新型胰岛素抵抗评价指标在代谢性疾病中的应用及预测潜力
Application and Predictive Potential of Novel Insulin Resistance Assessment Indices in Metabolic Diseases
摘要: 代谢性疾病以糖、脂、蛋白质及嘌呤等物质代谢异常为特征,涵盖高血压、高血糖、高血脂、脂肪肝、痛风及心血管疾病等。胰岛素抵抗(IR)被广泛认为是贯穿此类疾病发生发展的核心病理机制,早期干预IR对阻断代谢紊乱进程至关重要。近年来,多种基于常规检测参数的新型IR评价指标因其便捷性和良好的预测效能受到关注,如甘油三酯葡萄糖指数(TyG)、甘油三酯葡萄糖–体质指数(TyG-BMI)、TyG-腰围指数(TyG-WC)、TyG-腰高比(TyG-WHtR)及甘油三酯/高密度脂蛋白胆固醇比值(TG/HDL-C)等。本文旨在综述这些新型IR评价指标在各类代谢性疾病中的应用及预测潜力,为代谢性疾病早期识别、风险预警及预后评估提供理论依据和参考。
Abstract: Metabolic diseases are characterized by disorders in the metabolism of carbohydrates, lipids, proteins, purines, and related substances, encompassing conditions such as hypertension, hyperglycemia, dyslipidemia, fatty liver disease, gout, and cardiovascular diseases. Insulin resistance (IR) is widely recognized as a core pathophysiological mechanism underlying the development and progression of these disorders. Early intervention targeting IR is critical for halting the cascade of metabolic dysregulation. In recent years, novel IR assessment indicators derived from routine clinical parameters—such as the triglyceride-glucose index (TyG), TyG-body mass index (TyG-BMI), TyG-waist circumference (TyG-WC), TyG-waist-to-height ratio (TyG-WHtR), and triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C)—have garnered significant attention due to their accessibility and robust predictive utility. This review aims to summarize the application and predictive potential of these novel IR assessment indices across various metabolic diseases, thereby providing a theoretical foundation and reference for early identification, risk warning, and prognosis evaluation of metabolic disorders.
文章引用:郑莹莹, 裴萌萌, 程丽霞. 新型胰岛素抵抗评价指标在代谢性疾病中的应用及预测潜力[J]. 临床医学进展, 2025, 15(12): 2174-2184. https://doi.org/10.12677/acm.2025.15123641

1. 引言

代谢性疾病是一组由糖类、脂质、蛋白质及嘌呤等物质代谢紊乱引起的病理状态,核心病理机制涉及胰岛素抵抗(Insulin Resistance, IR)、慢性炎症反应及多器官功能障碍[1]。该类疾病涵盖高血压、2型糖尿病(Type 2 Diabetes Mellitus, T2DM)、高脂血症、高尿酸血症、代谢相关脂肪性肝病(Metabolic Dysfunction Associated Steatotic Liver Disease, MASLD)及肥胖症等常见临床实体[2]。值得注意的是,上述疾病不仅是独立存在的健康威胁,更可通过协同作用显著增加心血管疾病(Cardiovascular Disease, CVD)、过早全因死亡、功能障碍性残疾以及恶性肿瘤的发病风险[3]-[7]。全球疾病负担研究数据显示,2000至2019年间各类代谢性疾病的流行率呈现持续性攀升,已构成全球公共卫生系统面临的重大挑战及临床诊疗中的核心难题[2]

胰岛素抵抗(IR)是指靶器官或组织对胰岛素生物效应的敏感性及反应性显著降低的病理生理状态[8],已被证实为高血压、2型糖尿病、代谢相关脂肪性肝病等代谢性疾病发生发展的共同病理枢纽[2]。肥胖作为IR的关键诱因,其简易评估指标——体质指数(Body Mass Index, BMI)、腰围(Waist Circumference, WC)及腰高比(Waist-to-Height Ratio, WHtR)因操作便捷、成本低廉的特点,已成为临床实践中评估代谢风险的基础工具[9]。当前IR评估的金标准高胰岛素–正葡萄糖钳夹技术(Hyperinsulinemic-Euglycemic Clamp, HEC)及常用替代指标胰岛素稳态模型评估(Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) [10],因存在操作复杂、耗时、昂贵、需特殊设备等局限,难以在群体流行病学研究及基层临床推广。

近年研究发现,多种基于常规代谢参数的新型IR替代指标具有强预测效度与临床可行性。累积证据表明,这些指标对代谢性疾病的发生风险分层、病程监测及预后评估具有显著价值。本综述将系统比较不同新型IR评价指标的方法学特性、预测效能及临床应用场景,为优化代谢性疾病的早期筛查与精准干预提供循证依据。

2. 新型IR评价指标概述

与传统IR评估方法(如HEC钳夹技术或HOMA-IR)依赖特殊检测或复杂计算不同,新型IR评价指标通过整合常规生化参数(如空腹甘油三酯、血糖、高密度脂蛋白胆固醇)与基础人体测量学指标(如体重指数、腰围、腰高比),构建出可量化胰岛素敏感性的复合指数。

2.1 甘油三酯–葡萄糖指数(Triglyceride-Glucose Index, TyG Index)

由Simental-Mendia等学者于2008年首次提出[11],其基于空腹甘油三酯(TG)与空腹血糖(FPG)两项常规代谢参数构建胰岛素抵抗评价模型,直接反映了体内脂毒性与糖毒性之间的协同作用,计算公式为:TyG = Ln [TG (mg/dL) × FPG (mg/dL)/2]。研究表明:TyG指数的升高与过氧化物酶体增殖物激活受体(PPAR)通路的失调相关,TG的升高抑制PPAR-α的活性,进而减少脂肪酸的氧化。此外,高血糖激活碳水化合物反应元件结合蛋白(ChREBP),促进脂肪生成基因的表达,进一步加剧脂肪的异位沉积,最终导致肝脏脂肪变性、心肌脂质堆积和骨骼肌内脂质沉积等病理表现。异位脂肪的沉积通过脂毒性直接损害胰岛素受体底物1 (IRS-1)的酪氨酸磷酸化,导致胰岛素信号传导的障碍,形成一个恶性循环,加重胰岛素抵抗的程度[12] [13]。临床验证显示,TyG诊断IR的效能显著:与金标准HEC相比,其曲线下面积(AUC)达0.93 (95% CI: 0.90~0.96),敏感性与特异性分别为96.5%和85.0% (临界值:4.68) [14];相较于胰岛素稳态模型HOMA-IR,TyG无需检测胰岛素浓度,规避了胰岛素测定标准化差异导致的偏倚,且具备操作简易性(仅需基础血脂、血糖检测)与成本效益优势,成为兼具诊断准确性与应用便利性的IR评价工具[15] [16]

