|
[1]
|
Pan, Z., Gong, T. and Liang, P. (2024) Heavy Metal Exposure and Cardiovascular Disease. Circulation Research, 134, 1160-1178.
|
|
[2]
|
Malik, A.S., Boyko, O., Aktar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kaya, C., Uğurlar, F., Ashraf, M., Hou, D., Kirkham, M.B. and Bolan, N. (2024) Microbial Consortia-Mediated Arsenic Bioremediation in Agricultural Soils: Current Status, Challenges, and Solutions. Science of The Total Environment, 917, 170297. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Podgorski, J. and Berg, M. (2020) Global Threat of Arsenic in Groundwater. Science, 368, 845-850. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wāng, Y., Ma, L., Wang, C., Gao, T., Han, Y. and Xu, D. (2024) Cardiovascular Adverse Effects and Mechanistic Insights of Arsenic Exposure: A Review. Environmental Chemistry Letters, 22, 1437-1472. [Google Scholar] [CrossRef]
|
|
[6]
|
de Vos, W.M., Tilg, H., Van Hul, M. and Cani, P.D. (2022) Gut Microbiome and Health: Mechanistic Insights. Gut, 71, 1020-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Song, D., Chen, L., Zhu, S. and Zhang, L. (2022) Gut Microbiota Promote Biotransformation and Bioaccumulation of Arsenic in Tilapia. Environmental Pollution, 305, Article ID: 119321. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lindell, A.E., Zimmermann-Kogadeeva, M. and Patil, K.R. (2022) Multimodal Interactions of Drugs, Natural Compounds and Pollutants with the Gut Microbiota. Nature Reviews Microbiology, 20, 431-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chi, L., Xue, J., Tu, P., Lai, Y., Ru, H. and Lu, K. (2018) Gut Microbiome Disruption Altered the Biotransformation and Liver Toxicity of Arsenic in Mice. Archives of Toxicology, 93, 25-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kaur, R. and Rawal, R. (2023) Influence of Heavy Metal Exposure on Gut Microbiota: Recent Advances. Journal of Biochemical and Molecular Toxicology, 37, e23485. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nurmamat, X., Zhao, Z., Ablat, H., Ma, X., Xie, Q., Zhang, Z., et al. (2023) Application of Surface-Enhanced Raman Scattering to Qualitative and Quantitative Analysis of Arsenic Species. Analytical Methods, 15, 4798-4810. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Halabitska, I., Petakh, P., Kamyshna, I., Oksenych, V., Kainov, D.E. and Kamyshnyi, O. (2024) The Interplay of Gut Microbiota, Obesity, and Depression: Insights and Interventions. Cellular and Molecular Life Sciences, 81, Article No. 443. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jain, N., Singh, P., Bhatnagar, A. and Maiti, A. (2024) Arsenite Oxidation and Adsorptive Arsenic Removal from Contaminated Water: A Review. Environmental Science and Pollution Research, 31, 42574-42592. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lehel, J., Papp, Z., Bartha, A., Palotás, P., Szabó, R., Budai, P., et al. (2023) Metal Load of Potentially Toxic Elements in Tuna (Thunnus albacares)—Food Safety Aspects. Foods, 12, Article 3038. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zarić, N.M., Braeuer, S. and Goessler, W. (2022) Arsenic Speciation Analysis in Honey Bees for Environmental Monitoring. Journal of Hazardous Materials, 432, Article ID: 128614. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, X., Guo, X., He, P., Nie, J., Yan, X., Zhu, J., et al. (2016) Interactive Influence of N6AMT1 and As3MT genetic Variations on Arsenic Metabolism in the Population of Inner Mongolia, China. Toxicological Sciences, 155, 124-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, J., Guo, Y., Duan, X. and Li, B. (2020) Tissue-and Region-Specific Accumulation of Arsenic Species, Especially in the Brain of Mice, after Long-Term Arsenite Exposure in Drinking Water. Biological Trace Element Research, 198, 168-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Stýblo, M., Venkatratnam, A., Fry, R.C. and Thomas, D.J. (2021) Origins, Fate, and Actions of Methylated Trivalent Metabolites of Inorganic Arsenic: Progress and Prospects. Archives of Toxicology, 95, 1547-1572. