|
[1]
|
中华医学会妇产科学分会绝经学组, 吴洁, 任慕兰, 陈蓉, 张淑兰, 郁琦. 早发性卵巢功能不全的临床诊疗专家共识(2023版) [J]. 中华妇产科杂志, 2023, 58(10): 721-728.
|
|
[2]
|
Verrilli, L. (2023) Primary Ovarian Insufficiency and Ovarian Aging. Obstetrics and Gynecology Clinics of North America, 50, 653-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ke, H., Tang, S., Guo, T., Hou, D., Jiao, X., Li, S., et al. (2023) Landscape of Pathogenic Mutations in Premature Ovarian Insufficiency. Nature Medicine, 29, 483-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Luo, W., Ke, H., Tang, S., Jiao, X., Li, Z., Zhao, S., et al. (2023) Next-Generation Sequencing of 500 POI Patients Identified Novel Responsible Monogenic and Oligogenic Variants. Journal of Ovarian Research, 16, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ovejero-Sánchez, M., González-Sarmiento, R. and Herrero, A.B. (2023) DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers, 15, Article 448. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Xiong, H., Hua, F., Dong, Y., Lin, Y., Ying, J., Liu, J., et al. (2022) DNA Damage Response and GATA4 Signaling in Cellular Senescence and Aging-Related Pathology. Frontiers in Aging Neuroscience, 14, Article ID: 933015. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Fowler, F.C., Chen, B., Zolnerowich, N., Wu, W., Pavani, R., Paiano, J., et al. (2022) DNA-PK Promotes DNA End Resection at DNA Double Strand Breaks in G0 Cells. eLife, 11, e74700. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Song, H., Shen, R., Liu, X., Yang, X., Xie, K., Guo, Z., et al. (2022) Histone Post-Translational Modification and the DNA Damage Response. Genes & Diseases, 10, 1429-1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Krenning, L., van den Berg, J. and Medema, R.H. (2019) Life or Death after a Break: What Determines the Choice? Molecular Cell, 76, 346-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jeon, Y., Lu, Y., Ferrari, M.M., Channagiri, T., Xu, P., Meers, C., et al. (2024) RNA-Mediated Double-Strand Break Repair by End-Joining Mechanisms. Nature Communications, 15, Article 7935. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Angira, D., Shaik, A. and Thiruvenkatam, V. (2020) Structural and Strategic Landscape of PIKK Protein Family and Their Inhibitors an Overview. Frontiers in Bioscience, 25, 1538-1567. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Barnieh, F.M., Loadman, P.M. and Falconer, R.A. (2021) Progress Towards a Clinically-Successful ATR Inhibitor for Cancer Therapy. Current Research in Pharmacology and Drug Discovery, 2, Article 100017. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sharma, R., Mishra, A., Bhardwaj, M., Singh, G., Indira Harahap, L.V., Vanjani, S., et al. (2025) Medicinal Chemistry Breakthroughs on ATM, ATR, and DNA-PK Inhibitors as Prospective Cancer Therapeutics. Journal of Enzyme Inhibition and Medicinal Chemistry, 40, Article 2489720. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dylgjeri, E. and Knudsen, K.E. (2022) DNA-Pkcs: A Targetable Protumorigenic Protein Kinase. Cancer Research, 82, 523-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, Y., Li, Y., Xiong, J., Lan, B., Wang, X., Liu, J., et al. (2021) Role of PRKDC in Cancer Initiation, Progression, and Treatment. Cancer Cell International, 21, Article No. 563. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ueno, S., Sudo, T. and Hirasawa, A. (2022) ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors. International Journal of Molecular Sciences, 23, Article 523. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., et al. (1995) A Single Ataxia Telangiectasia Gene with a Product Similar to PI-3 Kinase. Science, 268, 1749-1753. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ambrose, M. and Gatti, R.A. (2013) Pathogenesis of Ataxia-Telangiectasia: The Next Generation of ATM Functions. Blood, 121, 4036-4045. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Stracker, T.H., Roig, I., Knobel, P.A. and Marjanović, M. (2013) The ATM Signaling Network in Development and Disease. Frontiers in Genetics, 4, Article ID: 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Saldivar, J.C., Cortez, D. and Cimprich, K.A. (2017) The Essential Kinase ATR: Ensuring Faithful Duplication of a Challenging Genome. Nature Reviews Molecular Cell Biology, 18, 622-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
