|
[1]
|
Magid-Bernstein, J., Girard, R., Polster, S., Srinath, A., Romanos, S., Awad, I.A., et al. (2022) Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circulation Research, 130, 1204-1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhang, Y., Wang, H., Sang, Y., Liu, M., Wang, Q., Yang, H., et al. (2024) Gut Microbiota in Health and Disease: Advances and Future Prospects. MedComm, 5, e70012. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kunath, B.J., De Rudder, C., Laczny, C.C., Letellier, E. and Wilmes, P. (2024) The Oral-Gut Microbiome Axis in Health and Disease. Nature Reviews Microbiology, 22, 791-805. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yu, X., Zhou, G., Shao, B., Zhou, H., Xu, C., Yan, F., et al. (2021) Gut Microbiota Dysbiosis Induced by Intracerebral Hemorrhage Aggravates Neuroinflammation in Mice. Frontiers in Microbiology, 12, Article ID: 647304. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, Q., Dai, H., Hou, T., Hou, Y., Wang, T., Lin, H., et al. (2023) Dissecting Causal Relationships between Gut Microbiota, Blood Metabolites, and Stroke: A Mendelian Randomization Study. Journal of Stroke, 25, 350-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14.
|
|
[7]
|
Luo, J., Chen, Y., Tang, G., Li, Z., Yang, X., Shang, X., et al. (2022) Gut Microbiota Composition Reflects Disease Progression, Severity and Outcome, and Dysfunctional Immune Responses in Patients with Hypertensive Intracerebral Hemorrhage. Frontiers in Immunology, 13, Article ID: 869846. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Y., Bing, H., Jiang, C., Wang, J., Wang, X., Xia, Z., et al. (2024) Gut Microbiota Dysbiosis and Neurological Function Recovery after Intracerebral Hemorrhage: An Analysis of Clinical Samples. Microbiology Spectrum, 12, e01178-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sun, Y., Zhou, D., Liu, A., Zhou, Y., Zhao, Y., Yuan, Y., et al. (2025) Liangxue Tongyu Prescription Exerts Neuroprotection by Regulating the Microbiota-Gut-Brain Axis of Rats with Acute Intracerebral Hemorrhage. Brain Research Bulletin, 220, Article 111186. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Krautkramer, K.A., Kreznar, J.H., Romano, K.A., Vivas, E.I., Barrett-Wilt, G.A., Rabaglia, M.E., et al. (2016) Diet-microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 64, 982-992. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Singh, V., Roth, S., Llovera, G., Sadler, R., Garzetti, D., Stecher, B., et al. (2016) Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience, 36, 7428-7440. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xu, K., Gao, X., Xia, G., Chen, M., Zeng, N., Wang, S., et al. (2021) Rapid Gut Dysbiosis Induced by Stroke Exacerbates Brain Infarction in Turn. Gut, 70, 1486-1494. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Peh, A., O’Donnell, J.A., Broughton, B.R.S. and Marques, F.Z. (2022) Gut Microbiota and Their Metabolites in Stroke: A Double-Edged Sword. Stroke, 53, 1788-1801. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sharma, V., Tan, B.Q. and Paliwal, P. (2020) Gut Microbiota and Stroke. Annals of Indian Academy of Neurology, 23, Article 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pluta, R., Januszewski, S. and Czuczwar, S.J. (2021) The Role of Gut Microbiota in an Ischemic Stroke. International Journal of Molecular Sciences, 22, Article 915. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hu, W., Kong, X., Wang, H., Li, Y. and Luo, Y. (2022) Ischemic Stroke and Intestinal Flora: An Insight into Brain-Gut Axis. European Journal of Medical Research, 27, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jeon, J., Lourenco, J., Kaiser, E.E., Waters, E.S., Scheulin, K.M., Fang, X., et al. (2020) Dynamic Changes in the Gut Microbiome at the Acute Stage of Ischemic Stroke in a Pig Model. Frontiers in Neuroscience, 14, Article ID: 587986. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Blasco, M.P., Chauhan, A., Honarpisheh, P., Ahnstedt, H., d’Aigle, J., Ganesan, A., et al. (2020) Age-Dependent Involvement of Gut Mast Cells and Histamine in Post-Stroke Inflammation. Journal of Neuroinflammation, 17, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, R., Wu, P., Cai, Z., Fang, Y., Zhou, H., Lasanajak, Y., et al. (2019) Puerariae Lobatae Radix with Chuanxiong Rhizoma for Treatment of Cerebral Ischemic Stroke by Remodeling Gut Microbiota to Regulate the Brain-Gut Barriers. The Journal of Nutritional Biochemistry, 65, 101-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, H., Song, W., Wu, Q., Gao, X., Li, J., Tan, C., et al. (2021) Fecal Transplantation from db/db Mice Treated with Sodium Butyrate Attenuates Ischemic Stroke Injury. Microbiology Spectrum, 9, e0004221. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yan, C. and Li, Y. (2024) Causal Relationships between Gut Microbiota, Inflammatory Cells/Proteins, and Subarachnoid Hemorrhage: A Multi-Omics Bidirectional Mendelian Randomization Study and Meta-Analysis. Molecular Neurobiology, 61, 8590-8599. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fan, L., Chen, J., Pan, L., Xin, X., Geng, B., Yang, L., et al. (2022) Alterations of Gut Microbiome, Metabolome, and Lipidome in Takayasu Arteritis. Arthritis & Rheumatology, 75, 266-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Manabe, Y., Ishibashi, T., Asano, R., Tonomura, S., Maeda, Y., Motooka, D., et al. (2023) Gut Dysbiosis Is Associated with Aortic Aneurysm Formation and Progression in Takayasu Arteritis. Arthritis Research & Therapy, 25, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, M., Liao, Z., Zeng, K. and Jiang, Q. (2024) Exploring the Causal Role of Gut Microbiota in Giant Cell Arteritis: A Mendelian Randomization Analysis with Mediator Insights. Frontiers in Immunology, 14, Article ID: 1280249. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tang, A.T., Sullivan, K.R., Hong, C.C., Goddard, L.M., Mahadevan, A. and Ren, A. (2019) Distinct Cellular Roles for PDCD10 Define a Gut-Brain Axis in Cerebral Cavernous Malformation. Science Translational Medicine, 11, eaaw3521.