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Qiao, J., Sallet, H., Meibom, K.L. and Bernier-Latmani, R. (2024) Growth Substrate Limitation Enhances Anaerobic Arsenic Methylation by Paraclostridium bifermentans Strain EML. Applied and Environmental Microbiology, 90, e0096124. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mlangeni, A.T. (2023) Methylation of Arsenic in Rice: Mechanisms, Factors, and Mitigation Strategies. Toxicology Reports, 11, 295-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shao, J., Lai, C., Zheng, Q., Luo, Y., Li, C., Zhang, B., et al. (2024) Effects of Dietary Arsenic Exposure on Liver Metabolism in Mice. Ecotoxicology and Environmental Safety, 274, Article ID: 116147. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, H., Xiang, D., Zhou, J. and Xie, J. (2025) Protective Effect of Dictyophora rubrovolvata Extract on Intestinal and Liver Tissue Toxicity Induced by Metformin Disinfection Byproducts. Toxics, 13, Article 310. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhao, D., Jiao, S. and Yi, H. (2023) Arsenic Exposure Induces Small Intestinal Toxicity in Mice by Barrier Damage and Inflammation Response via Activating RhoA/ROCK and TLR4/Myd88/NF-κB Signaling Pathways. Toxicology Letters, 384, 44-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, Q., Li, P., Ma, J., Zhang, J., Li, W., Liu, Y., et al. (2024) Arsenic Exposure at Environmentally Relevant Levels Induced Metabolic Toxicity in Development Mice: Mechanistic Insights from Integrated Transcriptome and Metabolome. Environment International, 190, Article ID: 108819. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Dong, L., Luo, P. and Zhang, A. (2024) Intestinal Microbiota Dysbiosis Contributes to the Liver Damage in Subchronic Arsenic-Exposed Mice. Acta Biochimica et Biophysica Sinica, 56, 1774-1788. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, D., Xu, G., Bai, C., Gu, Y., Wang, D. and Li, B. (2021) Differential Effects of Arsenic Species on Nrf2 and Bach1 Nuclear Localization in Cultured Hepatocytes. Toxicology and Applied Pharmacology, 413, Article ID: 115404. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ma, L., Lv, J. and Zhang, A. (2023) Depletion of S-Adenosylmethionine Induced by Arsenic Exposure Is Involved in Liver Injury of Rat through Perturbing Histone H3K36 Trimethylation Dependent Bile Acid Metabolism. Environmental Pollution, 334, Article ID: 122228. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, Y., Guo, M., Pei, T., Shang, C., Chen, Y., Zhao, L., et al. (2025) α‐Lipoic Acid Ameliorates Arsenic‐Induced Lipid Disorders by Promoting Peroxisomal β‐Oxidation and Reducing Lipophagy in Chicken Hepatocyte. Advanced Science, 12, e2413255. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xu, Y., Zeng, Q. and Zhang, A. (2023) Assessing the Mechanisms and Adjunctive Therapy for Arsenic‐Induced Liver Injury in Rats. Environmental Toxicology, 39, 1197-1209. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suzuki, T. and Tsukamoto, I. (2006) Arsenite Induces Apoptosis in Hepatocytes through an Enhancement of the Activation of Jun N-Terminal Kinase and P38 Mitogen-Activated Protein Kinase Caused by Partial Hepatectomy. Toxicology Letters, 165, 257-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tan, Q., Zou, S., Jin, R., Hu, Y., Xu, H., Wang, H., et al. (2020) Selective Degradation of IKKα by Autophagy Is Essential for Arsenite-Induced Cancer Cell Apoptosis. Cell Death & Disease, 11, Article No. 222. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, H., Wu, L., Ye, F., Wang, D., Wang, L., Li, W., et al. (2023) As3MT via Consuming SAM Is Involved in Arsenic-Induced Nonalcoholic Fatty Liver Disease by Blocking m6A-Mediated miR-142-5p Maturation. Science of the Total Environment, 892, Article ID: 164746. