MRI评估直肠癌淋巴结转移和肿瘤沉积应用进展
Application Advances in MRI-Based Evaluation of Rectal Cancer Lymph Node Metastasis and Tumor Deposits
DOI: 10.12677/acm.2025.15123630, PDF, HTML, XML,   
作者: 赵 欢, 罗银灯*:重庆医科大学附属第二医院,放射科,重庆
关键词: 直肠癌淋巴结转移肿瘤沉积磁共振Rectal Cancer Lymph Node Metastasis Tumor Deposits Magnetic Resonance Imaging
摘要: 直肠癌是全球癌症相关死亡的主要原因之一,精准的术前分期对于制定个体化治疗策略至关重要。在TNM分期系统中,淋巴结转移(LNM)与肿瘤沉积(TD)都是N分期的关键组成部分,分期可以综合反映肿瘤严重程度和发展阶段,指导个性化治疗策略并且预测癌症预后。磁共振成像(MRI)因其优异的软组织分辨能力,已成为直肠癌术前分期的主要影像学工具。本文系统论述了多模态MRI技术以及新兴的影像组学和深度学习算法在直肠癌淋巴结转移和肿瘤沉积评估中的应用价值。同时,本文还分析了基于MRI的预测模型在临床实践中的挑战与未来发展方向,旨在为放射科医师和结直肠癌多学科团队提供全面的参考依据,推动直肠癌精准分期的发展。
Abstract: Colorectal cancer is one of the leading causes of cancer-related mortality worldwide, and accurate preoperative staging is crucial for developing individualized treatment strategies. In the TNM staging system, lymph node metastasis (LNM) and tumor deposits (TD) are key components of the N stage. This staging reflects the severity and progression of the tumor, guiding personalized treatment strategies and predicting cancer prognosis. Magnetic resonance imaging (MRI), with its superior soft tissue resolution, has become the primary imaging modality for preoperative staging of rectal cancer. This article systematically discusses the application of multimodal MRI techniques, as well as emerging radiomics and deep learning algorithms, in the evaluation of rectal cancer lymph node metastasis and tumor deposits. Additionally, the challenges and future directions of MRI-based predictive models in clinical practice are analyzed. The aim of this review is to provide comprehensive reference material for radiologists and colorectal cancer multidisciplinary teams, advancing the development of precise rectal cancer staging.
文章引用:赵欢, 罗银灯. MRI评估直肠癌淋巴结转移和肿瘤沉积应用进展[J]. 临床医学进展, 2025, 15(12): 2087-2093. https://doi.org/10.12677/acm.2025.15123630

1. 引言

结直肠癌是世界范围内癌症死亡的第二大原因,其中三分之一的结直肠癌发生在直肠[1]。精准术前分期对个体化治疗及预后评估至关重要。TNM分期系统中,淋巴结转移(LNM)与肿瘤沉积(TD)共同构成N分期的核心要素,二者均被证实与患者不良预后密切相关,并在AJCC分期迭代中日益受到重视[2]-[4]。磁共振成像(MRI)凭借其高软组织分辨率及无创特性,已成为术前评估LNM与TD的关键手段,高分辨率T2加权成像(T2WI)、扩散加权成像(DWI),以及动态对比增强磁共振成像(DCE-MRI)等多序列技术为其提供多维度诊断信息[5] [6]。进一步地,影像组学与深度学习方法的兴起,实现了对图像中肉眼难以识别的定量特征的挖掘,显著提升了MRI在分期中的附加值[7]。本文系统梳理多参数MRI与影像组学在直肠癌LNM与TD中的研究进展,并展望其未来发展方向,为临床决策与科研实践提供参考依据。