|
|
[26]
|
Ling, X., Jie, W., Qin, X., Zhang, S., Shi, K., Li, T., et al. (2022) Gut Microbiome Sheds Light on the Development and Treatment of Abdominal Aortic Aneurysm. Frontiers in Cardiovascular Medicine, 9, Article ID: 1063683. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Spence, J.D. (2022) Cardiovascular Effects of TMAO and Other Toxic Metabolites of the Intestinal Microbiome. Journal of Internal Medicine, 293, 2-3. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Gupta, N., Wang, Z., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zmora, N., Suez, J. and Elinav, E. (2018) You Are What You Eat: Diet, Health and the Gut Microbiota. Nature Reviews Gastroenterology & Hepatology, 16, 35-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Witkowski, M., Weeks, T.L. and Hazen, S.L. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research, 127, 553-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhu, Y., Dwidar, M., Nemet, I., Buffa, J.A., Sangwan, N., Li, X.S., et al. (2023) Two Distinct Gut Microbial Pathways Contribute to Meta-Organismal Production of Phenylacetylglutamine with Links to Cardiovascular Disease. Cell Host & Microbe, 31, 18-32.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tian, Z., Zhang, Y., Zheng, Z., Zhang, M., Zhang, T., Jin, J., et al. (2022) Gut Microbiome Dysbiosis Contributes to Abdominal Aortic Aneurysm by Promoting Neutrophil Extracellular Trap Formation. Cell Host & Microbe, 30, 1450-1463.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liao, S., Wu, J., Liu, R., Wang, S., Luo, J., Yang, Y., et al. (2020) A Novel Compound DBZ Ameliorates Neuroinflammation in LPS-Stimulated Microglia and Ischemic Stroke Rats: Role of Akt(Ser473)/GSK3β(Ser9)-Mediated Nrf2 Activation. Redox Biology, 36, Article 101644. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ramprasath, T., Han, Y., Zhang, D., Yu, C. and Zou, M. (2021) Tryptophan Catabolism and Inflammation: A Novel Therapeutic Target for Aortic Diseases. Frontiers in Immunology, 12, Article ID: 731701. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, L., Qin, N., Shi, L., Liu, R. and Zhu, T. (2024) Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants. Molecular Nutrition & Food Research, 68, Article 2400639. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, J., Fan, X., Wang, J., et al. (2023) Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging and disease, 14, Article 858. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Qin, N., Xie, X., Deng, R., Gao, S. and Zhu, T. (2025) The Role of the Tryptophan Metabolites in Gut Microbiota-Brain Axis and Potential Treatments: A Focus on Ischemic Stroke. Frontiers in Pharmacology, 16, Article ID: 1578018. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fang, Z., Chen, M., Qian, J., Wang, C. and Zhang, J. (2022) The Bridge between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cellular and Molecular Neurobiology, 43, 543-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lee, J., d’Aigle, J., Atadja, L., Quaicoe, V., Honarpisheh, P., Ganesh, B.P., et al. (2020) Gut Microbiota-Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circulation Research, 127, 453-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, R., Xu, Y., Wu, P., Zhou, H., Lasanajak, Y., Fang, Y., et al. (2019) Transplantation of Fecal Microbiota Rich in Short Chain Fatty Acids and Butyric Acid Treat Cerebral Ischemic Stroke by Regulating Gut Microbiota. Pharmacological Research, 148, Article 104403. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Liu, S., Liu, Y., Zhao, J., Yang, P., Wang, W. and Liao, M. (2022) Effects of Spermidine on Gut Microbiota Modulation in Experimental Abdominal Aortic Aneurysm Mice. Nutrients, 14, Article 3349. [Google Scholar] [CrossRef] [PubMed]
|