|
[1]
|
Wanhainen, A., Van Herzeele, I., Bastos Goncalves, F., Bellmunt Montoya, S., Berard, X., Boyle, J.R., et al. (2024) Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. European Journal of Vascular and Endovascular Surgery, 67, 192-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Qian, G., Adeyanju, O., Olajuyin, A. and Guo, X. (2022) Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life, 12, Article No. 191. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sakalihasan, N., Michel, J., Katsargyris, A., Kuivaniemi, H., Defraigne, J., Nchimi, A., et al. (2018) Abdominal Aortic Aneurysms. Nature Reviews Disease Primers, 4, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
张韬, 郭伟. 腹主动脉瘤诊断和治疗中国专家共识(2022版) [J]. 中国实用外科杂志, 2022, 42(4): 380-387.
|
|
[5]
|
Puertas-Umbert, L., Almendra-Pegueros, R., Jiménez-Altayó, F., Sirvent, M., Galán, M., Martínez-González, J., et al. (2023) Novel Pharmacological Approaches in Abdominal Aortic Aneurysm. Clinical Science, 137, 1167-1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Takagi, H., Manabe, H., Kawai, N., Goto, S. and Umemoto, T. (2009) Plasma Fibrinogen and D-Dimer Concentrations Are Associated with the Presence of Abdominal Aortic Aneurysm: A Systematic Review and Meta-Analysis. European Journal of Vascular and Endovascular Surgery, 38, 273-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Håland, A.B., Mattsson, E., Videm, V., Albrektsen, G. and Nyrønning, L.Å. (2025) Elevated High Sensitivity C Reactive Protein and Risk of Abdominal Aortic Aneurysm: A Prospective Population Based Study in the Norwegian HUNT Study. European Journal of Vascular and Endovascular Surgery, 69, 733-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hellenthal, F.A.M.V.I., Buurman, W.A., Wodzig, W.K.W.H. and Schurink, G.W.H. (2009) Biomarkers of AAA Progression. Part 1: Extracellular Matrix Degeneration. Nature Reviews Cardiology, 6, 464-474. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhao, W.-X., Wu, Z.-Y., Zhao, N., Diao, Y.-P., Lan, Y. and Li, Y.-J. (2024) Novel Systemic Inflammatory Markers Predict All-Cause Mortality in Patients Undergoing Endovascular Abdominal Aortic Aneurysm Repair. Reviews in Cardiovascular Medicine, 25, Article No. 202. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bektaş, O. and Ürkmez, M. (2024) Relationship between Abdominal Aortic Aneurysm and Inflammatory Markers. Middle Black Sea Journal of Health Science, 10, 50-58. [Google Scholar] [CrossRef]
|
|
[11]
|
Klopf, J., Brostjan, C., Neumayer, C. and Eilenberg, W. (2021) Neutrophils as Regulators and Biomarkers of Cardiovascular Inflammation in the Context of Abdominal Aortic Aneurysms. Biomedicines, 9, Article No. 1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xu, J., Du, X., Zhang, S., Zang, X., Xiao, Z., Su, R., et al. (2024) Diagnostic Value of Uric Acid to High-Density Lipoprotein Cholesterol Ratio in Abdominal Aortic Aneurysms. Annals of Medicine, 56, Article ID: 2357224. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lu, D., Si, K. and Huo, G. (2025) Association between Uric Acid to High-Density Lipoprotein Cholesterol Ratio and Abdominal Aortic Aneurysm: A Single-Center Retrospective Study. Journal of Inflammation Research, 18, 3217-3226. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, W., Luo, S., Lin, W., Hu, X., Zhou, D., Xu, W., et al. (2024) The Serum Uric Acid/High-Density Lipoprotein Cholesterol Ratio: A Novel Predictor for the Presence of Abdominal Aortic Aneurysm. Frontiers in Cardiovascular Medicine, 11, Article ID: 1481872. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
王真, 王小倩, 张灵维, 陈晓甜. 血清尿酸与高密度脂蛋白胆固醇比值与腹主动脉钙化的关系[J]. 现代预防医学, 2025, 52(10): 1915-1920.