2.2. 甘油三酯葡萄糖–体质指数(Triglyceride-Glucose-Body Mass Index, TyG-BMI)

由Er等学者于2016年首次提出[17],该指标通过整合基础代谢参数(空腹甘油三酯TG、空腹血糖FPG)与人体测量学指标(体质指数BMI),构建复合胰岛素抵抗评价模型,能够有效反映代谢负荷与脂肪储量的状态,计算公式为:TyG-BMI = TyG × BMI。研究表明,较高的BMI会加重脂质溢出效应,从而导致饱和脂肪酸在胰腺β细胞中的沉积,这种沉积会诱导β细胞的凋亡,产生所谓的脂毒性[18]。TyG-BMI不仅能够捕捉到白色脂肪组织功能失调与代谢异常的双重危害,更是优于单一组分指标,能够为临床提供更为精准的胰岛素抵抗评估[19]。韩国大型横断面研究(n = 11,149)表明,TyG-BMI预测IR的ROC曲线下面积(AUC = 0.748)优于TyG (AUC = 0.690)、TyG-WC (AUC = 0.731)及TyG-WHtR (AUC = 0.733)。国内研究证实,TyG-BMI在预测心血管–肾脏–代谢综合征(CKM)风险方面具有更方便和更有效的预测效能[20]。该指标通过纳入BMI强化了代谢负荷评估,成为预测代谢性疾病风险的优化工具。

2.3. 甘油三酯葡萄糖–腰围指数(Triglyceride Glucose-Waist Circumference Index, TyG-WC)

是一项综合评估IR和内脏脂肪蓄积的复合指标,该指标整合了糖脂代谢紊乱与中心性肥胖双重病理信号,更加敏感地识别代谢相关疾病的高危人群,其计算公式:TyG-WC = TyG × WC。腰围作为内脏脂肪的衡量指标,不仅反映了脂肪的沉积状况,还与多种代谢紊乱密切相关。内脏脂肪其具有独特的内分泌功能,研究表明,内脏脂肪细胞的脂解速率较高,导致门静脉中的游离脂肪酸浓度显著升高,这种升高会直接损害肝脏的胰岛素清除和代谢功能[21]。高浓度的游离脂肪酸不仅影响胰腺的胰岛素分泌,还可能引起肝脏的脂肪变性,最终导致代谢性疾病的发生。一项基于美国国家健康和营养调查(NHANES, n = 11,937)研究表明,TyG-WC对总体心血管疾病关联性最高,ROC曲线显示比TyG具有更稳健的诊断效果[22]。天坛医院的研究(n = 4627)比较了TyG改良指标对冠状动脉慢血流现象(CSFP)的预测效能,TyG-WC预测性能(AUC = 0.714)优于TyG-BMI (0.655)和TyG-WHR (0.705),亚组分析TyG-WC在不同年龄、BMI、吸烟史患者中均与CSFP显著相关[23]

2.4. 甘油三酯葡萄糖–腰高比指数(Triglyceride Glucose-Waist-to-Height Ratio Index, TyG-WHtR)

是整合TyG与腰围身高比(WHtR)评价IR和内脏脂肪蓄积协同效应的一项复合代谢指标,其计算公式:TyG-WHtR = TyG × 腰围WC/身高Ht。WHtR作为一种评估中心性肥胖的指标,其生物学意义在于它通过校正身高差异,更准确地反映腹腔内脂肪的体积。研究表明,WHtR与腹腔内脂肪体积之间存在显著相关性,这种相关性通过计算机断层扫描得到了验证,显示其与内脏脂肪面积的相关性优于仅使用腰围作为指标[24]。TyG-WHtR为代谢性疾病早期风险分层提供了简便工具,尤其是在高血压和心血管事件预测中的效能已得到验证[24] [25]

2.5. 甘油三酯与高密度脂蛋白胆固醇比值(Triglyceride to High-Density Lipoprotein Cholesterol Ratio, TG/HDL-C)

整合了导致动脉粥样硬化的正向因子(TG)与保护性负向因子(HDL-C),量化了脂质代谢失衡的严重程度,是一项综合反映脂质代谢紊乱、IR及心血管风险的复合指标,在冠心病预警和心衰分层中的应用价值已获多项研究支持[26],其计算公式:TG/HDL-C = TG (mg/dL)/HDL-C (mg/dL)。高TG水平通常与富含TG的极低密度脂蛋白(VLDL)合成的增加有关,同时伴随脂蛋白脂酶(LPL)活性的降低,这种现象使得TG的清除效率下降。此外,低的高密度脂蛋白胆固醇(HDL-C)水平则指示胆固醇逆转运的障碍,尤其是与转运体ABCA1和ABCG1的功能受损相关联,这进一步加重了代谢紊乱的风险。因此,TG/HDL-C比值的升高不仅反映了脂质代谢的异常,也可能是心血管疾病风险增加的重要生物标志物[27]

2.6. 胰岛素抵抗代谢指数(Metabolic Score for Insulin Resistance, METS-IR)