2. MRI研究LNM的进展

2.1. 常规MRI

高分辨率T2加权成像是直肠癌淋巴结评估的基础序列,传统上依赖淋巴结大小(短径>5 mm)、形态(如圆形或不规则轮廓)及内部信号特征来判断是否转移。然而这些形态学标准在临床诊断的准确性有限,有研究表明,基于形态学标准对于淋巴结分期的敏感性和特异性分别为58%~77%和62%~74% [8] [9]。Langman等[10]的研究证实,尽管结合尺寸与形态特征能显著提升经验丰富放射科医生的诊断能力,但对初级医师的帮助有限。此外,化学位移伪影的缺失可作为恶性淋巴结的辅助影像学标志,虽能提高灵敏度,但却以牺牲特异性为代价,这一结果提示单一形态学评估存在明显不足。

尽管基于高分辨率T2WI的视觉评估提供了一定的诊断价值,但放射科医生间的观察者一致性仍然较差。由此可见,亟需更客观、定量的方法,以提高淋巴结转移评估的准确性和可靠性。

2.2. 功能MRI

多参数MRI技术的应用为直肠癌淋巴结评估提供了新的视角。扩散加权成像及其定量参数表观扩散系数(ADC)通过测量水分子扩散能力来反映肿瘤细胞的密度和细胞膜完整性。Zhou等人[11]研究证实,转移性淋巴结瘤体ADC值通常显著低于良性淋巴结,且体素内不相干运动(IVIM)的灌注分数f值与扩散峰度成像(DKI)的平均峰度MK值与LNM独立相关,其中MK值显示出最高的预测效能(AUC = 0.770)。与之呼应,Yin等人[12]的进一步证实,DKI参数Dapp与Kapp的组合模型诊断性能优异(AUC = 0.908),显著优于限制谱成像RSI (AUC = 0.842)和常规扩散加权成像(AUC = 0.771)。这些研究结果表明,基于多b值采集的先进扩散模型,特别是DKI,能够更精准地反映淋巴结的微观结构特征。

此外,则通过量化血流灌注和毛细血管通透性,为淋巴结的微循环特征提供定量信息,Ktrans和Ve等参数的提高在转移性淋巴结中表现出显著差异[13]。这些功能MRI技术,通过对淋巴结微观环境的全面分析,为评估区域淋巴结转移提供了更为精确的工具。

2.3. 人工智能与影像组学

影像组学能够从医学图像中提取大量定量特征,突破传统影像学依赖医生主观经验的限制,为评估淋巴结转移提供了全新的思路。Yang等人[14]通过特征筛选构建的影像组学列线图在训练队列中AUC达0.90,显著优于单一临床或影像组学模型;Zheng团队[15]的双中心研究进一步证实,融合多序列影像组学特征与临床参数的联合模型诊断效能最佳(外部验证AUC = 0.880);Ao等人[16]开发的深度学习放射组学评分(DLRS)模型预测性能(AUC: 0.83~0.99)显著超越传统医师评估;而Xia等人[17]的WISDOM模型在多中心验证中不仅达到与资深放射科医师相当的诊断水平(AUC = 0.81),更能显著提升各级医师的诊断效能。这些研究结果表明,基于人工智能和影像组学的综合性评估模型有望成为标准化的淋巴结转移评估辅助工具,帮助放射科医生在临床诊断中作出更为准确的判断。

3. MRI研究TD的进展

3.1. 肿瘤沉积的定义与临床意义

根据第八版AJCC指南,TD被定义为位于结肠或直肠周围脂肪中的孤立性肿瘤病灶,其与原发肿瘤分离,且无残留淋巴结结构,通常与血管、神经关系密切。大约20%的直肠癌患者表现出TD [18]。当前分期系统将未发生区域淋巴结转移的TD归类为N1c期,D不仅仅是淋巴结转移的旁证,且具有独立的预后价值。将肿瘤沉积的数量纳入淋巴结转移数量的评估,可能进一步提高预后信息的获取[19]-[22]。这一观点提出了在现有分期系统中对TD的重新定义的必要性,特别是在更精准的个体化治疗和风险评估中,TD的作用不容忽视。