|
|
[16]
|
Liu, Y., Xu, K., Xiang, Y., Ma, B., Li, H., Li, Y., et al. (2024) Role of MCP-1 as an Inflammatory Biomarker in Nephropathy. Frontiers in Immunology, 14, Article ID: 1303076. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Elizondo-Benedetto, S., Sultan, D., Wahidi, R., Hamdi, M., Zaghloul, M.S., Hafezi, S., et al. (2025) Pilot First-in-Human CCR2 PET/CT to Detect Abdominal Aortic Aneurysm Wall Instability. Theranostics, 15, 5518-5528. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Elizondo-Benedetto, S., Sastriques-Dunlop, S., Detering, L., Arif, B., Heo, G.S., Sultan, D., et al. (2025) Chemokine Receptor 2 Is a Theranostic Biomarker for Abdominal Aortic Aneurysms. JACC: Basic to Translational Science, 10, Article ID: 101250. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Memon, A.A., Zarrouk, M., Ågren-Witteschus, S., Sundquist, J., Gottsäter, A. and Sundquist, K. (2019) Identification of Novel Diagnostic and Prognostic Biomarkers for Abdominal Aortic Aneurysm. European Journal of Preventive Cardiology, 27, 132-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sánchez-Infantes, D., Nus, M., Navas-Madroñal, M., Fité, J., Pérez, B., Barros-Membrilla, A.J., et al. (2021) Oxidative Stress and Inflammatory Markers in Abdominal Aortic Aneurysm. Antioxidants, 10, Article No. 602. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wischhusen, J., Melero, I. and Fridman, W.H. (2020) Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Frontiers in Immunology, 11, Article No. 951. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Eilenberg, W., Zagrapan, B., Bleichert, S., Ibrahim, N., Knöbl, V., Brandau, A., et al. (2021) Histone Citrullination as a Novel Biomarker and Target to Inhibit Progression of Abdominal Aortic Aneurysms. Translational Research, 233, 32-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Meher, A.K., Spinosa, M., Davis, J.P., Pope, N., Laubach, V.E., Su, G., et al. (2018) Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 843-853. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zagrapan, B., Eilenberg, W., Prausmueller, S., Nawrozi, P., Muench, K., Hetzer, S., et al. (2019) A Novel Diagnostic and Prognostic Score for Abdominal Aortic Aneurysms Based on D-Dimer and a Comprehensive Analysis of Myeloid Cell Parameters. Thrombosis and Haemostasis, 119, 807-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zheng, S., Tsao, P.S. and Pan, C. (2024) Abdominal Aortic Aneurysm and Cardiometabolic Traits Share Strong Genetic Susceptibility to Lipid Metabolism and Inflammation. Nature Communications, 15, Article No. 5652. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tasopoulou, K., Argiriou, C., Tsaroucha, A.K. and Georgiadis, G.S. (2023) Circulating miRNAs as Biomarkers for Diagnosis, Surveillance, and Postoperative Follow-Up of Abdominal Aortic Aneurysms. Annals of Vascular Surgery, 93, 387-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Winski, G., Chernogubova, E., Busch, A., Eken, S.M., Jin, H., Lindquist Liljeqvist, M., et al. (2025) MicroRNA-15a-5p Mediates Abdominal Aortic Aneurysm Progression and Serves as a Potential Diagnostic and Prognostic Circulating Biomarker. Communications Medicine, 5, Article No. 218. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Guo, X., Zhong, J., Zhao, Y., Fu, Y., Sun, L., Yuan, A., et al. (2024) Lxrα Promotes Abdominal Aortic Aneurysm Formation through UHRF1 Epigenetic Modification of Mir-26b-3p. Circulation, 150, 30-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Han, Y., Zhang, H., Bian, C., Chen, C., Tu, S., Guo, J., et al. (2021) Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 9934951. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ma, X., Xu, J., Lu, Q., Feng, X., Liu, J., Cui, C., et al. (2022) Hsa_circ_0087352 Promotes the Inflammatory Response of Macrophages in Abdominal Aortic Aneurysm by Adsorbing hsa-miR-149-5p. International Immunopharmacology, 107, Article ID: 108691. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xiong, T., Lv, X.-S., Wu, G.-J., Guo, Y.-X., Liu, C., Hou, F.-X., et al. (2022) Single-Cell Sequencing Analysis and Multiple Machine Learning Methods Identified G0S2 and HPSE as Novel Biomarkers for Abdominal Aortic Aneurysm. Frontiers in Immunology, 13, Article ID: 907309. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yang, B., Xu, Y., Yan, F., Peng, C., Song, Y., Han, S., et al. (2025) Identifying Nexilin as a Central Gene in Neutrophil-Driven Abdominal Aortic Aneurysm Pathogenesis. Molecular Medicine, 31, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kanaan, R., Medlej-Hashim, M., Jounblat, R., Pilecki, B. and Sorensen, G.L. (2022) Microfibrillar-Associated Protein 4 in Health and Disease. Matrix Biology, 111, 1-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lindholt, J.S., Madsen, M., Kirketerp-Møller, K.L., Schlosser, A., Kristensen, K.L., Andersen, C.B., et al. (2020) High Plasma Microfibrillar-Associated Protein 4 Is Associated with Reduced Surgical Repair in Abdominal Aortic Aneurysms. Journal of Vascular Surgery, 71, 1921-1929. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
唐海双, 骆银, 左乔, 张洪剑, 黄清海, 刘建民. 基质金属蛋白酶在脑血管疾病中的研究进展[J]. 第二军医大学学报, 2020, 41(8): 876-879.
