|
[1]
|
Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nougaret, S., Gormly, K., Lambregts, D.M.J., Reinhold, C., Goh, V., Korngold, E., et al. (2025) MRI of the Rectum: A Decade into DISTANCE, Moving to Distanced. Radiology, 314, e232838. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bhutiani, N., Peacock, O., Uppal, A., Hu, C., Bednarski, B.K., Taggart, M.W., et al. (2024) The Prognostic Impact of Tumor Deposits in Colorectal Cancer: More than Just N1c. Cancer, 130, 4052-4060. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Weiser, M.R. (2018) AJCC 8th Edition: Colorectal Cancer. Annals of Surgical Oncology, 25, 1454-1455. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Taylor, F.G.M., Quirke, P., Heald, R.J., Moran, B., Blomqvist, L., Swift, I., et al. (2011) Preoperative High-Resolution Magnetic Resonance Imaging Can Identify Good Prognosis Stage I, II, and III Rectal Cancer Best Managed by Surgery Alone: A Prospective, Multicenter, European Study. Annals of Surgery, 253, 711-719. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Horvat, N., Carlos Tavares Rocha, C., Clemente Oliveira, B., Petkovska, I. and Gollub, M.J. (2019) MRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and Management. Radio Graphics, 39, 367-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Al-Sukhni, E., Milot, L., Fruitman, M., Beyene, J., Victor, J.C., Schmocker, S., et al. (2012) Diagnostic Accuracy of MRI for Assessment of T Category, Lymph Node Metastases, and Circumferential Resection Margin Involvement in Patients with Rectal Cancer: A Systematic Review and Meta-Analysis. Annals of Surgical Oncology, 19, 2212-2223. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Park, J.S., Jang, Y.J., Choi, G.S., Park, S.Y., et al. (2014) Accuracy of Preoperative MRI in Predicting Pathology Stage in Rectal Cancers: Node-for-Node Matched Histopathology Validation of MRI Features. Diseases of the Colon & Rectum, 57, 32-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Langman, G., Patel, A. and Bowley, D.M. (2015) Size and Distribution of Lymph Nodes in Rectal Cancer Resection Specimens. Diseases of the Colon & Rectum, 58, 406-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, M., Chen, M., Luo, M., Chen, M. and Huang, H. (2024) Pathological Prognostic Factors of Rectal Cancer Based on Diffusion-Weighted Imaging, Intravoxel Incoherent Motion, and Diffusion Kurtosis Imaging. European Radiology, 35, 979-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yin, H., Liu, W., Xue, Q., Song, C., Ren, J., Li, Z., et al. (2024) The Value of Restriction Spectrum Imaging in Predicting Lymph Node Metastases in Rectal Cancer: A Comparative Study with Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging. Insights into Imaging, 15, Article No. 302. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
康立清, 郭素引, 赵梦, 刘凤海, 邢荣格, 姜国胜, 李国策. IVIM-DWI联合DCE-MRI诊断直肠癌盆腔淋巴结转移的价值[J]. 磁共振成像, 2019, 10(8): 583-588.
|
|
[14]
|
Yang, Y.S., Feng, F., Qiu, Y.J., Zheng, G.H., Ge, Y.Q. and Wang, Y.T. (2021) High-Resolution MRI-Based Radiomics Analysis to Predict Lymph Node Metastasis and Tumor Deposits Respectively in Rectal Cancer. Abdominal Radiology, 46, 873-884. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zheng, Y., Chen, X., Zhang, H., Ning, X., Mao, Y., Zheng, H., et al. (2024) Multiparametric MRI-Based Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Rectal Cancer: A Two-Center Study. European Journal of Radiology, 178, Article 111591. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ao, W., Wu, S., Wang, N., Mao, G., Wang, J., Hu, J., et al. (2025) Novel Deep Learning Algorithm Based MRI Radiomics for Predicting Lymph Node Metastases in Rectal Cancer. Scientific Reports, 15, Article No. 12089. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xia, W., Li, D., He, W., Pickhardt, P.J., Jian, J., Zhang, R., et al. (2024) Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI. Radiology: Artificial Intelligence, 6, e230152. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zheng, P., Chen, Q., Li, J., Jin, C., Kang, L. and Chen, D. (2020) Prognostic Significance of Tumor Deposits in Patients with Stage III Colon Cancer: A Nomogram Study. Journal of Surgical Research, 245, 475-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Agger, E., Jörgren, F., Jöud, A., Lydrup, M.L. and Buchwald, P. (2023) Negative Prognostic Impact of Tumor Deposits in Rectal Cancer: A National Study Cohort. Annals of Surgery, 278, e526-e533. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Song, J.S., Chang, H.J., Kim, D.Y., Kim, S.Y., Baek, J.Y., Park, J.W., et al. (2011) Is the N1c Category of the New American Joint Committee on Cancer Staging System Applicable to Patients with Rectal Cancer Who Receive Preoperative Chemoradiotherapy? Cancer, 117, 3917-3924. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hu, X., Xie, S., Yang, Z., Zhao, X., Gong, L., Yang, P., et al. (2025) Aggressive Characteristics of Tumor Deposits in Colorectal Cancer Highlight the Need for Staging Refinement in Patients with 0-3 Metastatic Lymph Nodes. International Journal of Cancer, 156, 1826-1839. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nagtegaal, I.D., Knijn, N., Hugen, N., Marshall, H.C., Sugihara, K., Tot, T., et al. (2017) Tumor Deposits in Colorectal Cancer: Improving the Value of Modern Staging—A Systematic Review and Meta-Analysis. Journal of Clinical Oncology, 35, 1119-1127. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Marjasuo, S.T., Lehtimäki, T.E., Koskenvuo, L.E. and Lepistö, A.H. (2024) Impact of Mesorectal Extranodal Tumor Deposits in Magnetic Resonance Imaging on Outcome of Rectal Cancer Patients. European Journal of Surgical Oncology, 50, Article 108337. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yuan, Y., Chen, X.L., Li, Z.L., Chen, G.W., et al. (2022) The Application of Apparent Diffusion Coefficients Derived from Intratumoral and Peritumoral Zones for Assessing Pathologic Prognostic Factors in Rectal Cancer. European Radiology, 32, 5106-5118. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hong, Y., Song, G., Jia, Y., Wu, R., He, R. and Li, A. (2022) Predicting Tumor Deposits in Patients with Rectal Cancer: Using the Models of Multiple Mathematical Parameters Derived from Diffusion-Weighted Imaging. European Journal of Radiology, 157, Article 110573. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xu, Q., Xu, Y., Wang, J., Sun, H., Lin, J. and Xie, S. (2023) Distinguishing Mesorectal Tumor Deposits from Metastatic Lymph Nodes by Using Diffusion-Weighted and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer. European Radiology, 33, 4127-4137. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ao, W., Wang, N., Chen, X., Wu, S., Mao, G., Hu, J., et al. (2024) Multiparametric MRI-Based Deep Learning Models for Preoperative Prediction of Tumor Deposits in Rectal Cancer and Prognostic Outcome. Academic Radiology, 32, 1451-1464. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fu, C., Shao, T., Hou, M., Qu, J., Li, P., Yang, Z., et al. (2023) Preoperative Prediction of Tumor Deposits in Rectal Cancer with Clinical-Magnetic Resonance Deep Learning-Based Radiomic Models. Frontiers in Oncology, 13, Article 1078863. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lambregts, D.M.J., Bogveradze, N., Blomqvist, L.K., Fokas, E., Garcia-Aguilar, J., Glimelius, B., et al. (2022) Current Controversies in TNM for the Radiological Staging of Rectal Cancer and How to Deal with Them: Results of a Global Online Survey and Multidisciplinary Expert Consensus. European Radiology, 32, 4991-5003. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yang, R., Zhao, H., Wang, X., Ding, Z., Tao, Y., Zhang, C., et al. (2023) Magnetic Resonance Imaging Radiomics Modeling Predicts Tumor Deposits and Prognosis in Stage T3 Lymph Node Positive Rectal Cancer. Abdominal Radiology, 48, 1268-1279. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, X., Cheng, W., Dou, X., Tan, F., Yan, S., Zhou, Z., et al. (2023) The New ‘coN’ Staging System Combining Lymph Node Metastasis and Tumour Deposit Provides a More Accurate Prognosis for TNM Stage III Colon Cancer. Cancer Medicine, 12, 2538-2550. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pyo, D.H., Kim, S.H., Ha, S.Y., Yun, S.H., Cho, Y.B., Huh, J.W., et al. (2023) Revised Nodal Staging Integrating Tumor Deposit Counts with Positive Lymph Nodes in Patients with Stage III Colon Cancer. Annals of Surgery, 277, e825-e831. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Sassun, R., Sileo, A., Ng, J.C., Violante, T., Gomaa, I., Mandrekar, J., et al. (2025) Validated Integration of Tumor Deposits in N Staging for Prognostication in Colon Cancer. JAMA Surgery, 160, 408-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cohen, R., Shi, Q., Meyers, J., Jin, Z., Svrcek, M., Fuchs, C., et al. (2021) Combining Tumor Deposits with the Number of Lymph Node Metastases to Improve the Prognostic Accuracy in Stage III Colon Cancer: A Post Hoc Analysis of the CALGB/SWOG 80702 Phase III Study (Alliance). Annals of Oncology, 32, 1267-1275. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lord, A.C., D’Souza, N., Shaw, A., Rokan, Z., Moran, B., Abulafi, M., et al. (2022) MRI-Diagnosed Tumor Deposits and EMVI Status Have Superior Prognostic Accuracy to Current Clinical TNM Staging in Rectal Cancer. Annals of Surgery, 276, 334-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Huang, H., Xu, W., Feng, L., Zhong, M., Ye, Y., Liu, Y., et al. (2025) Development and Evaluation of the mrTE Scoring System for MRI-Detected Tumor Deposits and Extramural Venous Invasion in Rectal Cancer. Abdominal Radiology, 50, 3950-3961. [Google Scholar] [CrossRef] [PubMed]
|