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jin, W., Xue, Y., Xue, Y., Han, X., Song, Q., Zhang, J., et al. (2020) Tannic Acid Ameliorates Arsenic Trioxide-Induced Nephrotoxicity, Contribution of NF-κB and Nrf2 Pathways. Biomedicine & Pharmacotherapy, 126, Article ID: 110047. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jaafarzadeh, N., poormohammadi, A., Almasi, H., Ghaedrahmat, Z., Rahim, F. and Zahedi, A. (2022) Arsenic in Drinking Water and Kidney Cancer: A Systematic Review. Reviews on Environmental Health, 38, 255-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kaur, T., Singh, A. and Goel, R. (2011) Mechanisms Pertaining to Arsenic Toxicity. Toxicology International, 18, 87-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, Y., Yan, Q., Lv, M., Song, K., Dai, Y., Huang, Y., et al. (2020) Involvement of FATP2-Mediated Tubular Lipid Metabolic Reprogramming in Renal Fibrogenesis. Cell Death & Disease, 11, Article No. 994. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bu, N., Song, H.Y. and Wang, S.H. (2022) [Research Progress on the Regulatory Mechanism of Non-Coding RNA in Arsenic Toxicity]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 40, 316-320.
|
|
[38]
|
Zhang, J., Song, J., Liu, S., Zhang, Y., Qiu, T., Jiang, L., et al. (2023) M6a Methylation-Mediated PGC-1α Contributes to Ferroptosis via Regulating GSTK1 in Arsenic-Induced Hepatic Insulin Resistance. Science of the Total Environment, 905, Article ID: 167202. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Samad, N., Rao, T., Rehman, M.H.U., Bhatti, S.A. and Imran, I. (2021) Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biological Trace Element Research, 200, 689-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
He, Q., Chen, B., Chen, S., Zhang, M., Duan, L., Feng, X., et al. (2021) MBP‐Activated Autoimmunity Plays a Role in Arsenic‐Induced Peripheral Neuropathy and the Potential Protective Effect of Mecobalamin. Environmental Toxicology, 36, 1243-1253. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Felix, K., Manna, S.K., Wise, K., Barr, J. and Ramesh, G.T. (2005) Low Levels of Arsenite Activates Nuclear Factor‐κB and Activator Protein‐1 in Immortalized Mesencephalic Cells. Journal of Biochemical and Molecular Toxicology, 19, 67-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rodríguez, V.M., Jiménez-Capdeville, M.E. and Giordano, M. (2003) The Effects of Arsenic Exposure on the Nervous System. Toxicology Letters, 145, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bardullas, U., Limón-Pacheco, J.H., Giordano, M., Carrizales, L., Mendoza-Trejo, M.S. and Rodríguez, V.M. (2009) Chronic Low-Level Arsenic Exposure Causes Gender-Specific Alterations in Locomotor Activity, Dopaminergic Systems, and Thioredoxin Expression in Mice. Toxicology and Applied Pharmacology, 239, 169-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Dwivedi, N. and Flora, S.J.S. (2011) Concomitant Exposure to Arsenic and Organophosphates on Tissue Oxidative Stress in Rats. Food and Chemical Toxicology, 49, 1152-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, W., Sun, B., Luo, D., Chen, X., Yao, M. and Zhang, A. (2024) Neurotransmitter Metabolism in Arsenic Exposure-Induced Cognitive Impairment: Emerging Insights and Predictive Implications. Environmental Science & Technology, 58, 19165-19177. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, C., Li, Y., Yu, H., Li, T., Ye, L., Zhang, X., et al. (2024) Co-Exposure of Nanoplastics and Arsenic Causes Neurotoxicity in Zebrafish (Danio rerio) through Disrupting Homeostasis of Microbiota-Intestine-Brain Axis. Science of The Total Environment, 912, Article ID: 169430. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mochizuki, H. (2019) Arsenic Neurotoxicity in Humans. International Journal of Molecular Sciences, 20, Article 3418. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Liu, X. and Wang, J. (2022) N-Methyl-D-Aspartate Receptors Mediate Synaptic Plasticity Impairment of Hippocampal Neurons Due to Arsenic Exposure. Neuroscience, 498, 300-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