|
|
[36]
|
Visse, R. and Nagase, H. (2003) Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Circulation Research, 92, 827-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
左尚维, 郭伟. 基质金属蛋白酶的基因多态性与腹主动脉瘤关联的研究进展[J]. 解放军医学院学报, 2014, 35(12): 1278-1281.
|
|
[38]
|
Salarian, M., Ghim, M., Toczek, J., Han, J., Weiss, D., Spronck, B., et al. (2023) Homeostatic, Non-Canonical Role of Macrophage Elastase in Vascular Integrity. Circulation Research, 132, 432-448. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Benson, T.W., Pike, M.M., Spuzzillo, A., Hicks, S.M., Ali, S., Pham, M., et al. (2024) Soluble Glycoprotein VI Predicts Abdominal Aortic Aneurysm Growth Rate and Is a Novel Therapeutic Target. Blood, 144, 1663-1678. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Di Cera, E. (2008) Thrombin. Molecular Aspects of Medicine, 29, 203-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sundermann, A.C., Saum, K., Conrad, K.A., Russell, H.M., Edwards, T.L., Mani, K., et al. (2018) Prognostic Value of D-Dimer and Markers of Coagulation for Stratification of Abdominal Aortic Aneurysm Growth. Blood Advances, 2, 3088-3096. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Fernandez-Alonso, S., Martinez-Aguilar, E., Ravassa, S., Orbe, J., Paramo, J.A., Fernandez-Alonso, L., et al. (2022) Hemostatic Biomarkers and Volumetry Help to Identify High-Risk Abdominal Aortic Aneurysms. Life, 12, Article No. 823. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Maroney, S.A. and Mast, A.E. (2015) New Insights into the Biology of Tissue Factor Pathway Inhibitor. Journal of Thrombosis and Haemostasis, 13, S200-S207. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Khan, H., Zamzam, A., Shaikh, F., Saposnik, G., Mamdani, M. and Qadura, M. (2025) Investigating Tissue Factor Pathway Inhibitor and Other Protease and Protease Inhibitors and Their Association with Major Adverse Aortic Events in Patients with Abdominal Aortic Aneurysm. Research and Practice in Thrombosis and Haemostasis, 9, Article ID: 102645. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, B., Khan, H., Shaikh, F., Zamzam, A., Abdin, R. and Qadura, M. (2024) Identification and Evaluation of Blood-Based Biomarkers for Abdominal Aortic Aneurysm. Journal of Proteome Research, 23, 2279-2287. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bao, Y., Chen, J., Han, X., He, Y., Yang, T., Shi, X., et al. (2025) Calbindin 2 as a Novel Biomarker and Therapeutic Target for Abdominal Aortic Aneurysm: Integrative Analysis of Human Proteomes and Genetics. Journal of the American Heart Association, 14, e039195. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
王佳贺. 前言——脂蛋白相关磷脂酶A2在老年常见慢性疾病中的研究进展[J]. 实用老年医学, 2020, 34(10): 997-998.
|
|
[48]
|
Huang, F., Wang, K. and Shen, J. (2019) Lipoprotein‐Associated Phospholipase A2: The Story Continues. Medicinal Research Reviews, 40, 79-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Acosta, S., Taimour, S., Gottsäter, A., Persson, M., Engström, G., Melander, O., et al. (2017) Lp-PLA2 Activity and Mass for Prediction of Incident Abdominal Aortic Aneurysms: A Prospective Longitudinal Cohort Study. Atherosclerosis, 262, 14-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yan, H., Hu, Y., Lyu, Y., Akk, A., Hirbe, A.C., Wickline, S.A., et al. (2025) Augmented Expression of Superoxide Dismutase 2 Mitigates Progression and Rupture of Experimental Abdominal Aortic Aneurysm. Theranostics, 15, 4016-4032. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Li, T., Yang, C., Yang, J., Jing, J. and Ma, C. (2023) Elevated Triglyceride-Glucose Index Predicts Mortality Following Endovascular Abdominal Aortic Aneurysm Repair. Frontiers in Nutrition, 10, Article ID: 1116425. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tan, Q., Nie, Z., Huang, Q., Zhu, Y., Chen, C. and Feng, Y. (2025) Triglyceride-Glucose Index and Risk of Abdominal Aortic Aneurysm: A Large-Scale Prospective Cohort Study. Diabetology & Metabolic Syndrome, 17, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Turton, E.P.L., Scott, D.J.A., Delbridge, M., Snowden, S. and Kester, R.C. (2000) Ruptured Abdominal Aortic Aneurysm: A Novel Method of Outcome Prediction Using Neural Network Technology. European Journal of Vascular and Endovascular Surgery, 19, 184-189. [Google Scholar] [CrossRef] [PubMed]
|