O’Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A. and Goodship, J.A. (2003) A Splicing Mutation Affecting Expression of Ataxia-Telangiectasia and Rad3-Related Protein (ATR) Results in Seckel Syndrome. Nature Genetics, 33, 497-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Frattini, C., Promonet, A., Alghoul, E., Vidal-Eychenie, S., Lamarque, M., Blanchard, M., et al. (2021) Topbp1 Assembles Nuclear Condensates to Switch on ATR Signaling. Molecular Cell, 81, 1231-1245.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xu, J., Bradley, N. and He, Y. (2023) Structure and Function of the Apical Pikks in Double-Strand Break Repair. Current Opinion in Structural Biology, 82, Article ID: 102651. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, S., Lees-Miller, J.P., He, Y. and Lees-Miller, S.P. (2021) Structural Insights into the Role of DNA-PK as a Master Regulator in NHEJ. Genome Instability & Disease, 2, 195-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Qiu, S. and Huang, J. (2021) MRN Complex Is an Essential Effector of DNA Damage Repair. Journal of Zhejiang University-Science B, 22, 31-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu-Baer, F., Wong, M., Tschoe, L., Lin, C., Jiang, W., Zha, S., et al. (2023) ATM/ATR Phosphorylation of CTIP on Its Conserved Sae2-Like Domain Is Required for Genotoxin-Induced DNA Resection but Dispensable for Animal Development. Cells, 12, Article 2762. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jansma, M. and Hopfner, K. (2021) Structural Basis of the (in)Activity of the Apical DNA Damage Response Kinases ATM, ATR and Dna-pkcs. Progress in Biophysics and Molecular Biology, 163, 120-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Telfer, E.E., Grosbois, J., Odey, Y.L., Rosario, R. and Anderson, R.A. (2023) Making a Good Egg: Human Oocyte Health, Aging, and in Vitro Development. Physiological Reviews, 103, 2623-2677. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, C., Zhao, S., Yang, Y., Guo, T., Ke, H., Mi, X., et al. (2023) TP63 Gain-of-Function Mutations Cause Premature Ovarian Insufficiency by Inducing Oocyte Apoptosis. Journal of Clinical Investigation, 133, e162315. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Luan, Y., Yu, S., Abazarikia, A., Dong, R. and Kim, S. (2022) Tap63 Determines the Fate of Oocytes against DNA Damage. Science Advances, 8, eade1846. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Láscarez-Lagunas, L.I., Nadarajan, S., Martinez-Garcia, M., Quinn, J.N., Todisco, E., Thakkar, T., et al. (2022) ATM/ATR Kinases Link the Synaptonemal Complex and DNA Double-Strand Break Repair Pathway Choice. Current Biology, 32, 4719-4726.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chaplin, A.K., Hardwick, S.W., Liang, S., Kefala Stavridi, A., Hnizda, A., Cooper, L.R., et al. (2021) Dimers of DNA-PK Create a Stage for DNA Double-Strand Break Repair. Nature Structural & Molecular Biology, 28, 13-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kobayashi, H. and Imanaka, S. (2024) Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. International Journal of Molecular Sciences, 25, Article 13144. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shang, Z., Yu, L., Lin, Y., Matsunaga, S., Shen, C. and Chen, B.P.C. (2014) DNA-Pkcs Activates the CHK2-Brca1 Pathway during Mitosis to Ensure Chromosomal Stability. Oncogenesis, 3, e85-e85. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kavarthapu, R., Lou, H., Pham, T., Do, H., Soliman, M.E., Badger, T., et al. (2024) Single‐Nucleus and Spatial Transcriptomics of Paediatric Ovary: Molecular Insights into the Dysregulated Signalling Pathways Underlying Premature Ovarian Insufficiency in Classic Galactosemia. Clinical and Translational Medicine, 14, e70043. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Nissenkorn, A., Levy-Shraga, Y., Banet-Levi, Y., Lahad, A., Sarouk, I. and Modan-Moses, D. (2016) Endocrine Abnormalities in Ataxia Telangiectasia: Findings from a National Cohort. Pediatric Research, 79, 889-894. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lange, J., Pan, J., Cole, F., Thelen, M.P., Jasin, M. and Keeney, S. (2011) ATM Controls Meiotic Double-Strand-Break Formation. Nature, 479, 237-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Aird, K.M., Worth, A.J., Snyder, N.W., Lee, J.V., Sivanand, S., Liu, Q., et al. (2015) ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence. Cell Reports, 11, 893-901. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Xu, Y., Ashley, T., Brainerd, E.E., Bronson, R.T., Meyn, M.S. and Baltimore, D. (1996) Targeted Disruption of ATM Leads to Growth Retardation, Chromosomal Fragmentation during Meiosis, Immune Defects, and Thymic Lymphoma. Genes & Development, 10, 2411-2422. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