是通过整合糖代谢(FPG)、脂代谢(TG、HDL-C)及身体质量指数(BMI)多维病理指标,每个组分的选择依据和权重分配反映了其与胰岛素敏感性之间的密切关系,量化糖脂交互紊乱与肥胖协同效应,无需直接测量胰岛素水平,即可评估IR严重程度的复合指标,反映外周组织胰岛素敏感性下降和代谢失衡状态,在预测心血管事件及炎症性疾病管理中应用价值已获循证支持[28]。计算公式:METS-IR = Ln[2*FPG (mg/dL) + TG (mg/dL)]*BMI (kg/m2)/Ln[HDL-C (mg/dL)]。

3. 新型IR评价指标与代谢性疾病的相关研究

3.1. 高血压

IR与高血压之间存在复杂且相互交织的病理生理联系,常共存于代谢综合征患者中(见表1),相互促进,形成恶性循环,增加心血管疾病风险。其核心机制涉及高胰岛素血症介导内皮依赖性血管舒张功能受损、交感神经系统(SNS)异常激活、肾素–血管紧张素–醛固酮系统(RAAS)对肾脏Na+重吸收的异常调控、氧化应激与炎症等[29]。基于中国CHARLS数据库的4年前瞻性队列(n = 2825)研究显示,TyG指数每增加1个单位,高血压前期转化为高血压的风险增加45% (OR = 1.45);遗传学孟德尔分析(MR)分析192个TyG相关SNP证实TyG与高血压存在因果关联[30]。同样基于CHARLS数据库中45岁以上人群的横断面研究(n = 10,738)显示:METS-IR每升1单位,7年高血压风险增加71% (OR = 1.71),横断面OR达3.48 (95%CI: 2.87~4.21) [31]

3.2. 糖尿病

中国糖尿病患病率从2013年的10.9%攀升至2018-2019年的12.4%,尤其是肥胖人群风险增幅显著[35]。IR作为糖尿病核心病理机制,贯穿糖代谢异常全过程,其核心机制涉及胰岛素信号通路(IRS/PI3K/Akt)障碍、组织(肝脏、脂肪组织、肌肉)特异性糖脂毒性及β细胞失代偿等[36] [37]。IR在糖尿病诊断前数年即可检测,是预防转化的关键窗口期[38]。新型IR评价指标整合了脂毒性(TG)与糖毒性(FPG),优化IR评估。PURE研究(n = 141,243)表明TyG指数较高组糖尿病风险增加99% (HR = 1.99) [38]。一项为期5年的国内队列研究(n = 25,279)显示,糖尿病前期患者TyG-BMI > 196.46时,与糖尿病前期恢复到正常血糖的概率显著负相关,提示其为干预阈值[39]。同样,METS-IR也可有效预测糖尿病进展(HR = 2.11)和糖尿病前期血糖正常化逆转(HR = 0.57, n = 15,424) [40]。基于日本NAGALA队列(n = 15,453) 12年随访数据,发现TyG-WHtR在长期2型糖尿病风险预测性能全面超越其他指标(AUC = 0.786, HR = 2.99) [41]。IR新型指标通过量化糖脂代谢–肥胖–炎症的协同损伤,也为糖尿病并发症防控(如糖尿病视网膜病变[42]、糖尿病肾病[43])提供了无创工具。

Table 1. Application of novel IR indicators in hypertension

1. IR新型指标在高血压中的应用

指标

预测事件

结局指标

适用场景

TyG-BMI

夜间高血压

AUC = 0.618

非杓型血压预测[32]

TyG-WC

高血压诊断效果最优

AUC = 0.665

基层新发高血压筛查[33]

TyG-WHtR

心血管风险

AUC = 0.718

高血压心血管疾病初级预防[33]

TG/HDL-C

CVD、中风风险

HR = 1.31、1.67

高血压较高CVD、中风预测[34]

METS-IR

7年高血压风险

OR = 1.71

中长期风险预测[31]

3.3. 代谢功能障碍相关脂肪性肝病(MASLD)

MASLD (又称MAFLD,原称非酒精性脂肪性肝病)全球发病率呈现显著上升趋势,从2005年的25.5%增至2016年后的37.8%,现已成为全球范围内最普遍的慢性肝病[44],与肥胖和糖尿病全球化紧密相关,尤其是在2型糖尿病中高达65%的患者合并MASLD [45]。IR作为MASLD的核心病理机制,两者的病理生理联系已从简单的线性因果发展为多器官对话的“多重打击”网络模型,涉及遗传易感性、肝脏选择性胰岛素抵抗、肝脏脂肪变性和肝纤维化、氧化应激和炎症、肠道菌群以及环境因素等[46] [47]。近年来MASLD低龄化趋势凸显早期代谢干预的紧迫性,多项研究证实IR新型标志物与脂肪性肝病之间存在密切关联,为MASLD的无创诊断、风险分层及治疗靶点选择提供了临床研究新方向。基础TyG指数可反映肝脏IR,已被证实与新发MASLD及肝脏脂肪变性显著相关[48],且预测MASLD患者心血管事件风险优于传统指标(AUC > 0.72) [49]。基于中国非肥胖(BMI < 25.0 kg/m2)成年人(n = 6809)的横断面研究,TyG-BMI是识别非肥胖NASLD的有效指标(AUC = 0.835) [50]。基于NHANES数据库(2003~2018, n = 8753, ≥20岁)研究证实TyG-BMI与MASLD患者全因死亡率和CVD死亡率存在U型关联,是强效预测指标[51]。韩国国家健康保险服务数据库(NHIS)队列研究(n = 66,334)显示,METS-IR持续低水平者肝脏相关结局(肝癌、肝硬化)风险增加,可能与瘦型MASLD或晚期纤维化代谢状态改变相关[52]

3.4. 高尿酸血症(Hyperuricemia, HUA)