de Paula Arrifano, G., Crespo-Lopez, M.E., Lopes-Araújo, A., Santos-Sacramento, L., Barthelemy, J.L., de Nazaré, C.G.L., et al. (2022) Neurotoxicity and the Global Worst Pollutants: Astroglial Involvement in Arsenic, Lead, and Mercury Intoxication. Neurochemical Research, 48, 1047-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Alamolhodaei, N.S., Shirani, K. and Karimi, G. (2015) Arsenic Cardiotoxicity: An Overview. Environmental Toxicology and Pharmacology, 40, 1005-1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Muthumani, M. and Prabu, S.M. (2013) Silibinin Potentially Attenuates Arsenic-Induced Oxidative Stress Mediated Cardiotoxicity and Dyslipidemia in Rats. Cardiovascular Toxicology, 14, 83-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mumford, J.L., Wu, K., Xia, Y., Kwok, R., Yang, Z., Foster, J., et al. (2007) Chronic Arsenic Exposure and Cardiac Repolarization Abnormalities with QT Interval Prolongation in a Population-Based Study. Environmental Health Perspectives, 115, 690-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Arroyo-Abad, U., Pfeifer, M., Mothes, S., Stärk, H., Piechotta, C., Mattusch, J., et al. (2016) Determination of Moderately Polar Arsenolipids and Mercury Speciation in Freshwater Fish of the River Elbe (Saxony, Germany). Environmental Pollution, 208, 458-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Leser, T.D. and Mølbak, L. (2009) Better Living through Microbial Action: The Benefits of the Mammalian Gastrointestinal Microbiota on the Host. Environmental Microbiology, 11, 2194-2206. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Shukla, S., Srivastava, A., Verma, D., Gangopadhyay, S., Chauhan, A., Srivastava, V., et al. (2023) Analysis of Gut Bacteriome of in Utero Arsenic-Exposed Mice Using 16S rRNA-Based Metagenomic Approach. Frontiers in Microbiology, 14, Article 1147505. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wang, J., Hu, W., Yang, H., Chen, F., Shu, Y., Zhang, G., et al. (2020) Arsenic Concentrations, Diversity and Co-Occurrence Patterns of Bacterial and Fungal Communities in the Feces of Mice under Sub-Chronic Arsenic Exposure through Food. Environment International, 138, Article ID: 105600. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Li, J., Chen, X., Zhao, S. and Chen, J. (2023) Arsenic-Containing Medicine Treatment Disturbed the Human Intestinal Microbial Flora. Toxics, 11, Article 458. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Dheer, R., Patterson, J., Dudash, M., Stachler, E.N., Bibby, K.J., Stolz, D.B., et al. (2015) Arsenic Induces Structural and Compositional Colonic Microbiome Change and Promotes Host Nitrogen and Amino Acid Metabolism. Toxicology and Applied Pharmacology, 289, 397-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Chi, L., Bian, X., Gao, B., Tu, P., Ru, H. and Lu, K. (2017) The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 160, 193-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wang, Y., Zhang, G., Wang, H., Cheng, Y., Liu, H., Jiang, Z., et al. (2021) Effects of Different Dissolved Organic Matter on Microbial Communities and Arsenic Mobilization in Aquifers. Journal of Hazardous Materials, 411, Article ID: 125146. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Roh, T., Knappett, P.S.K., Han, D., Ludewig, G., Kelly, K.M., Wang, K., et al. (2023) Characterization of Arsenic and Atrazine Contaminations in Drinking Water in Iowa: A Public Health Concern. International Journal of Environmental Research and Public Health, 20, Article 5397. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wu, F., Yang, L., Islam, M.T., Jasmine, F., Kibriya, M.G., Nahar, J., et al. (2019) The Role of Gut Microbiome and Its Interaction with Arsenic Exposure in Carotid Intima-Media Thickness in a Bangladesh Population. Environment International, 123, 104-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Gokulan, K., Arnold, M.G., Jensen, J., Vanlandingham, M., Twaddle, N.C., Doerge, D.R., et al. (2018) Exposure to Arsenite in CD-1 Mice during Juvenile and Adult Stages: Effects on Intestinal Microbiota and Gut-Associated Immune Status. mBio, 9, e01418-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Hoen, A.G., Madan, J.C., Li, Z., Coker, M., Lundgren, S.N., Morrison, H.G., et al. (2018) Sex-Specific Associations of Infants’ Gut Microbiome with Arsenic Exposure in a US Population. Scientific Reports, 8, Article No. 12627. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Bi, X., Wang, Y., Qiu, A., Wu, S., Zhan, W., Liu, H., et al. (2024) Effects of Arsenic on Gut Microbiota and Its Bioaccumulation and Biotransformation in Freshwater Invertebrate. Journal of Hazardous Materials, 472, Article ID: 134623. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Rasmussen, J.A., Villumsen, K.R., von Gersdorff Jørgensen, L., Forberg, T., Zuo, S., Kania, P.W., et al. (2022) Integrative Analyses of Probiotics, Pathogenic Infections and Host Immune Response Highlight the Importance of Gut Microbiota in Understanding Disease Recovery in Rainbow Trout (Oncorhynchus mykiss). Journal of Applied Microbiology, 132, 3201-3216. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Musah, B.I. (2024) Effects of Heavy Metals and Metalloids on Plant-Animal Interaction and Biodiversity of Terrestrial Ecosystems—An Overview. Environmental Monitoring and Assessment, 197, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Zhao, Y., Zhou, R., Guo, Y., Chen, X., Zhang, A., Wang, J., et al. (2022) Improvement of Gut Microbiome and Intestinal Permeability Following Splenectomy Plus Pericardial Devascularization in Hepatitis B Virus-Related Cirrhotic Portal Hypertension. Frontiers in Immunology, 13, Article 941830. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zaccaria, E., Klaassen, T., Alleleyn, A.M.E., Boekhorst, J., Smokvina, T., Kleerebezem, M., et al. (2023) Endogenous Small Intestinal Microbiome Determinants of Transient Colonisation Efficiency by Bacteria from Fermented Dairy Products: A Randomised Controlled Trial. Microbiome, 11, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zhu, Q., Chen, B., Zhang, F., Zhang, B., Guo, Y., Pang, M., et al. (2024) Toxic and Essential Metals: Metabolic Interactions with the Gut Microbiota and Health Implications. Frontiers in Nutrition, 11, Article 1448388. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Vasudevan, D., Gajendhran, B., Swaminathan, K. and Velmurugan, G. (2025) Host-Microbiota Interplay in Arsenic Metabolism: Implications on Host Glucose Homeostasis. Chemico-Biological Interactions, 406, Article ID: 111354. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Luo, Y., Wang, J., Wang, C., Wang, D., Li, C., Zhang, B., et al. (2023) The Fecal Arsenic Excretion, Tissue Arsenic Accumulation, and Metabolomics Analysis in Sub-Chronic Arsenic-Exposed Mice after in Situ Arsenic-Induced Fecal Microbiota Transplantation. Science of the Total Environment, 854, Article ID: 158583. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Jia, P., Li, F., Zhang, S., Wu, G., Wang, Y. and Li, J. (2022) Microbial Community Composition in the Rhizosphere of Pteris Vittata and Its Effects on Arsenic Phytoremediation under a Natural Arsenic Contamination Gradient. Frontiers in Microbiology, 13, Article 989272. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Wang, H., Liang, Z., Ding, J., Xue, X., Li, G., Fu, S., et al. (2021) Arsenic Bioaccumulation in the Soil Fauna Alters Its Gut Microbiome and Microbial Arsenic Biotransformation Capacity. Journal of Hazardous Materials, 417, Article ID: 126018. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Ding, Y., Li, D., Li, J., Lin, H., Zhang, Z., Chang, C., et al. (2024) Relationships between Arsenic Biotransformation Genes, Antibiotic Resistance Genes, and Microbial Function under Different Arsenic Stresses during Composting. Environment International, 184, Article ID: 108460. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Chen, C.M., Mobley, H.L. and Rosen, B.P. (1985) Separate Resistances to Arsenate and Arsenite (Antimonate) Encoded by the Arsenical Resistance Operon of R Factor R773. Journal of Bacteriology, 161, 758-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., et al. (1981) Inducible Plasmid-Determined Resistance to Arsenate, Arsenite, and Antimony (III) in Escherichia coli and Staphylococcus Aureus. Journal of Bacteriology, 146, 983-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Ben Fekih, I., Zhang, C., Li, Y.P., Zhao, Y., Alwathnani, H.A., Saquib, Q., et al. (2018) Distribution of Arsenic Resistance Genes in Prokaryotes. Frontiers in Microbiology, 9, Article 2473. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Biełło, K.A., Cabello, P., Rodríguez-Caballero, G., Sáez, L.P., Luque-Almagro, V.M., Roldán, M.D., et al. (2023) Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by Pseudomonas pseudoalcaligenes CECT 5344. International Journal of Molecular Sciences, 24, Article 7232. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Coryell, M., Roggenbeck, B.A. and Walk, S.T. (2019) The Human Gut Microbiome’s Influence on Arsenic Toxicity. Current Pharmacology Reports, 5, 491-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Shen, Z., Han, J., Wang, Y., Sahin, O. and Zhang, Q. (2013) The Contribution of ArsB to Arsenic Resistance in Campylobacter Jejuni. PLOS ONE, 8, e58894. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Yin, N., Chang, X., Xiao, P., Zhou, Y., Liu, X., Xiong, S., et al. (2023) Role of Microbial Iron Reduction in Arsenic Metabolism from Soil Particle Size Fractions in Simulated Human Gastrointestinal Tract. Environment International, 174, Article ID: 107911. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Burrichter, A.G., Dörr, S., Bergmann, P., Haiß, S., Keller, A., Fournier, C., et al. (2021) Bacterial Microcompartments for Isethionate Desulfonation in the Taurine-Degrading Human-Gut Bacterium Bilophila wadsworthia. BMC Microbiology, 21, Article No. 340. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Thongnok, S., Siripornadulsil, W., Thanwisai, L. and Siripornadulsil, S. (2024) As(III)-Oxidizing and Plant Growth-Promoting Bacteria Increase the Starch Biosynthesis-Related Enzyme Activity, 2-AP Levels, and Grain Quality of Arsenic-Stressed Rice Plants. BMC Plant Biology, 24, Article No. 672. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Durante-Rodríguez, G., Fernández-Llamosas, H., Alonso-Fernandes, E., Fernández-Muñiz, M.N., Muñoz-Olivas, R., Díaz, E., et al. (2019) ArxA from Azoarcus sp. CIB, an Anaerobic Arsenite Oxidase from an Obligate Heterotrophic and Mesophilic Bacterium. Frontiers in Microbiology, 10, Article 1699. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Mujawar, S.Y., Vaigankar, D.C. and Dubey, S.K. (2021) Biological Characterization of Bacillus Flexus Strain SSAI1 Transforming Highly Toxic Arsenite to Less Toxic Arsenate Mediated by Periplasmic Arsenite Oxidase Enzyme Encoded by Aioab Genes. BioMetals, 34, 895-907. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Wang, P., Du, H., Fu, Y., Cai, X., Yin, N. and Cui, Y. (2022) Role of Human Gut Bacteria in Arsenic Biosorption and Biotransformation. Environment International, 165, Article ID: 107314. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Abuawad, A., Bozack, A.K., Saxena, R. and Gamble, M.V. (2021) Nutrition, One-Carbon Metabolism and Arsenic Methylation. Toxicology, 457, Article ID: 152803. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Xiao, K., Li, K., Xiao, K., Yang, J. and Zhou, L. (2025) Gut Microbiota and Hepatocellular Carcinoma: Metabolic Products and Immunotherapy Modulation. Cancer Medicine, 14, e70914. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Huang, K., Xu, Y., Packianathan, C., Gao, F., Chen, C., Zhang, J., et al. (2017) Arsenic Methylation by a Novel ArsM As(III) s‐Adenosylmethionine Methyltransferase That Requires Only Two Conserved Cysteine Residues. Molecular Microbiology, 107, 265-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Schmidt, S. (2022) Navigating a Two-Way Street: Metal Toxicity and the Human Gut Microbiome. Environmental Health Perspectives, 130, Article 32001. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Yan, Y., Xue, X., Guo, Y., Zhu, Y. and Ye, J. (2017) Co-Expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Escherichia coli Offers Insights into Arsenic Resistance. Frontiers in Microbiology, 8, Article 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Liu, J., Hermon, T., Gao, X., Dixon, D. and Xiao, H. (2023) Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. All Life, 16, Article ID: 2167869. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Farzan, S.F., Eunus, H.M., Haque, S.E., Sarwar, G., Hasan, A.R., Wu, F., et al. (2022) Arsenic Exposure from Drinking Water and Endothelial Dysfunction in Bangladeshi Adolescents. Environmental Research, 208, Article ID: 112697. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Bunderson, M., Brooks, D.M., Walker, D.L., Rosenfeld, M.E., Coffin, J.D. and Beall, H.D. (2004) Arsenic Exposure Exacerbates Atherosclerotic Plaque Formation and Increases Nitrotyrosine and Leukotriene Biosynthesis. Toxicology and Applied Pharmacology, 201, 32-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Xing, Y., Yan, L., Li, X., Xu, Z., Wu, X., Gao, H., et al. (2023) The Relationship between Atrial Fibrillation and NLRP3 Inflammasome: A Gut Microbiota Perspective. Frontiers in Immunology, 14, Article 1273524. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Cui, J., Wang, J. and Wang, Y. (2023) The Role of Short-Chain Fatty Acids Produced by Gut Microbiota in the Regulation of Pre-Eclampsia Onset. Frontiers in Cellular and Infection Microbiology, 13, Article 1177768. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Qian, B., Zhang, K., Li, Y. and Sun, K. (2022) Update on Gut Microbiota in Cardiovascular Diseases. Frontiers in Cellular and Infection Microbiology, 12, Article 1059349. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Wu, P., Chen, J., Chen, J., Tao, J., Wu, S., Xu, G., et al. (2020) Trimethylamine N‐Oxide Promotes Apoe−/− Mice Atherosclerosis by Inducing Vascular Endothelial Cell Pyroptosis via the SDHB/ROS Pathway. Journal of Cellular Physiology, 235, 6582-6591. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Deslande, M., Puig-Castellvi, F., Castro-Dionicio, I., Pacheco-Tapia, R., Raverdy, V., Caiazzo, R., et al. (2025) Intrahepatic Levels of Microbiome-Derived Hippurate Associates with Improved Metabolic Dysfunction-Associated Steatotic Liver Disease. Molecular Metabolism, 92, Article ID: 102090. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Shi, X., Wu, H., Liu, Y., Huang, H., Liu, L., Yang, Y., et al. (2022) Inhibiting Vascular Smooth Muscle Cell Proliferation Mediated by Osteopontin via Regulating Gut Microbial Lipopolysaccharide: A Novel Mechanism for Paeonol in Atherosclerosis Treatment. Frontiers in Pharmacology, 13, Article 936677. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Li, J., Lin, S., Vanhoutte, P.M., Woo, C.W. and Xu, A. (2016) Akkermansia muciniphila Protects against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in APOE−/− Mice. Circulation, 133, 2434-2446. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Cui, Y., Yang, S., Wei, J., Shea, C.R., Zhong, W., Wang, F., et al. (2021) Autophagy of the m6A mRNA Demethylase FTO Is Impaired by Low-Level Arsenic Exposure to Promote Tumorigenesis. Nature Communications, 12, Article No. 2183. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Choiniere, J. and Wang, L. (2016) Exposure to Inorganic Arsenic Can Lead to Gut Microbe Perturbations and Hepatocellular Carcinoma. Acta Pharmaceutica Sinica B, 6, 426-429. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Zhou, W., Chen, X., Fan, Q., Yu, H. and Jiang, W. (2022) Using Proton Pump Inhibitors Increases the Risk of Hepato-Biliary-Pancreatic Cancer. A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 979215. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Haroun, E., Kumar, P.A., Saba, L., Kassab, J., Ghimire, K., Dutta, D., et al. (2023) Intestinal Barrier Functions in Hematologic and Oncologic Diseases. Journal of Translational Medicine, 21, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Guo, X., Okpara, E.S., Hu, W., Yan, C., Wang, Y., Liang, Q., et al. (2022) Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 23, Article 8343. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Baghaie, L., Bunsick, D.A. and Szewczuk, M.R. (2023) Insulin Receptor Signaling in Health and Disease. Biomolecules, 13, Article 807. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Lu, K., Abo, R.P., Schlieper, K.A., Graffam, M.E., Levine, S., Wishnok, J.S., et al. (2014) Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis. Environmental Health Perspectives, 122, 284-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Qiu, T., Zhi, Y., Zhang, J., Wang, N., Yao, X., Yang, G., et al. (2025) Sodium Arsenite Induces Islets β-Cells Apoptosis and Dysfunction via SET-Rac1-Mediated Cytoskeleton Disturbance. Ecotoxicology and Environmental Safety, 289, Article ID: 117641. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Cunningham, A.L., Stephens, J.W. and Harris, D.A. (2021) A Review on Gut Microbiota: A Central Factor in the Pathophysiology of Obesity. Lipids in Health and Disease, 20, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Chen, Q., Ma, X., Li, C., Shen, Y., Zhu, W., Zhang, Y., et al. (2021) Enteric Phageome Alterations in Patients with Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 10, Article 575084. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Sharma, A. and Kumar, S. (2019) Arsenic Exposure with Reference to Neurological Impairment: An Overview. Reviews on Environmental Health, 34, 403-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Finegold, S.M., Downes, J. and Summanen, P.H. (2012) Microbiology of Regressive Autism. Anaerobe, 18, 260-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[116]
|
Umbrello, G. and Esposito, S. (2016) Microbiota and Neurologic Diseases: Potential Effects of Probiotics. Journal of Translational Medicine, 14, Article No. 298. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Rodríguez-Frías, F., Quer, J., Tabernero, D., Cortese, M.F., Garcia-Garcia, S., Rando-Segura, A., et al. (2021) Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms, 9, Article 2518. [Google Scholar] [CrossRef] [PubMed]
|
|
[118]
|
Wang, M., Liu, Y., Zhong, L., Wu, F. and Wang, J. (2025) Advancements in the Investigation of Gut Microbiota-Based Strategies for Stroke Prevention and Treatment. Frontiers in Immunology, 16, Article 1533343. [Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
He, Z., Liu, Y., Li, Z., Sun, T., Li, Z., Manyande, A., et al. (2023) Gut Microbiota Regulates Circadian Oscillation in Hepatic Ischemia-Reperfusion Injury-Induced Cognitive Impairment by Interfering with Hippocampal Lipid Metabolism in Mice. Hepatology International, 17, 1645-1658. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Garcez, M.L., Tan, V.X., Heng, B. and Guillemin, G.J. (2020) Sodium Butyrate and Indole-3-Propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-Induced Human Primary Astrocytes. International Journal of Tryptophan Research, 13, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[121]
|
Zhao, H., Qiu, X., Wang, S., Wang, Y., Xie, L., Xia, X., et al. (2025) Multiple Pathways through Which the Gut Microbiota Regulates Neuronal Mitochondria Constitute Another Possible Direction for Depression. Frontiers in Microbiology, 16, Article 1578155. [Google Scholar] [CrossRef] [PubMed]
|