baggio, L.L., Koehler, J.A., Hammoud, R., Rittig, N., et al. (2024) Central Glucagon-Like Peptide 1 Receptor Activation Inhibits Toll-Like Receptor Agonist-Induced Inflammation. Cell Metabolism, 36, 130-143.e5. [Google Scholar] [CrossRef] [PubMed]
[55] Sun, H., Hao, Y., Liu, H. and Gao, F. (2025) The Immunomodulatory Effects of GLP-1 Receptor Agonists in Neurogenerative Diseases and Ischemic Stroke Treatment. Frontiers in Immunology, 16, Article 1525623. [Google Scholar] [CrossRef] [PubMed]
[56] Hölscher, C. (2025) Incretin Hormones GLP-1 and GIP Normalize Energy Utilization and Reduce Inflammation in the Brain in Alzheimer’s Disease and Parkinson’s Disease: From Repurposed GLP-1 Receptor Agonists to Novel Dual GLP-1/GIP Receptor Agonists as Potential Disease-Modifying Therapies. CNS Drugs, 39, 1201-1220. [Google Scholar] [CrossRef
[57] Ferrari, F., Moretti, A. and Villa, R.F. (2022) Incretin-Based Drugs as Potential Therapy for Neurodegenerative Diseases: Current Status and Perspectives. Pharmacology & Therapeutics, 239, Article 108277. [Google Scholar] [CrossRef] [PubMed]
[58] Ferrer, I. (2023) Hypothesis Review: Alzheimer’s Overture Guidelines. Brain Pathology, 33, e13122. [Google Scholar] [CrossRef] [PubMed]
[59] Kim, J.A. and Yoo, H.J. (2025) Exploring the Side Effects of GLP-1 Receptor Agonist: To Ensure Its Optimal Positioning. Diabetes & Metabolism Journal, 49, 525-541. [Google Scholar] [CrossRef] [PubMed]
[60] Lannfelt, L., Relkin, N.R. and Siemers, E.R. (2014) Amyloid-ß-Directed Immunotherapy for Alzheimer’s Disease. Journal of Internal Medicine, 275, 284-295. [Google Scholar] [CrossRef] [PubMed]
[61] Small, S.A. and Duff, K. (2008) Linking Aβ and Tau in Late-Onset Alzheimer’s Disease: A Dual Pathway Hypothesis. Neuron, 60, 534-542. [Google Scholar] [CrossRef] [PubMed]