HUA是一种由嘌呤代谢紊乱导致血尿酸水平升高的代谢性疾病,不仅是痛风的直接病因,更与糖尿病、高血压、心血管疾病等多种代谢性疾病密切相关。近年来,HUA发病率在全球范围内呈现显著上升及年轻化趋势;中国HUA总体患病率达13.3%,使其成为继糖尿病之后的又一常见代谢性疾病[53]。IR在HUA的发病机制中扮演重要角色,可通过诱导全身性炎症反应,进而引起肾脏损伤并减少尿酸排泄,促进HUA的发生与发展。因此,早期识别和干预IR对于预防HUA及其相关并发症具有重要意义。多项研究聚焦于探索新型IR生物标志物与HUA风险的关联,为HUA的风险评估提供了新视角。横断面研究[54]及队列研究[55]一致表明,基础TyG指数与HUA发生风险呈正相关。整合了身体信息的TyG衍生指标(TyG-BMI、TyG-WC和TyG-WHtR),也均与HUA风险显著正相关[55]。值得注意的是,TyG-BMI在预测HUA风险方面可能优于基础TyG指数,TyG-WHtR能显著增强其与女性HUA风险的相关性[55],但在男性中未观察到类似效应,这提示基于TyG-WHtR复合标志物可能有助于特定人群(如女性)的HUA危险分层和针对性预防。Liu等的研究评估了TyG指数、TG/HDL-C比值、METS-IR与HUA的关系,发现三者均与血清尿酸水平呈正相关[56],然而,亚组分析揭示了一个关键差异:当按性别和体质指数(BMI)进行分层时,仅TG/HDL-C比值和TyG指数与HUA风险维持显著相关性,而METS-IR在此分层分析中的关联性未达到统计学意义[56],这一发现提示不同IR标志物在不同人群亚组中的预测价值可能存在差异。

3.5. 心血管疾病(CVD)

随着人口老龄化进程加速,CVD的发病率在我国持续攀升,已成为首要的健康威胁和死亡原因。IR不仅是CVD主要危险因素(如糖尿病、高血压、肥胖)的共同病理基础,其本身也被确认为CVD的独立危险因素。近年来,新型IR评价指标在CVD风险评估、预后预测及疾病严重程度分层中的价值日益受到关注。前瞻性研究表明,TyG指数的动态变化可独立预测一般人群未来发生CVD的风险,提示长期监测TyG变化有助于早期识别高危个体[57]。在高危CVD人群中,TyG指数升高(≥9.83)是全因死亡(HR = 1.86)和心血管死亡(HR = 2.41)风险显著增加的强力预测因子;亚组分析进一步证实,TyG指数在绝大多数亚组中对全因死亡率的预测能力稳健[58]。大型队列(CHARLS)数据分析显示,累积平均TyG-BMI水平升高与CVD发病率呈显著递增趋势;TyG-BMI每增加一个标准差,CVD风险增加16.8%,且随四分位数(Q1~Q4)升高风险梯度上升[59]。在急性心肌梗死(AMI)患者中,高TyG指数水平与不良心血管事件(MACE)风险增加显著相关,提示其可作为此类患者心血管结局的预测指标[60]。针对H型高血压合并冠心病患者的回顾性研究发现,TyG指数处于较高三分位的患者,其术后MACE累积风险显著升高,表明TyG指数是此类人群MACE的潜在独立预测因子[61]。综合分析显示,包括TyG指数、TyG-BMI、TyG-WC、TyG-WHtR及TG/HDL-C比值在内的多种新型IR指标均与心脏代谢共病(CMM)相关,其中,TyG-WC和TyG-WHtR在两种或两种以上CMM的发生、发展和预防中可能扮演关键作用[62]。TG/HDL-C比值、TyG指数和METS-IR均是预测冠状动脉疾病(CAD)存在及其严重程度的重要指标,且METS-IR展现出最高的预测价值[63]。深入分析CAD严重程度(多支vs.单支血管病变)发现,METS-IR、TyG指数、TyG-BMI及TG/HDL-C比值均与病变严重程度显著相关,其中TyG-BMI表现出最高的敏感性,而METS-IR则具有最高的特异性[64]

4. 临床应用考量与挑战

尽管新型IR评价指标在代谢性疾病的早期识别、风险分层和预后评估中展现出良好的临床应用前景,其在临床实践的推广应用仍面临诸多现实挑战,包括在不同人群和不同疾病状态下的阈值确定以及动态变化的解读等问题,这些争议和挑战表明,进一步的研究尚需围绕新型指标的临床有效性、适用性及其在代谢性疾病管理中的实际应用价值展开。

4.1. 不同临床场景下的指标选择策略

新型IR指标适用场景各异,临床实践中需根据目标疾病、本地检测条件、人群特征及评估目的制定个性化的指标应用路径。

4.1.1. 筛查场景

在社区人群的大规模筛查中,各种IR指标的可行性是一个关键因素,TyG指数和TG/HDL-C因其仅依赖常规血脂、血糖检测,操作简便,能够有效提高筛查率,降低医疗成本,适合作为初步IR筛查工具。

4.1.2. 风险评估与分层

在代谢性疾病发病风险的预测中,若需综合评估肥胖与代谢异常,尤其是中心性肥胖相关风险,TyG-WC和TyG-WHtR表现更优,适用于心血管疾病和MASLD的风险分层。

4.1.3. 预后与病程检测

预后评估中的指标选择应基于特定病情和人群中的表现,结合患者的整体临床特征,以实现有效的干预措施。对于已确诊糖尿病或CVD的患者,METS-IR和TyG-BMI因整合多维度代谢参数,在预测并发症和长期结局方面更具优势。

4.2. 诊断阈值标准化问题与解决方案

在代谢性疾病的诊断中,阈值的设定对于评估胰岛素抵抗及其相关疾病的严重程度至关重要。目前,各类新型IR指标的阈值多来源于单一地区或特性人群的研究,缺乏跨区域、多中心验证,故尚未建立统一、种族特异性的诊断截断值,极大限制了其标准化应用。

为了实现诊断阈值的标准化,大样本多中心研究显得尤为重要,通过大规模的多中心研究,可以收集不同人群的数据,从而更准确地确定使用于广泛人群的最佳阈值;这类研究设计应考虑到样本的多样性,包括种族、性别和年龄等因素,以确保研究结果的广泛适用性。结合机器学习与大数据分析,采用受试者工作特征曲线(ROC)比较不同阈值下的敏感性和特异性来找到最适合的阈值。此外,建立人种特异性参考值的可行性也值得探讨,在动态阈值与固定阈值的适用场景中,动态阈值可能更适合于存在显著生理变化的患者群体,而固定阈值则适合于代谢状态相对稳定的个体,通过两种方法结合,可更有效地应对临床实践中的复杂情况。

