|
[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cardoso, F., Paluch-Shimon, S., Senkus, E., et al. (2020) 5th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 5). Annals of Oncology, 31, 1623-1649.
|
|
[4]
|
Goldhirsch, A., Wood, W.C., Coates, A.S., Gelber, R.D., Thürlimann, B. and Senn, H. (2011) Strategies for Subtypes—Dealing with the Diversity of Breast Cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Annals of Oncology, 22, 1736-1747. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wu, L. and Yang, X. (2018) Targeting the Hippo Pathway for Breast Cancer Therapy. Cancers (Basel), 10, Article No. 422. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yang, Z., Zhang, Q., Yu, L., Zhu, J., Cao, Y. and Gao, X. (2021) The Signaling Pathways and Targets of Traditional Chinese Medicine and Natural Medicine in Triple-Negative Breast Cancer. Journal of Ethnopharmacology, 264, Article ID: 113249. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Justice, R.W., Zilian, O., Woods, D.F., Noll, M. and Bryant, P.J. (1995) The Drosophila Tumor Suppressor Gene Warts Encodes a Homolog of Human Myotonic Dystrophy Kinase and Is Required for the Control of Cell Shape and Proliferation. Genes & Development, 9, 534-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Harvey, K.F., Pfleger, C.M. and Hariharan, I.K. (2003) The Drosophila Mst Ortholog, Hippo, Restricts Growth and Cell Proliferation and Promotes Apoptosis. Cell, 114, 457-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wu, S., Huang, J., Dong, J. and Pan, D. (2003) Hippo Encodes a Ste-20 Family Protein Kinase That Restricts Cell Proliferation and Promotes Apoptosis in Conjunction with Salvador and Warts. Cell, 114, 445-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Camargo, F.D., Gokhale, S., Johnnidis, J.B., Fu, D., Bell, G.W., Jaenisch, R., et al. (2007) YAP1 Increases Organ Size and Expands Undifferentiated Progenitor Cells. Current Biology, 17, 2054-2060. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fu, M., Hu, Y., Lan, T., Guan, K., Luo, T. and Luo, M. (2022) The Hippo Signalling Pathway and Its Implications in Human Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 376. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Harvey, K.F., Zhang, X. and Thomas, D.M. (2013) The Hippo Pathway and Human Cancer. Nature Reviews Cancer, 13, 246-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hansen, C.G., Moroishi, T. and Guan, K. (2015) YAP and TAZ: A Nexus for Hippo Signaling and Beyond. Trends in Cell Biology, 25, 499-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., et al. (2008) TEAD Mediates Yap-Dependent Gene Induction and Growth Control. Genes & Development, 22, 1962-1971. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lei, Q., Zhang, H., Zhao, B., Zha, Z., Bai, F., Pei, X., et al. (2008) TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Molecular and Cellular Biology, 28, 2426-2436. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kuracha, M.R., Radhakrishna, U., Kuracha, S.V., Vegi, N., Gurung, J.L. and McVicker, B.L. (2024) New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines, 12, Article No. 2552. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Manjunath, G.K., Sharma, S., Nashier, D., Vasanthaiah, S., Jha, S., Bage, S., et al. (2024) Breast Cancer Genomic Analyses Reveal Genes, Mutations, and Signaling Networks. Functional & Integrative Genomics, 24, Article No. 206. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Britschgi, A., Duss, S., Kim, S., Couto, J.P., Brinkhaus, H., Koren, S., et al. (2017) The Hippo Kinases LATS1 and 2 Control Human Breast Cell Fate via Crosstalk with ERα. Nature, 541, 541-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fujimoto, D., Ueda, Y., Hirono, Y., Goi, T. and Yamaguchi, A. (2015) PAR1 Participates in the Ability of Multidrug Resistance and Tumorigenesis by Controlling Hippo-Yap Pathway. Oncotarget, 6, 34788-34799. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lamar, J.M., Stern, P., Liu, H., Schindler, J.W., Jiang, Z. and Hynes, R.O. (2012) The Hippo Pathway Target, YAP, Promotes Metastasis through Its TEAD-Interaction Domain. Proceedings of the National Academy of Sciences, 109, E2441-E2450. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zanconato, F., Cordenonsi, M. and Piccolo, S. (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell, 29, 783-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhao, D., Zhi, X., Zhou, Z. and Chen, C. (2011) TAZ Antagonizes the Wwp1-Mediated KLF5 Degradation and Promotes Breast Cell Proliferation and Tumorigenesis. Carcinogenesis, 33, 59-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhi, X., Zhao, D., Zhou, Z., Liu, R. and Chen, C. (2012) YAP Promotes Breast Cell Proliferation and Survival Partially through Stabilizing the KLF5 Transcription Factor. The American Journal of Pathology, 180, 2452-2461. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, M. (1990) Clinical Applications of Percutaneous Transluminal Coronary Laser Angioplasty. Chinese Journal of Cardiovascular Diseases, 18, 324-326, 381.