3.2. 常规MRI

在术后病理诊断的基础上,开发有效的术前无创预测方法至关重要,尤其是在评估TD时。MRI在这方面展现了显著的潜力。Marjasuo等人[23]发现MRI上所见的TD多被表征为壁外血管侵犯(EMVI)或LNM。功能MRI序列中,DWI在TD预测中应用较为广泛。Yuan等人[24]通过测量瘤周区域表观扩散系数(ADC)发现,瘤周ADC值及瘤周与瘤体ADC比值对瘤周TD具有良好预测能力(AUC分别达0.819和0.848)。进一步的研究表明,多b值DWI的多模型参数,如灌注相关扩散系数(D*)和拉伸指数模型参数(α),是TD的重要独立预测因子[25]。此外,Xu等人[26]利用DCE-MRI研究发现,在TD阳性组中,RE、MRE和ADC平均值(p = 0.041、0.027和0.046)显著高于肿瘤无TD组。

3.3. 人工智能与影像组学

近年来,基于多参数MRI的深度学习和放射组学模型在直肠癌TD术前预测中展现出显著优势[7]。Ao等人[27]开发的多参数MRI深度学习模型及融合深度特征与临床指标的列线图,在预测肿瘤沉积状态及3年无病生存期方面表现出卓越性能(AUC高达0.925),显著优于单一临床模型。Fu研究团队[28]进一步证实,融合临床信息与DWI序列深度学习特征的临床-DWI-DL模型取得最佳预测效能(AUC 0.90),凸显多参数融合的增值意义。尽管肿瘤沉积被证实是独立于淋巴结转移的不良预后因素,但现有AJCC分期系统中除N1c分类外,在伴有淋巴结转移时并未充分纳入其评估,导致T3N+直肠癌患者的TD状态预测及相应风险分层仍面临临床挑战[3] [20] [29]。然而,Yang等人[30]的研究则证明,基于MRI的放射组学模型不仅能准确预测T3N+直肠癌患者的肿瘤沉积状态(测试集AUC 0.844),其风险评分还能识别从术后辅助治疗中获益更多的患者群体,为个体化治疗决策提供了重要依据。这些研究表明,融合多序列MRI影像特征与临床参数的综合性人工智能模型,有望成为术前精准预测肿瘤沉积、指导治疗分层的有效工具。

3.4. 肿瘤沉积对分期的影响

TD的存在不仅影响直肠癌的分期,还对治疗策略和预后评估产生深远影响。近年来,多个研究致力于将TD与淋巴结转移LNM共同整合入更精确的N分期系统。例如,Wang等人[31]基于大规模队列提出的“coN”分期,将LNM与TD数量联合分析,显著区分了III期直肠癌患者的生存亚组。类似地,Pyo等人[32]通过将TD计数与阳性淋巴结数目相加构建了修订的*N分期,其预测无病生存的效能(C-index: 0.701)优于现行AJCC系统(C-index: 0.675)。Sassun等人[33]发展的Sassun-Mayo分期通过数学公式整合TD与LNM,其区分3年总生存的ROC曲线下面积极显著提升(0.66 vs 0.63)。Cohen [34]的研究进一步证实,依据TD数量对pN分期进行重新分类后,部分原pN1期患者被正确升级至pN2,其生存结局与升级后的分期更相符。这些证据一致表明,将TD定量纳入N分期体系,能更准确地反映肿瘤负荷,改善预后预测能力。尽管新型预测模型展现出优越的判别能力,但其临床转化仍受限于回顾性研究设计固有的选择偏倚、肿瘤沉积标准化界定缺失以及缺乏多中心前瞻性验证等关键问题,且尚未实现与影像学发现的充分印证。此外,Lord等人[35]与Huang等人[36]的研究也证实,基于MRI的肿瘤沉积与壁外静脉侵犯评估相较于传统TNM分期具有更优的预后预测价值,其衍生出的评分系统能有效分层患者生存风险,但是否在临床适用仍值得深入讨论。