4.3. 指标动态检测的临床意义与解读

动态监测在代谢性疾病的管理中具有重要的生物学意义,尤其是在区分短期波动与长期趋势方面,短期波动常常涉及患者日常生活中的各种因素,如饮食、运动和药物治疗的变化;相对而言,长期趋势则更能反映患者的整体健康状况和疾病进展,通过定期检查IR指标,可以识别患者在生活方式干预或药物治疗后的长期改善或恶化趋势。因此,临床上应重视短期波动与长期趋势的结合,制定更为合理的治疗方案,并进行个性化的干预措施,这对于提高治疗效果、降低并发症发生率具有重要意义。

动态监测数据的整合分析可以为代谢性疾病的管理提供更为全面的视角,通过多维度数据整合,建立个体化基线值,临床医生能够将不同监测指标结合临床症状及其他生化指标进行综合分析。例如,结合血糖水平、胰岛素敏感性、体重变化和生活方式干预效果,可以为患者提供更为准确的健康评估。此外,利用机器学习等先进方法,可以挖掘监测数据中潜在的模式和趋势,可以区分生理波动与病理进展,从而为临床决策提供依据。

4.4. 与经典风险模型的整合应用

将新型IR指标侧重代谢病理生理,传统评估心血管疾病风险模型(Framingham风险评分,简称FRS)侧重于临床终点,二者整合可覆盖从代谢异常到临床事件的全程风险,有望提升整体风险评估的精准度。FRS在某些情况下可能存在盲区,特别是年轻人群和非典型心血管风险因素的识别上,会低估其心血管风险,而新型IR指标则能更好地识别这一风险。例如,TyG指数与心血管疾病的发生呈显著正相关,且其在识别心血管残余风险方面具有更高的灵敏性和特异性,通过与FRS整合,可以提升整体风险评估准确性。

在整合应用时,权重分配是一个重要的研究方向。如何根据人群特征、年龄、性别及其他潜在的风险因素合理地分配不同指标的权重,将显著影响整合模型的预测能力。需要采用机器学习算法,优化权重分配,使得整合模型在不同人群中更具适应性和准确性。

5. 总结与展望

新型IR评价指标(TyG系列、TG/HDL-C、METS-IR等)突破传统胰岛素检测限制,通过常规代谢参数(甘油三酯、血糖、腰围、BMI)实现IR“低成本、易获取、无创性”的便捷评估,其在代谢性疾病早期筛查、风险评估及流行病学研究中展现出重要价值,并为个体化健康管理提供了新路径。多项队列研究证实,上述指标与高血压、糖尿病、MASLD、HUA及CVD风险显著相关。然而,目前仍存在阈值标准化缺失、动态监测局限、机制研究不足等挑战,影响临床大规模推广。未来亟需解析新型IR评价指标与代谢性疾病的关键分子通路并筛选潜在治疗靶点,开发结合基因组数据和动态指标监测的多模态整合模型,建立种族特异性诊断截断值,实现个体化代谢风险预警。新型IR评价指标革新了代谢风险评估范式,未来需通过机制研究突破与高质量临床验证,推动其从筛查工具向精准治疗导航系统转化。