|
|
[25]
|
Piccolo, S., Dupont, S. and Cordenonsi, M. (2014) The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 94, 1287-1312. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Valastyan, S. and Weinberg, R.A. (2011) Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 147, 275-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Overholtzer, M., Zhang, J., Smolen, G.A., Muir, B., Li, W., Sgroi, D.C., et al. (2006) Transforming Properties of Yap, a Candidate Oncogene on the Chromosome 11q22 Amplicon. Proceedings of the National Academy of Sciences, 103, 12405-12410. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Han, Q., Qiu, S., Hu, H., Li, W., Dang, X. and Li, X. (2023) The Relationship between the Hippo Signaling Pathway and Bone Metastasis of Breast Cancer. Frontiers in Oncology, 13, Article ID: 1188310. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, N., Morrison, C.D., Liu, P., Miecznikowski, J., Bshara, W., Han, S., et al. (2012) TAZ Induces Growth Factor-Independent Proliferation through Activation of EGFR Ligand Amphiregulin. Cell Cycle, 11, 2922-2930. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shen, J., Cao, B., Wang, Y., Ma, C., Zeng, Z., Liu, L., et al. (2018) Hippo Component YAP Promotes Focal Adhesion and Tumour Aggressiveness via Transcriptionally Activating THBS1/FAK Signalling in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 37, Article No. 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, D., Sun, Y., Wei, Y., Zhang, P., Rezaeian, A.H., Teruya-Feldstein, J., et al. (2012) LIFR Is a Breast Cancer Metastasis Suppressor Upstream of the Hippo-Yap Pathway and a Prognostic Marker. Nature Medicine, 18, 1511-1517. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010) Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content. Cell, 140, 62-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Maugeri-Saccà, M. and De Maria, R. (2016) Hippo Pathway and Breast Cancer Stem Cells. Critical Reviews in Oncology/Hematology, 99, 115-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hanahan, D. and Coussens, L.M. (2012) Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 21, 309-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liao, X., Bu, Y., Xu, Z., Jia, F., Chang, F., Liang, J., et al. (2020) WISP1 Predicts Clinical Prognosis and Is Associated with Tumor Purity, Immunocyte Infiltration, and Macrophage M2 Polarization in Pan-Cancer. Frontiers in Genetics, 11, Article No. 502. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Thinyakul, C., Sakamoto, Y., Shimoda, M., Liu, Y., Thongchot, S., Reda, O., et al. (2024) Hippo Pathway in Cancer Cells Induces NCAM1(+)alphaSMA(+) Fibroblasts to Modulate Tumor Microenvironment. Communications Biology, 7, Article No. 1343. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Du, Y., Tu, G., Yang, G., Li, G., Yang, D., Lang, L., et al. (2017) MiR-205/YAP1 in Activated Fibroblasts of Breast Tumor Promotes VEGF-Independent Angiogenesis through STAT3 Signaling. Theranostics, 7, 3972-3988. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Barry, E.R., Morikawa, T., Butler, B.L., Shrestha, K., de la Rosa, R., Yan, K.S., et al. (2012) Restriction of Intestinal Stem Cell Expansion and the Regenerative Response by Yap. Nature, 493, 106-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Moroishi, T., Hayashi, T., Pan, W., Fujita, Y., Holt, M.V., Qin, J., et al. (2016) The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell, 167, 1525-1539.e17. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Janse Van Rensburg, H.J., Azad, T., Ling, M., et al. (2018) The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Research, 78, 1457-1470.
|
|
[41]
|
黄翠霞, 张雅倩, 杨爱萍, 等. 基于Hippo/YAP信号通路探讨穿心莲内酯抗三阴性乳腺癌的作用机制[J]. 实用医学杂志, 2023, 39(16): 2050-2056.