4. 临床转化壁垒与方向

尽管多参数MRI与AI模型在直肠癌N分期与TD评估中显示出较高潜力,但从研究走向常规临床仍面临多重障碍。首先,多中心泛化不足是当前落地的核心瓶颈:不同中心在磁场强度、序列参数、重建算法及人群构成上的异质性,易导致模型性能显著波动。未来需通过跨中心大样本训练、域适配/迁移学习、外部独立验证与真实世界持续监测,系统提升模型稳健性与可移植性。其次,数据标准化协议缺失限制了模型可重复与可复用:应建立统一的采集与预处理规范(如序列参数、B值方案、对比剂时相)、分割与特征提取流程、质量控制与元数据记录体系,并推动多中心共享的标准化数据库建设,以降低“批次效应”与算法偏倚。最后,法规与审批路径不清晰仍是AI临床应用的关键门槛:影像AI作为医疗器械软件需满足安全性、有效性、可解释性、风险管理及生命周期更新的监管要求,尤其在模型迭代、跨域部署与临床责任界定方面亟需规范化证据链。建议在研发早期即引入监管导向的研究设计,开展前瞻性注册试验与临床效益评估,形成可用于审评的标准化验证框架,从而加速模型进入可审可用的临床路径。

5. 总结和展望

随着多参数MRI、定量功能成像及影像组学的发展,直肠癌N分期评估正由单纯形态学判读转向多维度、可量化的综合预测体系。第9版AJCC分期系统进一步凸显TD的独立分期价值,使MRI在TD识别及风险分层中的作用更加关键。未来研究与临床转化可聚焦以下方向:

1) 标准化与前瞻性验证:建立覆盖图像采集、分割、特征提取、模型训练及报告的统一规范,开展多中心、前瞻性队列和真实世界验证,以提升模型的可重复性、跨设备泛化能力与临床可用性。

2) 可解释性AI (XAI)与临床信任构建:在高性能预测的基础上,引入特征贡献可视化、决策依据追踪及不确定性量化等XAI策略,明确模型“为何如此判断”,促进放射科医生对模型结果的理解、校验与采纳,推动人机协同决策。

3) 影像基因组学(Radiogenomics)拓展分层维度:系统探索MRI表型/影像组学特征与分子亚型及关键通路的关联,建立可无创预测分子特征与生物学行为的模型,实现对复发风险、转移潜能及治疗反应的分层预测,从而在传统TNM框架之外提供更精细的预后评估。

4) 多组学融合的综合预后体系:将MRI模型与血清肿瘤标志物(如CEA、CA19-9)、循环肿瘤DNA (ctDNA)及其他临床/病理指标进行结构化融合,构建覆盖局部肿瘤负荷、微转移风险与分子残留病灶(MRD)的全景式预后模型,以提高对个体化治疗策略的指导价值。

5) 临床流程嵌入与多学科协作:推动模型在检查–报告–治疗决策链条中的嵌入式应用,形成可直接服务于放疗/化疗/手术策略选择的决策支持工具;放射科医生需持续提升功能成像与定量分析能力,并深度参与多学科讨论,以加速精准分期与精准治疗的落地。

