|
[1]
|
Perruccio, A.V., Young, J.J., Wilfong, J.M., Denise Power, J., Canizares, M. and Badley, E.M. (2024) Osteoarthritis Year in Review 2023: Epidemiology & Therapy. Osteoarthritis and Cartilage, 32, 159-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yue, L. and Berman, J. (2022) What Is Osteoarthritis? JAMA, 327, 1300. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Courties, A., Kouki, I., Soliman, N., Mathieu, S. and Sellam, J. (2024) Osteoarthritis Year in Review 2024: Epidemiology and Therapy. Osteoarthritis and Cartilage, 32, 1397-1404. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Eckstein, F., Wirth, W. and Culvenor, A.G. (2021) Osteoarthritis Year in Review 2020: Imaging. Osteoarthritis and Cartilage, 29, 170-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Snoeker, B.A.M., Ishijima, M., Kumm, J., Zhang, F., Turkiewicz, A.T. and Englund, M. (2021) Are Structural Abnormalities on Knee MRI Associated with Osteophyte Development? Data from the Osteoarthritis Initiative. Osteoarthritis and Cartilage, 29, 1701-1708. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Xu, Z., Chen, T., Luo, J., Ding, S., Gao, S. and Zhang, J. (2017) Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis. Journal of Proteome Research, 16, 1425-1435. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Fan, T., Ruan, G., Antony, B., Cao, P., Li, J., Han, W., et al. (2021) The Interactions between MRI-Detected Osteophytes and Bone Marrow Lesions or Effusion-Synovitis on Knee Symptom Progression: An Exploratory Study. Osteoarthritis and Cartilage, 29, 1296-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhu, Z., Ding, C., Han, W., Zheng, S., Winzenberg, T., Cicuttini, F., et al. (2018) MRI-Detected Osteophytes of the Knee: Natural History and Structural Correlates of Change. Arthritis Research & Therapy, 20, Article No. 237. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhu, Z., Laslett, L.L., Han, W., Antony, B., Pan, F., Cicuttini, F., et al. (2017) Associations between MRI-Detected Early Osteophytes and Knee Structure in Older Adults: A Population-Based Cohort Study. Osteoarthritis and Cartilage, 25, 2055-2062. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Junker, S., Krumbholz, G., Frommer, K.W., Rehart, S., Steinmeyer, J., Rickert, M., et al. (2016) Differentiation of Osteophyte Types in Osteoarthritis—Proposal of a Histological Classification. Joint Bone Spine, 83, 63-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Venne, G., Tse, M.Y., Pang, S.C. and Ellis, R.E. (2020) Mechanically-Induced Osteophyte in the Rat Knee. Osteoarthritis and Cartilage, 28, 853-864. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hada, S., Ishijima, M., Kaneko, H., Kinoshita, M., Liu, L., Sadatsuki, R., et al. (2017) Association of Medial Meniscal Extrusion with Medial Tibial Osteophyte Distance Detected by T2 Mapping MRI in Patients with Early-Stage Knee Osteoarthritis. Arthritis Research & Therapy, 19, Article No. 201. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kizaki, K., Uchida, S., Yamashita, F., Tsukamoto, M. and Azuma, K. (2018) Microstructure of Osteophytes in Medial Knee Osteoarthritis. Clinical Rheumatology, 37, 2893-2896. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mi, C., Zhang, X., Yang, C., Wu, J., Chen, X., Ma, C., et al. (2023) Bone Disease Imaging through the Near-Infrared-II Window. Nature Communications, 14, Article No. 6287. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shio, K., Kobayashi, H., Asano, T., Saito, R., Iwadate, H., Watanabe, H., et al. (2010) Thrombin-cleaved Osteopontin Is Increased in Urine of Patients with Rheumatoid Arthritis. The Journal of Rheumatology, 37, 704-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rockel, J.S. and Kapoor, M. (2018) The Metabolome and Osteoarthritis: Possible Contributions to Symptoms and Pathology. Metabolites, 8, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cai, W., Li, H., Zhang, Y. and Han, G. (2020) Identification of Key Biomarkers and Immune Infiltration in the Synovial Tissue of Osteoarthritis by Bioinformatics Analysis. PeerJ, 8, e8390. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fang, C., Guo, J., Wang, Y., Li, X., Zhang, H., Cui, J., et al. (2021) Diterbutyl Phthalate Attenuates Osteoarthritis in ACLT Mice via Suppressing ERK/c-fos/NFATc1 Pathway, and Subsequently Inhibiting Subchondral Osteoclast Fusion. Acta Pharmacologica Sinica, 43, 1299-1310. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Arakawa, K., Takahata, K., Enomoto, S., Oka, Y., Ozone, K., Nakagaki, S., et al. (2022) The Difference in Joint Instability Affects the Onset of Cartilage Degeneration or Subchondral Bone Changes. Osteoarthritis and Cartilage, 30, 451-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Daniel, A.V., Thompson, G.P., Levy, B.A. (2025) Editorial Commentary: Let’s Finally Agree That Anterior Cruciate Ligament Reconstruction Lowers the Risk of Total Knee Arthroplasty When Compared with Nonoperative Treatment. Arthroscopy, 41, 5265-5267.