|
|
[42]
|
Diskul-Na-Ayudthaya, P., Bae, S.J., Bae, Y., Van, N.T., Kim, W. and Ryu, S. (2024) ANKRD1 Promotes Breast Cancer Metastasis by Activating Nf-Κb-Mage-A6 Pathway. Cancers, 16, Article No. 3306. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
杨钰敏, 刘俊宇, 李秋杏, 等. 白桦脂酸与乳腺癌: 该天然药物的最新进展与展望[J]. 中药与临床, 2024, 15(6): 85-96.
|
|
[44]
|
曹媛媛. 白桦脂酸通过影响Hippo通路发挥搞乳腺癌作用的机制研究[D]: [硕士学位论文]. 北京: 南京师范大学, 2019.
|
|
[45]
|
Song, J., Eum, D., Park, S., Jin, Y., Shim, J., Park, S., et al. (2020) Inhibitory Effect of Ginsenoside Rg3 on Cancer Stemness and Mesenchymal Transition in Breast Cancer via Regulation of Myeloid-Derived Suppressor Cells. PLOS ONE, 15, e0240533. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Deng, Z., Ou, M., Shi, Y., Li, G. and Lv, L. (2025) Ginsenoside Rg3 Attenuates the Stemness of Breast Cancer Stem Cells by Activating the Hippo Signaling Pathway. Toxicology and Applied Pharmacology, 494, Article ID: 117158. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
李谌, 王钰. 和厚朴酚在乳腺癌细胞上皮间质转化中的作用研究[J]. 中国临床药理学杂志, 2024, 40(17): 2488-2492.
|
|
[48]
|
赵丽丽, 赵文文, 赵文飞, 等. 沉默PD-L1基因表达抑制胃癌细胞黏附、迁移、侵袭及上皮间质转化[J]. 现代肿瘤医学, 2022, 30(15): 2716-2722.
|
|
[49]
|
Farombi, E.O., Ajayi, B.O., Ajeigbe, O.F., Maruf, O.R., Anyebe, D.A., Opafunso, I.T., et al. (2024) Mechanistic Exploration of 6-Shogaol’s Preventive Effects on Azoxymethane and Dextran Sulfate Sodium-Induced Colorectal Cancer: Involvement of Cell Proliferation, Apoptosis, Carcinoembryonic Antigen, Wingless-Related Integration Site Signaling, and Oxido-Inflammation. Toxicology Mechanisms and Methods, 35, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
林嘉怡, 柯乔丹, 吴锦如, 等. 6-姜烯酚介导Hedgehog/Gli1通路对三阴性乳腺癌细胞侵袭及迁移作用机制[J]. 中国药理学通报, 2022, 38(3): 373-379.
|
|
[51]
|
Li, M., Guo, T., Lin, J., Huang, X., Ke, Q., Wu, Y., et al. (2022) Curcumin Inhibits the Invasion and Metastasis of Triple Negative Breast Cancer via Hedgehog/Gli1 Signaling Pathway. Journal of Ethnopharmacology, 283, Article ID: 114689. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Li, M., Chen, L., Wang, M., Huang, X., Ke, Q. and Hu, C. (2025) Curcumin Alleviates the Aggressiveness of Breast Cancer through Inhibiting Cell Adhesion Mediated by TEAD4-Fibronectin Axis. Biochemical Pharmacology, 232, Article ID: 116690. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lin, H., Tang, H., Keating, T., Wu, Y.-., Shih, A., Hammond, D., et al. (2007) Resveratrol Is Pro-Apoptotic and Thyroid Hormone Is Anti-Apoptotic in Glioma Cells: Both Actions Are Integrin and ERK Mediated. Carcinogenesis, 29, 62-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Lin, H., Delmas, D., Vang, O., Hsieh, T., Lin, S., Cheng, G., et al. (2013) Mechanisms of Ceramide‐Induced Cox‐2‐Dependent Apoptosis in Human Ovarian Cancer OVCAR‐3 Cells Partially Overlapped with Resveratrol. Journal of Cellular Biochemistry, 114, 1940-1954. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Kim, Y.N., Choe, S.R., Cho, K.H., Cho, D.Y., Kang, J., Park, C.G., et al. (2017) Resveratrol Suppresses Breast Cancer Cell Invasion by Inactivating a RhoA/YAP Signaling Axis. Experimental & Molecular Medicine, 49, e296. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
王蓉, 马腾茂, 刘飞, 等. 防己的药理作用及临床应用研究进展[J]. 中国中药杂志, 2017, 42(4): 634-639.