McCarthy-Leo, C., Darwiche, F. and Tainsky, M.A. (2022) DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers, 14, 5278. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Couch, F.B., Bansbach, C.E., Driscoll, R., Luzwick, J.W., Glick, G.G., Bétous, R., et al. (2013) ATR Phosphorylates Smarcal1 to Prevent Replication Fork Collapse. Genes & Development, 27, 1610-1623. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kupculak, M., Bai, F., Luo, Q., Yoshikawa, Y., Lopez-Martinez, D., Xu, H., et al. (2023) Phosphorylation by ATR Triggers FANCD2 Chromatin Loading and Activates the Fanconi Anemia Pathway. Cell Reports, 42, Article 112721. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Huang, X., You, L., Nepovimova, E., Psotka, M., Malinak, D., Valko, M., et al. (2023) Inhibitors of Phosphoinositide 3-Kinase (PI3K) and Phosphoinositide 3-Kinase-Related Protein Kinase Family (PIKK). Journal of Enzyme Inhibition and Medicinal Chemistry, 38, Article 2237209. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zenke, F.T., Zimmermann, A., Sirrenberg, C., Dahmen, H., Kirkin, V., Pehl, U., et al. (2020) Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models. Molecular Cancer Therapeutics, 19, 1091-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Romesser, P.B., Capdevila, J., Garcia-Carbonero, R., Philip, T., Fernandez Martos, C., Tuli, R., et al. (2024) A Phase Ib Study of the DNA-PK Inhibitor Peposertib Combined with Neoadjuvant Chemoradiation in Patients with Locally Advanced Rectal Cancer. Clinical Cancer Research, 30, 695-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wise, H.C., Iyer, G.V., Moore, K., Temkin, S.M., Gordon, S., Aghajanian, C., et al. (2019) Activity of M3814, an Oral DNA-PK Inhibitor, in Combination with Topoisomerase II Inhibitors in Ovarian Cancer Models. Scientific Reports, 9, Article No. 18882. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lee, S., Kim, J., Jeong, E. and Myung, K. (2025) DNA Damage Response Inhibitors in Cancer Therapy: Mechanisms, Clinical Development, and Combination Strategies. DNA Repair, 153, Article 103887. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Soleimani, R., Heytens, E., Darzynkiewicz, Z. and Oktay, K. (2011) Mechanisms of Chemotherapy-Induced Human Ovarian Aging: Double Strand DNA Breaks and Microvascular Compromise. Aging, 3, 782-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kim, S., Nair, D.M., Romero, M., Serna, V.A., Koleske, A.J., Woodruff, T.K., et al. (2019) Transient Inhibition of P53 Homologs Protects Ovarian Function from Two Distinct Apoptotic Pathways Triggered by Anticancer Therapies. Cell Death & Differentiation, 26, 502-515. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Gorecki, L., Andrs, M., Rezacova, M. and Korabecny, J. (2020) Discovery of ATR Kinase Inhibitor Berzosertib (VX-970, M6620): Clinical Candidate for Cancer Therapy. Pharmacology & Therapeutics, 210, Article 107518. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ngoi, N.Y.L., Pilié, P.G., McGrail, D.J., Zimmermann, M., Schlacher, K. and Yap, T.A. (2024) Targeting ATR in Patients with Cancer. Nature Reviews Clinical Oncology, 21, 278-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pacheco, S., Maldonado-Linares, A., Garcia-Caldés, M. and Roig, I. (2019) ATR Function Is Indispensable to Allow Proper Mammalian Follicle Development. Chromosoma, 128, 489-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Haciefendi, A. and Guney Eskiler, G. (2023) The Suppression of ATR/CHK1 Pathway by Elimusertib ATR Inhibitor in Triple Negative Breast Cancer Cells. American Journal of Translational Research, 15, 4902-4911.
|