总体而言,面向标准化、可解释、可溯源与多组学融合的MRI智能评估体系,将是直肠癌N分期与TD评估从“准确诊断”迈向“精准预后与治疗决策支持”的关键路径。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. [Google Scholar] [CrossRef] [PubMed]
[2] Nougaret, S., Gormly, K., Lambregts, D.M.J., Reinhold, C., Goh, V., Korngold, E., et al. (2025) MRI of the Rectum: A Decade into DISTANCE, Moving to Distanced. Radiology, 314, e232838. [Google Scholar] [CrossRef] [PubMed]
[3] Bhutiani, N., Peacock, O., Uppal, A., Hu, C., Bednarski, B.K., Taggart, M.W., et al. (2024) The Prognostic Impact of Tumor Deposits in Colorectal Cancer: More than Just N1c. Cancer, 130, 4052-4060. [Google Scholar] [CrossRef] [PubMed]
[4] Weiser, M.R. (2018) AJCC 8th Edition: Colorectal Cancer. Annals of Surgical Oncology, 25, 1454-1455. [Google Scholar] [CrossRef] [PubMed]
[5] Taylor, F.G.M., Quirke, P., Heald, R.J., Moran, B., Blomqvist, L., Swift, I., et al. (2011) Preoperative High-Resolution Magnetic Resonance Imaging Can Identify Good Prognosis Stage I, II, and III Rectal Cancer Best Managed by Surgery Alone: A Prospective, Multicenter, European Study. Annals of Surgery, 253, 711-719. [Google Scholar] [CrossRef] [PubMed]
[6] Horvat, N., Carlos Tavares Rocha, C., Clemente Oliveira, B., Petkovska, I. and Gollub, M.J. (2019) MRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and Management. Radio Graphics, 39, 367-387. [Google Scholar] [CrossRef] [PubMed]
[7] Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88. [Google Scholar] [CrossRef] [PubMed]
[8] Al-Sukhni, E., Milot, L., Fruitman, M., Beyene, J., Victor, J.C., Schmocker, S., et al. (2012) Diagnostic Accuracy of MRI for Assessment of T Category, Lymph Node Metastases, and Circumferential Resection Margin Involvement in Patients with Rectal Cancer: A Systematic Review and Meta-Analysis. Annals of Surgical Oncology, 19, 2212-2223. [Google Scholar] [CrossRef] [PubMed]
[9] Park, J.S., Jang, Y.J., Choi, G.S., Park, S.Y., et al. (2014) Accuracy of Preoperative MRI in Predicting Pathology Stage in Rectal Cancers: Node-for-Node Matched Histopathology Validation of MRI Features. Diseases of the Colon & Rectum, 57, 32-38. [Google Scholar] [CrossRef] [PubMed]
[10] Langman, G., Patel, A. and Bowley, D.M. (2015) Size and Distribution of Lymph Nodes in Rectal Cancer Resection Specimens. Diseases of the Colon & Rectum, 58, 406-414. [Google Scholar] [CrossRef] [PubMed]
[11] Zhou, M., Chen, M., Luo, M., Chen, M. and Huang, H. (2024) Pathological Prognostic Factors of Rectal Cancer Based on Diffusion-Weighted Imaging, Intravoxel Incoherent Motion, and Diffusion Kurtosis Imaging. European Radiology, 35, 979-988. [Google Scholar] [CrossRef] [PubMed]
[12] Yin, H., Liu, W., Xue, Q., Song, C., Ren, J., Li, Z., et al. (2024) The Value of Restriction Spectrum Imaging in Predicting Lymph Node Metastases in Rectal Cancer: A Comparative Study with Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging. Insights into Imaging, 15, Article No. 302. [Google Scholar] [CrossRef] [PubMed]
[13] 康立清, 郭素引, 赵梦, 刘凤海, 邢荣格, 姜国胜, 李国策. IVIM-DWI联合DCE-MRI诊断直肠癌盆腔淋巴结转移的价值[J]. 磁共振成像, 2019, 10(8): 583-588.
[14] Yang, Y.S., Feng, F., Qiu, Y.J., Zheng, G.H., Ge, Y.Q. and Wang, Y.T. (2021) High-Resolution MRI-Based Radiomics Analysis to Predict Lymph Node Metastasis and Tumor Deposits Respectively in Rectal Cancer. Abdominal Radiology, 46, 873-884. [Google Scholar] [CrossRef] [PubMed]