|
|
[57]
|
辛国松, 王毛毛, 侯妍秀, 等. 基于Hippo/YAP信号通路探究粉防己碱抗乳腺癌耐药机制[J]. 中草药, 2023, 54(18): 5960-5967.
|
|
[58]
|
Pierpaoli, E., Arcamone, A.G., Buzzetti, F., Lombardi, P., Salvatore, C. and Provinciali, M. (2013) Antitumor Effect of Novel Berberine Derivatives in Breast Cancer Cells. BioFactors, 39, 672-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Pierpaoli, E., Damiani, E., Orlando, F., Lucarini, G., Bartozzi, B., Lombardi, P., et al. (2015) Antiangiogenic and Antitumor Activities of Berberine Derivative NAX014 Compound in a Transgenic Murine Model of HER2/Neu-Positive Mammary Carcinoma. Carcinogenesis, 36, 1169-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sakaguchi, M., Kitaguchi, D., Morinami, S., Kurashiki, Y., Hashida, H., Miyata, S., et al. (2020) Berberine-Induced Nucleolar Stress Response in a Human Breast Cancer Cell Line. Biochemical and Biophysical Research Communications, 528, 227-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Sammarco, A., Beffagna, G., Sacchetto, R., Vettori, A., Bonsembiante, F., Scarin, G., et al. (2023) Antitumor Effect of Berberine Analogs in a Canine Mammary Tumor Cell Line and in Zebrafish Reporters via Wnt/β-Catenin and Hippo Pathways. Biomedicines, 11, Article No. 3317. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
柯昌虎, 朱雪松, 朱军, 等. 槲皮素抗乳腺癌作用机制的研究进展[J]. 中国医院药学杂志, 2016, 36(16): 1420-1425.
|
|
[63]
|
潘小娟. 槲皮素通过Hippo-Yap信号通路对乳腺癌细胞的影响及机制研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2023.
|
|
[64]
|
Ma, S., Meng, Z., Chen, R. and Guan, K. (2019) The Hippo Pathway: Biology and Pathophysiology. Annual Review of Biochemistry, 88, 577-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Zhang, C., Bao, C., Zhang, X., Lin, X., Pan, D. and Chen, Y. (2019) Knockdown of lncRNA LEF1-AS1 Inhibited the Progression of Oral Squamous Cell Carcinoma (OSCC) via Hippo Signaling Pathway. Cancer Biology & Therapy, 20, 1213-1222. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
孙腾飞, 李俊峰, 陶方方, 等. 毛蕊异黄酮干预Hippo通路抑制三阴性乳腺癌MDA-MB-231细胞增殖与迁移的机制[J]. 中国药理学通报, 2022, 38(10): 1517-1523.
|
|
[67]
|
张倪. 已批准上市的抗肿瘤天然小分子药物概述[J]. 中国药师, 2019, 22(9): 1702-1705.
|
|
[68]
|
Lim, D.Y., Cho, H.J., Kim, J., Nho, C.W., Lee, K.W. and Park, J.H.Y. (2012) Luteolin Decreases IGF-II Production and Downregulates Insulin-Like Growth Factor-I Receptor Signaling in HT-29 Human Colon Cancer Cells. BMC Gastroenterology, 12, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
曹黛. 木犀草素抗三阴性乳腺癌的作用和机制研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2021.
|
|
[70]
|
Shukla, S. and Gupta, S. (2010) Apigenin: A Promising Molecule for Cancer Prevention. Pharmaceutical Research, 27, 962-978. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
徐检. 芹菜素抗三阴性乳腺癌的作用和分子机制研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2019.
|
|
[72]
|
Xu, H. and Zhang, S. (2012) Scutellarin‐induced Apoptosis in HepG2 Hepatocellular Carcinoma Cells via a STAT3 Pathway. Phytotherapy Research, 27, 1524-1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Chan, J.Y., Tan, B.K.H. and Lee, S.C. (2009) Scutellarin Sensitizes Drug-Evoked Colon Cancer Cell Apoptosis through Enhanced Caspase-6 Activation. Anticancer Research, 29, 3043-3047.