基金项目

潍坊市卫健委科研项目(WFWSJK-2024-018);山东省医药卫生科技项目(编号:202403060486)。

NOTES

*通讯作者。

参考文献

[1] Xiao, M., Zhou, N., Tian, Z. and Sun, C. (2025) Endogenous Metabolites in Metabolic Diseases: Pathophysiologic Roles and Therapeutic Implications. The Journal of Nutrition, 155, 1627-1643. [Google Scholar] [CrossRef] [PubMed]
[2] Chew, N.W.S., Ng, C.H., Tan, D.J.H., Kong, G., Lin, C., Chin, Y.H., et al. (2023) The Global Burden of Metabolic Disease: Data from 2000 to 2019. Cell Metabolism, 35, 414-428. [Google Scholar] [CrossRef] [PubMed]
[3] Toh, J., Pan, X.H., Tay, P., et al. (2022) A Meta-Analysis on the Global Prevalence, Risk Factors and Screening of Coronary Heart Disease in Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 20, 2462-2473. [Google Scholar] [CrossRef] [PubMed]
[4] Golabi, P., Paik, J.M., AlQahtani, S., Younossi, Y., Tuncer, G. and Younossi, Z.M. (2021) Burden of Non-Alcoholic Fatty Liver Disease in Asia, the Middle East and North Africa: Data from Global Burden of Disease 2009-2019. Journal of Hepatology, 75, 795-809. [Google Scholar] [CrossRef] [PubMed]
[5] Stein, C., Vos, T., Abbasi-Kangevari, M., et al. (2022) Diabetes Mortality and Trends before 25 Years of Age: An Analysis of the Global Burden of Disease Study 2019. The Lancet Diabetes & Endocrinology, 10, 177-192.
[6] Chew, N.W., Figtree, G.A., Kong, G., Vernon, S., Muthiah, M., Ng, C.H., et al. (2022) Hepatic Steatosis and Advanced Fibrosis Are Independent Predictors of Mortality in Acute Myocardial Infarction without Standard Modifiable Risk Factors. Diabetes, Obesity and Metabolism, 24, 2454-2458. [Google Scholar] [CrossRef] [PubMed]
[7] Kong, G., Chin, Y.H., Chong, B., Goh, R.S.J., Lim, O.Z.H., Ng, C.H., et al. (2023) Higher Mortality in Acute Coronary Syndrome Patients without Standard Modifiable Risk Factors: Results from a Global Meta-Analysis of 1,285,722 Patients. International Journal of Cardiology, 371, 432-440. [Google Scholar] [CrossRef] [PubMed]
[8] Armutcu, F. and McCloskey, E. (2024) Insulin Resistance, Bone Health, and Fracture Risk. Osteoporosis International, 35, 1909-1917. [Google Scholar] [CrossRef] [PubMed]
[9] Neeland, I.J., Lim, S., Tchernof, A., Gastaldelli, A., Rangaswami, J., Ndumele, C.E., et al. (2024) Metabolic Syndrome. Nature Reviews Disease Primers, 10, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
[10] Domingues-Hajj, P.M.D.S., Gomes, P.M., Magalhães, P.K.R. and Maciel, L.M.Z. (2024) Assessment of Cardiometabolic Risk Factors and Insulin Sensitivity by Hyperinsulinemic-Euglycemic Clamp in Resistance to Thyroid Hormone β Syndrome. Thyroid, 34, 1038-1046. [Google Scholar] [CrossRef] [PubMed]
[11] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
[12] Gajjar, M., Mishra, M.K., Shah, T.J., Saiyad, S.S. and Rajput, J.P.S. (2025) Triglyceride-Glucose Index and Atherogenic Index as Alternative Biomarkers for Glycemic Control in Type 2 Diabetes Mellitus. Cureus, 17, e81550. [Google Scholar] [CrossRef] [PubMed]
[13] Shan, X.F., Yang, L. and Gao, X.M. (2024) Association between Triglyceride Glycemic Index and Ejection Fraction Preserved Heart Failure in Hypertensive Patients. Peer Journal, 12, e18220. [Google Scholar] [CrossRef] [PubMed]
[14] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
[15] Kang, B., Yang, Y., Lee, E.Y., Yang, H.K., Kim, H., Lim, S., et al. (2017) Triglycerides/Glucose Index Is a Useful Surrogate Marker of Insulin Resistance among Adolescents. International Journal of Obesity, 41, 789-792. [Google Scholar] [CrossRef] [PubMed]
[16] Adams-Huet, B., Zubirán, R., Remaley, A.T. and Jialal, I. (2024) The Triglyceride-Glucose Index Is Superior to Homeostasis Model Assessment of Insulin Resistance in Predicting Metabolic Syndrome in an Adult Population in the United States. Journal of Clinical Lipidology, 18, e518-e524. [Google Scholar] [CrossRef] [PubMed]
[17] Er, L.K., Wu, S., Chou, H.H., et al. (2016) Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLOS ONE, 11, e0149731. [Google Scholar] [CrossRef] [PubMed]
[18] Cai, S., Xing, H., Wang, Y., Yang, W., Luo, H. and Ye, X. (2025) The Association between Triglyceride Glucose-Body Mass Index and Overall Survival in Postoperative Patient with Lung Cancer. Frontiers in Endocrinology, 16, Article 1528644. [Google Scholar] [CrossRef] [PubMed]
[19] Bandeira, C.P., Schaan, B.D. and Cureau, F.V. (2025) Association of BMI and WC for Insulin Resistance and Type 2 Diabetes among Brazilian Adolescents. Jornal de Pediatria, 101, 30-37. [Google Scholar] [CrossRef] [PubMed]
[20] Li, W., Shen, C., Kong, W., Zhou, X., Fan, H., Zhang, Y., et al. (2024) Association between the Triglyceride Glucose-Body Mass Index and Future Cardiovascular Disease Risk in a Population with Cardiovascular-Kidney-Metabolic Syndrome Stage 0-3: A Nationwide Prospective Cohort Study. Cardiovascular Diabetology, 23, Article No. 292. [Google Scholar] [CrossRef] [PubMed]
[21] Mijangos-Trejo, A., Gómez-Mendoza, R., Ramos-Ostos, M.H., et al. (2024) Diagnostic Accuracy of the Triglyceride-Glucose Index (TyG), TyG Body Mass Index, and TyG Waist Circumference Index for Liver Steatosis Detection. Diagnostics, 14, Article 762. [Google Scholar] [CrossRef] [PubMed]
[22] Dang, K., Wang, X., Hu, J., Zhang, Y., Cheng, L., Qi, X., et al. (2024) The Association between Triglyceride-Glucose Index and Its Combination with Obesity Indicators and Cardiovascular Disease: NHANES 2003-2018. Cardiovascular Diabetology, 23, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