[15] Zheng, Y., Chen, X., Zhang, H., Ning, X., Mao, Y., Zheng, H., et al. (2024) Multiparametric MRI-Based Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Rectal Cancer: A Two-Center Study. European Journal of Radiology, 178, Article 111591. [Google Scholar] [CrossRef] [PubMed]
[16] Ao, W., Wu, S., Wang, N., Mao, G., Wang, J., Hu, J., et al. (2025) Novel Deep Learning Algorithm Based MRI Radiomics for Predicting Lymph Node Metastases in Rectal Cancer. Scientific Reports, 15, Article No. 12089. [Google Scholar] [CrossRef] [PubMed]
[17] Xia, W., Li, D., He, W., Pickhardt, P.J., Jian, J., Zhang, R., et al. (2024) Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI. Radiology: Artificial Intelligence, 6, e230152. [Google Scholar] [CrossRef] [PubMed]
[18] Zheng, P., Chen, Q., Li, J., Jin, C., Kang, L. and Chen, D. (2020) Prognostic Significance of Tumor Deposits in Patients with Stage III Colon Cancer: A Nomogram Study. Journal of Surgical Research, 245, 475-482. [Google Scholar] [CrossRef] [PubMed]
[19] Agger, E., Jörgren, F., Jöud, A., Lydrup, M.L. and Buchwald, P. (2023) Negative Prognostic Impact of Tumor Deposits in Rectal Cancer: A National Study Cohort. Annals of Surgery, 278, e526-e533. [Google Scholar] [CrossRef] [PubMed]
[20] Song, J.S., Chang, H.J., Kim, D.Y., Kim, S.Y., Baek, J.Y., Park, J.W., et al. (2011) Is the N1c Category of the New American Joint Committee on Cancer Staging System Applicable to Patients with Rectal Cancer Who Receive Preoperative Chemoradiotherapy? Cancer, 117, 3917-3924. [Google Scholar] [CrossRef] [PubMed]
[21] Hu, X., Xie, S., Yang, Z., Zhao, X., Gong, L., Yang, P., et al. (2025) Aggressive Characteristics of Tumor Deposits in Colorectal Cancer Highlight the Need for Staging Refinement in Patients with 0-3 Metastatic Lymph Nodes. International Journal of Cancer, 156, 1826-1839. [Google Scholar] [CrossRef] [PubMed]
[22] Nagtegaal, I.D., Knijn, N., Hugen, N., Marshall, H.C., Sugihara, K., Tot, T., et al. (2017) Tumor Deposits in Colorectal Cancer: Improving the Value of Modern Staging—A Systematic Review and Meta-Analysis. Journal of Clinical Oncology, 35, 1119-1127. [Google Scholar] [CrossRef] [PubMed]
[23] Marjasuo, S.T., Lehtimäki, T.E., Koskenvuo, L.E. and Lepistö, A.H. (2024) Impact of Mesorectal Extranodal Tumor Deposits in Magnetic Resonance Imaging on Outcome of Rectal Cancer Patients. European Journal of Surgical Oncology, 50, Article 108337. [Google Scholar] [CrossRef] [PubMed]
[24] Yuan, Y., Chen, X.L., Li, Z.L., Chen, G.W., et al. (2022) The Application of Apparent Diffusion Coefficients Derived from Intratumoral and Peritumoral Zones for Assessing Pathologic Prognostic Factors in Rectal Cancer. European Radiology, 32, 5106-5118. [Google Scholar] [CrossRef] [PubMed]
[25] Hong, Y., Song, G., Jia, Y., Wu, R., He, R. and Li, A. (2022) Predicting Tumor Deposits in Patients with Rectal Cancer: Using the Models of Multiple Mathematical Parameters Derived from Diffusion-Weighted Imaging. European Journal of Radiology, 157, Article 110573. [Google Scholar] [CrossRef] [PubMed]