|
|
[74]
|
Hou, L., Chen, L. and Fang, L. (2017) Scutellarin Inhibits Proliferation, Invasion, and Tumorigenicity in Human Breast Cancer Cells by Regulating HIPPO-YAP Signaling Pathway. Medical Science Monitor, 23, 5130-5138. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Lei, J., Wei, Y., Song, P., Li, Y., Zhang, T., Feng, Q., et al. (2018) Cordycepin Inhibits LPS-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress. European Journal of Pharmacology, 818, 110-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Guo, Z., Chen, W., Dai, G. and Huang, Y. (2019) Cordycepin Suppresses the Migration and Invasion of Human Liver Cancer Cells by Downregulating the Expression of CXCR4. International Journal of Molecular Medicine, 45, 141-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
黄海辰, 吴文雅, 戚梦, 等. 虫草素抗三阴性乳腺癌的转录组学分析[J]. 生物技术通报, 2021, 37(11): 72-80.
|
|
[78]
|
黄亦辉, 赵婧, 徐晓青, 等. 槐耳醇提物对小鼠胃癌抑制作用及对肠道菌群的影响[J]. 中国现代应用药学, 2024, 41(21): 2917-2928.
|
|
[79]
|
张宗城, 张艳玲, 叶桦, 等. 槐耳水提取物对三阴性乳腺癌干细胞特性的影响[J]. 中医药导报, 2020, 26(9): 12-14.
|
|
[80]
|
Abd El-Hafeez, A.A., Fujimura, T., Kamei, R., Hirakawa, N., Baba, K., Ono, K., et al. (2017) Synergistic Tumor Suppression by a Perilla Frutescens-Derived Methoxyflavanone and Anti-Cancer Tyrosine Kinase Inhibitors in A549 Human Lung Adenocarcinoma. Cytotechnology, 70, 913-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Kwak, Y. and Ju, J. (2015) Inhibitory Activities of Perilla frutescens Britton Leaf Extract against the Growth, Migration, and Adhesion of Human Cancer Cells. Nutrition Research and Practice, 9, 11-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Kim, C., Shin, Y., Choi, S., Oh, S., Kim, K., Jeong, H., et al. (2021) Extracts of Perilla frutescens var. acuta (odash.) Kudo Leaves Have Antitumor Effects on Breast Cancer Cells by Suppressing YAP Activity. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 5619761. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
辛天星, 郑凯文, 刘兆喆, 等. 化疗联合复方苦参注射液、双膦酸盐治疗中晚期非小细胞肺癌骨转移疼痛临床疗效研究[J]. 实用药物与临床, 2021, 24(10): 907-910.
|
|
[84]
|
邹权泉. 探讨复方苦参注射液辅助治疗恶性肿瘤晚期疼痛的临床效果[J]. 黑龙江医药, 2024, 37(5): 1144-1147.
|
|
[85]
|
吴海滨, 马志强, 张冠男, 等. 复方苦参注射液通过调控Hippo-YAP信号通路抑制乳腺癌模型大鼠肿瘤生长和转移的机制研究[J]. 辽宁中医药大学学报, 2023, 25(11): 72-76.
|
|
[86]
|
魏昌然, 王莹, 宋雪莲, 等. 乳康饮及拆方含药血清对乳腺癌MDA-MB-231细胞Hippo信号通路的作用[J]. 中华中医药杂志, 2022, 37(1): 478-482.
|
|
[87]
|
徐园园, 王明慧, 魏永利, 等. 中药质量标志物(Q-Marker)的科学计量分析[J]. 中草药, 2024, 55(4): 1297-1308.
|
|
[88]
|
李雪溦, 张红阳, 朱继孝. 中药复方药物代谢动力学研究进展[J]. 中医药通报, 2015, 14(5): 65-69.
|
|
[89]
|
赵晓璐, 张春艳, 高晓阳, 等. Hippo/YAP参与肝纤维化发生发展的作用机制[J]. 临床肝胆病杂志, 2022, 38(7): 1654-1657.
|
|
[90]
|
陈海彬, 周红光, 李文婷, 等. 网络药理学——中药复方作用机制研究新视角[J]. 中华中医药杂志, 2019, 34(7): 2873-2876.
|