[23] Nan, J., Meng, S., Jia, R., Chen, W., Yang, X., Hu, H., et al. (2025) Comparison of Tyg and Modified Tyg Indices in Predicting Coronary Slow Flow Phenomenon. BMC Cardiovascular Disorders, 25, Article No. 340. [Google Scholar] [CrossRef] [PubMed]
[24] Huang, J., Chen, J., Pan, G., et al. (2025) Association between Triglyceride Glucose-Waist to Height Ratio (TyG-WHtR) and Hypertension in Adults Aged 18-60: A Cross-Sectional Study. BMC Cardiovascular Disorders, 25, Article No. 403. [Google Scholar] [CrossRef] [PubMed]
[25] Yang, C., Song, Y., Wang, X., Yang, Y., Zhou, Y., Wang, D., et al. (2024) Association of Hypertension with the Triglyceride-Glucose Index and Its Associated Indices in the Chinese Population: A 6-Year Prospective Cohort Study. The Journal of Clinical Hypertension, 26, 53-62. [Google Scholar] [CrossRef] [PubMed]
[26] Poochanasri, M., Lertsakulbunlue, S., Kookanok, C., Rangsin, R., Kaewput, W., Mungthin, M., et al. (2025) Triglyceride to High-Density Lipoprotein Ratio as a Predictor for 10-Year Cardiovascular Disease in Individuals with Diabetes in Thailand. Journal of Health, Population and Nutrition, 44, Article No. 147. [Google Scholar] [CrossRef] [PubMed]
[27] Lee, J., Ah Lee, Y., Yong Lee, S., Ho Shin, C. and Hyun Kim, J. (2022) Comparison of Lipid-Derived Markers for Metabolic Syndrome in Youth: Triglyceride/HDL Cholesterol Ratio, Triglyceride-Glucose Index, and Non-HDL Cholesterol. The Tohoku Journal of Experimental Medicine, 256, 53-62. [Google Scholar] [CrossRef] [PubMed]
[28] Aznar-Esquivel, A., Gómez-Bernal, F., García-González, M., Hernández-Diaz, M., Heras-Recuero, E., de Vera-González, A., et al. (2025) The Metabolic Score for Insulin Resistance (METS-IR), a Predictor of Cardiovascular Events, Relates to Disease Activity in Patients with Rheumatoid Arthritis. Diagnostics, 15, Article 861. [Google Scholar] [CrossRef] [PubMed]
[29] Sowers, J.R. (2004) Insulin Resistance and Hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 286, H1597-H1602. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, M., Teng, T., Zhang, N., Xu, J., Dong, Z., Jiao, Q., et al. (2025) Derivatives of the Triglyceride-Glucose Index and Their Association with Incident Hypertension in Prehypertensive Individuals: A 4-Year Cohort Study Augmented by Mendelian Randomization. Cardiovascular Diabetology, 24, Article No. 284. [Google Scholar] [CrossRef] [PubMed]
[31] Lai, W., Wang, L., Chen, X., Du, S., Wu, Y., Wu, L., et al. (2025) Association between Metabolic Score for Insulin Resistance and Hypertension in Middle-Aged and Older Adults: A Nationwide Cross-Sectional and Longitudinal Study. Aging Clinical and Experimental Research, 37, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
[32] 王志军, 张士博, 刘杰, 等. 高血压患者三酰甘油葡萄糖体质量指数与夜间高血压的相关性分析[J]. 中国全科医学, 2025, 28(18): 2212-2221.
[33] Miao, H., Zhou, Z., Yang, S. and Zhang, Y. (2024) The Association of Triglyceride-Glucose Index and Related Parameters with Hypertension and Cardiovascular Risk: A Cross-Sectional Study. Hypertension Research, 47, 877-886. [Google Scholar] [CrossRef] [PubMed]
[34] Huang, Y., Zhou, Y., Xu, Y., Wang, X., Zhou, Z., Wu, K., et al. (2025) Inflammatory Markers Link Triglyceride-Glucose Index and Obesity Indicators with Adverse Cardiovascular Events in Patients with Hypertension: Insights from Three Cohorts. Cardiovascular Diabetology, 24, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
[35] 中华医学会糖尿病学分会. 中国糖尿病防治指南(2024版) [J]. 中华糖尿病杂志, 2025, 17(1): 16-139.
[36] Yang, M., Wei, Y., Liu, J., Wang, Y. and Wang, G. (2025) Contributions of Hepatic Insulin Resistance and Islet β-Cell Dysfunction to the Blood Glucose Spectrum in Newly Diagnosed Type 2 Diabetes Mellitus. Diabetes & Metabolism Journal, 49, 883-892. [Google Scholar] [CrossRef] [PubMed]
[37] Chen, Y., Pang, W., Ma, G., Yan, Y., Xiao, Z., Chen, Y., et al. (2025) March5-Mediated Trim28 Degradation Preserves Islet β-Cell Function in Mice. Nature Communications, 16, Article No. 7073. [Google Scholar] [CrossRef] [PubMed]
[38] Lopez-Jaramillo, P., Gomez-Arbelaez, D., Martinez-Bello, D., Abat, M.E.M., Alhabib, K.F., Avezum, Á., et al. (2023) Association of the Triglyceride Glucose Index as a Measure of Insulin Resistance with Mortality and Cardiovascular Disease in Populations from Five Continents (PURE Study): A Prospective Cohort Study. The Lancet Healthy Longevity, 4, e23-e33. [Google Scholar] [CrossRef] [PubMed]
[39] Shao, Y., Hu, H., Cao, C., Han, Y. and Wu, C. (2024) Elevated Triglyceride-Glucose-Body Mass Index Associated with Lower Probability of Future Regression to Normoglycemia in Chinese Adults with Prediabetes: A 5-Year Cohort Study. Frontiers in Endocrinology, 15, Article 1278239. [Google Scholar] [CrossRef] [PubMed]
[40] Liu, D., Zhong, J., Xuan, W., et al. (2025) Predictive Value of MetS-IR for the Glucose Status Conversion in Prediabetes: A Multi-Center Retrospective Cohort Study. BMC Endocrine Disorders, 25, Article No. 162. [Google Scholar] [CrossRef] [PubMed]
[41] Dou, J.H., Guo, F.S., Guo, C., et al. (2025) Triglyceride Glucose-Waist Height Ratio Index Is a Promising and Robust Glucose and Lipid Metabolism Indicator for Predicting Long-Term Type 2 Diabetes: Insights from a Japanese Prospective Cohort Data from 12 Years. Diabetes Research and Clinical Practice, 227, Article 112398. [Google Scholar] [CrossRef] [PubMed]
[42] 延天美, 吴亚楠, 刘月影, 等. 甘油三酯葡萄糖指数联合肥胖指标与糖尿病视网膜病变的相关性[J]. 临床荟萃, 2024, 39(7): 612-619.