[26] Xu, Q., Xu, Y., Wang, J., Sun, H., Lin, J. and Xie, S. (2023) Distinguishing Mesorectal Tumor Deposits from Metastatic Lymph Nodes by Using Diffusion-Weighted and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer. European Radiology, 33, 4127-4137. [Google Scholar] [CrossRef] [PubMed]
[27] Ao, W., Wang, N., Chen, X., Wu, S., Mao, G., Hu, J., et al. (2024) Multiparametric MRI-Based Deep Learning Models for Preoperative Prediction of Tumor Deposits in Rectal Cancer and Prognostic Outcome. Academic Radiology, 32, 1451-1464. [Google Scholar] [CrossRef] [PubMed]
[28] Fu, C., Shao, T., Hou, M., Qu, J., Li, P., Yang, Z., et al. (2023) Preoperative Prediction of Tumor Deposits in Rectal Cancer with Clinical-Magnetic Resonance Deep Learning-Based Radiomic Models. Frontiers in Oncology, 13, Article 1078863. [Google Scholar] [CrossRef] [PubMed]
[29] Lambregts, D.M.J., Bogveradze, N., Blomqvist, L.K., Fokas, E., Garcia-Aguilar, J., Glimelius, B., et al. (2022) Current Controversies in TNM for the Radiological Staging of Rectal Cancer and How to Deal with Them: Results of a Global Online Survey and Multidisciplinary Expert Consensus. European Radiology, 32, 4991-5003. [Google Scholar] [CrossRef] [PubMed]
[30] Yang, R., Zhao, H., Wang, X., Ding, Z., Tao, Y., Zhang, C., et al. (2023) Magnetic Resonance Imaging Radiomics Modeling Predicts Tumor Deposits and Prognosis in Stage T3 Lymph Node Positive Rectal Cancer. Abdominal Radiology, 48, 1268-1279. [Google Scholar] [CrossRef] [PubMed]
[31] Wang, X., Cheng, W., Dou, X., Tan, F., Yan, S., Zhou, Z., et al. (2023) The New ‘coN’ Staging System Combining Lymph Node Metastasis and Tumour Deposit Provides a More Accurate Prognosis for TNM Stage III Colon Cancer. Cancer Medicine, 12, 2538-2550. [Google Scholar] [CrossRef] [PubMed]
[32] Pyo, D.H., Kim, S.H., Ha, S.Y., Yun, S.H., Cho, Y.B., Huh, J.W., et al. (2023) Revised Nodal Staging Integrating Tumor Deposit Counts with Positive Lymph Nodes in Patients with Stage III Colon Cancer. Annals of Surgery, 277, e825-e831. [Google Scholar] [CrossRef] [PubMed]
[33] Sassun, R., Sileo, A., Ng, J.C., Violante, T., Gomaa, I., Mandrekar, J., et al. (2025) Validated Integration of Tumor Deposits in N Staging for Prognostication in Colon Cancer. JAMA Surgery, 160, 408-414. [Google Scholar] [CrossRef] [PubMed]
[34] Cohen, R., Shi, Q., Meyers, J., Jin, Z., Svrcek, M., Fuchs, C., et al. (2021) Combining Tumor Deposits with the Number of Lymph Node Metastases to Improve the Prognostic Accuracy in Stage III Colon Cancer: A Post Hoc Analysis of the CALGB/SWOG 80702 Phase III Study (Alliance). Annals of Oncology, 32, 1267-1275. [Google Scholar] [CrossRef] [PubMed]
[35] Lord, A.C., D’Souza, N., Shaw, A., Rokan, Z., Moran, B., Abulafi, M., et al. (2022) MRI-Diagnosed Tumor Deposits and EMVI Status Have Superior Prognostic Accuracy to Current Clinical TNM Staging in Rectal Cancer. Annals of Surgery, 276, 334-344. [Google Scholar] [CrossRef] [PubMed]
[36] Huang, H., Xu, W., Feng, L., Zhong, M., Ye, Y., Liu, Y., et al. (2025) Development and Evaluation of the mrTE Scoring System for MRI-Detected Tumor Deposits and Extramural Venous Invasion in Rectal Cancer. Abdominal Radiology, 50, 3950-3961. [Google Scholar] [CrossRef] [PubMed]