[43] Sun, Q., Zhao, M., Wang, X., Wang, J., Yang, Y., Liu, L., et al. (2025) The Predictive Value of Insulin Resistance Surrogates for Diabetic Kidney Disease in Type 2 Diabetes Mellitus. Diabetes Therapy, 16, 1649-1663. [Google Scholar] [CrossRef] [PubMed]
[44] Riazi, K., Azhari, H., Charette, J.H., Underwood, F.E., King, J.A., Afshar, E.E., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. [Google Scholar] [CrossRef] [PubMed]
[45] 雷偲艺, 连莉优, 郑明华. 《2025年亚太肝病学会临床实践指南: 代谢相关脂肪性肝病的诊断和管理》摘译与解读[J]. 临床肝胆病杂志, 2025, 41(6): 1043-1052.
[46] Bo, T., Gao, L., Yao, Z., Shao, S., Wang, X., Proud, C.G., et al. (2024) Hepatic Selective Insulin Resistance at the Intersection of Insulin Signaling and Metabolic Dysfunction-Associated Steatotic Liver Disease. Cell Metabolism, 36, 947-968. [Google Scholar] [CrossRef] [PubMed]
[47] Sakurai, Y., Kubota, N., Yamauchi, T. and Kadowaki, T. (2021) Role of Insulin Resistance in MAFLD. International Journal of Molecular Sciences, 22, Article 4156. [Google Scholar] [CrossRef] [PubMed]
[48] Liu, H., Chen, J., Qin, Q., Yan, S., Wang, Y., Li, J., et al. (2024) Association between Tyg Index Trajectory and New-Onset Lean NAFLD: A Longitudinal Study. Frontiers in Endocrinology, 15, Article 1321922. [Google Scholar] [CrossRef] [PubMed]
[49] Colantoni, A., Bucci, T., Cocomello, N., Angelico, F., Ettorre, E., Pastori, D., et al. (2024) Lipid-Based Insulin-Resistance Markers Predict Cardiovascular Events in Metabolic Dysfunction Associated Steatotic Liver Disease. Cardiovascular Diabetology, 23, Article No. 175. [Google Scholar] [CrossRef] [PubMed]
[50] Zhang, S., Du, T., Li, M., Jia, J., Lu, H., Lin, X., et al. (2017) Triglyceride Glucose-Body Mass Index Is Effective in Identifying Nonalcoholic Fatty Liver Disease in Nonobese Subjects. Medicine, 96, e7041. [Google Scholar] [CrossRef] [PubMed]
[51] Gao, X., Chen, T., Zhou, F., Sun, Y., Zhang, J., Li, X., et al. (2025) The Association between Different Insulin Resistance Surrogates and All-Cause Mortality and Cardiovascular Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Cardiovascular Diabetology, 24, Article No. 200. [Google Scholar] [CrossRef] [PubMed]
[52] Moon, S.Y., Son, M., Kang, Y.W., Koh, M., Lee, J.Y. and Baek, Y.H. (2025) Associations between Non-Insulin-Based Insulin Resistance Surrogate Markers and Liver-Related Outcomes in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Nationwide Cohort Study in South Korea. BMC Gastroenterology, 25, Article No. 274. [Google Scholar] [CrossRef] [PubMed]
[53] 中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
[54] 唐文彬, 张婷, 刘芳, 等. 健康体检人群甘油三酯葡萄糖指数与高尿酸血症的相关性[J]. 中华健康管理学杂志, 2025, 19(1): 51-56.
[55] Gu, Q., Hu, X., Meng, J., Ge, J., Wang, S.J. and Liu, X.Z. (2020) Associations of Triglyceride-Glucose Index and Its Derivatives with Hyperuricemia Risk: A Cohort Study in Chinese General Population. International Journal of Endocrinology, 2020, 1-7. [Google Scholar] [CrossRef] [PubMed]
[56] Liu, X.Z., Xu, X., Zhu, J.Q. and Zhao, D.B. (2019) Association between Three Non-Insulin-Based Indexes of Insulin Resistance and Hyperuricemia. Clinical Rheumatology, 38, 3227-3233. [Google Scholar] [CrossRef] [PubMed]
[57] Wang, A., Tian, X., Zuo, Y., Chen, S., Meng, X., Wu, S., et al. (2021) Change in Triglyceride-Glucose Index Predicts the Risk of Cardiovascular Disease in the General Population: A Prospective Cohort Study. Cardiovascular Diabetology, 20, Article No. 113. [Google Scholar] [CrossRef] [PubMed]
[58] Cai, X.L., Xiang, Y.F., Chen, X.F., et al. (2023) Prognostic Value of Triglyceride Glucose Index in Population at High Cardiovascular Disease Risk. Cardiovascular Diabetology, 22, Article No. 198. [Google Scholar] [CrossRef] [PubMed]
[59] Li, F., Wang, Y., Shi, B., Sun, S., Wang, S., Pang, S., et al. (2024) Association between the Cumulative Average Triglyceride Glucose-Body Mass Index and Cardiovascular Disease Incidence among the Middle-Aged and Older Population: A Prospective Nationwide Cohort Study in China. Cardiovascular Diabetology, 23, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
[60] Zhang, Y., Ding, X., Hua, B., Liu, Q., Gao, H., Chen, H., et al. (2020) High Triglyceride-Glucose Index Is Associated with Adverse Cardiovascular Outcomes in Patients with Acute Myocardial Infarction. Nutrition, Metabolism and Cardiovascular Diseases, 30, 2351-2362. [Google Scholar] [CrossRef] [PubMed]
[61] Li, C., Zhao, S., Li, Y., He, S., Jian, W., Liu, Y., et al. (2025) Triglyceride-Glucose Index Predicts Adverse Cardiovascular Events in Patients with H-Type Hypertension Combined with Coronary Heart Disease: A Retrospective Cohort Study. Cardiovascular Diabetology, 24, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
[62] Tian, Z., Yang, L., Li, Y., Huang, Y., Yang, J. and Xue, F. (2025) Associations of Different Insulin Resistance-Related Indices with the Incidence and Progression Trajectory of Cardiometabolic Multimorbidity: A Prospective Cohort Study from UK Biobank. Cardiovascular Diabetology, 24, Article No. 257. [Google Scholar] [CrossRef] [PubMed]
[63] Wu, Z., Cui, H., Li, W., Zhang, Y., Liu, L., Liu, Z., et al. (2022) Comparison of Three Non-Insulin-Based Insulin Resistance Indexes in Predicting the Presence and Severity of Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 9, Article 918359. [Google Scholar] [CrossRef] [PubMed]
[64] Zhang, Y., Wang, R., Fu, X. and Song, H. (2022) Non-Insulin-Based Insulin Resistance Indexes in Predicting Severity for Coronary Artery Disease. Diabetology & Metabolic Syndrome, 14, Article No. 191. [Google Scholar] [CrossRef] [PubMed]