|
|
[21]
|
Hsia, A.W., Anderson, M.J., Heffner, M.A., Lagmay, E.P., Zavodovskaya, R. and Christiansen, B.A. (2016) Osteophyte Formation after ACL Rupture in Mice Is Associated with Joint Restabilization and Loss of Range of Motion. Journal of Orthopaedic Research, 35, 466-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Putera, K.H., Kim, J., Baek, S.Y., Schlecht, S.H., Beaulieu, M.L., Haritos, V., et al. (2023) Fatigue-Driven Compliance Increase and Collagen Unravelling in Mechanically Tested Anterior Cruciate Ligament. Communications Biology, 6, Article No. 564. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Filbay, S.R., Roemer, F.W., Lohmander, L.S., Turkiewicz, A., Roos, E.M., Frobell, R., et al. (2022) Evidence of ACL Healing on MRI Following ACL Rupture Treated with Rehabilitation Alone May Be Associated with Better Patient-Reported Outcomes: A Secondary Analysis from the KANON Trial. British Journal of Sports Medicine, 57, 91-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Funck‐Brentano, T., Bouaziz, W., Marty, C., Geoffroy, V., Hay, E. and Cohen‐Solal, M. (2014) Dkk‐1-Mediated Inhibition of Wnt Signaling in Bone Ameliorates Osteoarthritis in Mice. Arthritis & Rheumatology, 66, 3028-3039. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gelse, K., Ekici, A.B., Cipa, F., Swoboda, B., Carl, H.D., Olk, A., et al. (2012) Molecular Differentiation between Osteophytic and Articular Cartilage—Clues for a Transient and Permanent Chondrocyte Phenotype. Osteoarthritis and Cartilage, 20, 162-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Schett, G., Zwerina, J. and David, J. (2008) The Role of Wnt Proteins in Arthritis. Nature Clinical Practice Rheumatology, 4, 473-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bouaziz, W., Funck-Brentano, T., Lin, H., Marty, C., Ea, H., Hay, E., et al. (2015) Loss of Sclerostin Promotes Osteoarthritis in Mice via β-Catenin-Dependent and-Independent Wnt Pathways. Arthritis Research & Therapy, 17, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Scanzello, C.R. and Goldring, S.R. (2012) The Role of Synovitis in Osteoarthritis Pathogenesis. Bone, 51, 249-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gagneja, S., Capalash, N. and Sharma, P. (2024) Hyaluronic Acid as a Tumor Progression Agent and a Potential Chemotherapeutic Biomolecule against Cancer: A Review on Its Dual Role. International Journal of Biological Macromolecules, 275, Article ID: 133744. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, Y., Zheng, Z., Zhang, Z., Xu, Y., Hillpot, E., Lin, Y.S., et al. (2023) Evolution of High-Molecular-Mass Hyaluronic Acid Is Associated with Subterranean Lifestyle. Nature Communications, 14, Article No. 8054. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jansen, H., Meffert, R.H., Birkenfeld, F., Petersen, W. and Pufe, T. (2012) Detection of Vascular Endothelial Growth Factor (VEGF) in Moderate Osteoarthritis in a Rabbit Model. Annals of Anatomy-Anatomischer Anzeiger, 194, 452-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kaneko, H., Ishijima, M., Futami, I., Tomikawa-Ichikawa, N., Kosaki, K., Sadatsuki, R., et al. (2013) Synovial Perlecan Is Required for Osteophyte Formation in Knee Osteoarthritis. Matrix Biology, 32, 178-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Junker, S., Frommer, K.W., Krumbholz, G., Tsiklauri, L., Gerstberger, R., Rehart, S., et al. (2017) Expression of Adipokines in Osteoarthritis Osteophytes and Their Effect on Osteoblasts. Matrix Biology, 62, 75-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, F., Su, F., Zhang, T., Liu, R., Liu, N. and Dong, T. (2023) Relationship between Knee Osteophytes and Calcitonin Gene-Related Peptide Concentrations of Serum and Synovial Fluid in Knee of Osteoarthritis. Medicine, 102, e34691. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sohail, M., Azad, M.M. and Kim, H.S. (2025) Knee Osteoarthritis Severity Detection Using Deep Inception Transfer Learning. Computers in Biology and Medicine, 186, Article ID: 109641. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, Y., Bi, Z., Xie, Y., Wu, T., Zeng, X., Chen, S., et al. (2022) Learning from Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment: Data from the Osteoarthritis Initiative. IEEE Journal of Biomedical and Health Informatics, 26, 1239-1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gui, T., Huan, S., Zhuang, T., Zhang, H., Yang, J., Li, B., et al. (2023) Hippo/Yap1 Inhibition by Verteporfin Attenuates Osteophyte Formation in a Mouse Surgical Osteoarthritis Model. Biomaterials Advances, 149, Article ID: 213413. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, P., Wang, Q., Cao, P., Chen, T., Li, S., Wang, X., et al. (2024) The Association between Anterior Cruciate Ligament Degeneration and Incident Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Journal of Orthopaedic Translation, 44, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wu, Y., Liew, J.W., Boer, J.D., Westerland, M., LaValley, M., Voortman, T., et al. (2025) Chondrocalcinosis and Incident Knee Osteoarthritis: Findings from 2 Large Prospective Cohorts with 20 Years of Follow-Up. Annals of the Rheumatic Diseases, 84, 1743-1751. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, L., Ishijima, M., Kaneko, H., Sadatsuki, R., Hada, S., Kinoshita, M., et al. (2016) The MRI-Detected Osteophyte Score Is a Predictor for Undergoing Joint Replacement in Patients with End-Stage Knee Osteoarthritis. Modern Rheumatology, 27, 332-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rabelo, G.D., vom Scheidt, A., Klebig, F., Hemmatian, H., Citak, M., Amling, M., et al. (2020) Multiscale Bone Quality Analysis in Osteoarthritic Knee Joints Reveal a Role of the Mechanosensory Osteocyte Network in Osteophytes. Scientific Reports, 10, Article No. 673. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Omoumi, P., Schuler, A., Babel, H., Stoffel, C., Jolles, B.M. and Favre, J. (2021) Proximal Tibial Osteophyte Volumes Are Correlated Spatially and with Knee Alignment: A Quantitative Analysis Suggesting the Influence of Biochemical and Mechanical Factors in the Development of Osteophytes. Osteoarthritis and Cartilage, 29, 1691-1700. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Park, S.Y., Kim, M.J., Cho, J.H., Nam, H.S., Ho, J.P.Y. and Lee, Y.S. (2025) Osteoarthritis Progression Pattern Based on Patient Specific Characteristics Using Machine Learning. NPJ Digital Medicine, 8, Article No. 464. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Holst, D.C. and Dennis, D.A. (2018) Pearls: Early Removal of Posterior Osteophytes in TKA. Clinical Orthopaedics & Related Research, 476, 684-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Smeets, K., Slane, J., Scheys, L., Claes, S. and Bellemans, J. (2017) Mechanical Analysis of Extra-Articular Knee Ligaments. Part One: Native Knee Ligaments. The Knee, 24, 949-956. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tzanetis, P., de Souza, K., Robertson, S., Fluit, R., Koopman, B. and Verdonschot, N. (2024) Numerical Study of Osteophyte Effects on Preoperative Knee Functionality in Patients Undergoing Total Knee Arthroplasty. Journal of Orthopaedic Research, 42, 1943-1954. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liew, J.W., Rabasa, G., LaValley, M., Collins, J., Stefanik, J., Roemer, F.W., et al. (2023) Development of a Magnetic Resonance Imaging-Based Definition of Knee Osteoarthritis: Data from the Multicenter Osteoarthritis Study. Arthritis & Rheumatology, 75, 1132-1138. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Mazzei, D.R., Whittaker, J.L., Faris, P., Wasylak, T. and Marshall, D.A. (2025) Estimating Budget Impact and Joint Replacement Avoidance by Implementing a Standardized Education and Exercise Therapy Program for Hip and Knee Osteoarthritis in a Publicly Insured Health Care System. Arthritis Care & Research, 77, 744-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hampp, E., Chughtai, M., Scholl, L., Sodhi, N., Bhowmik-Stoker, M., Jacofsky, D., et al. (2018) Robotic-arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. The Journal of Knee Surgery, 32, 239-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, C., Zhang, Z., Wang, G., Rong, C., Zhu, W., Lu, X., et al. (2022) Accuracies of Bone Resection, Implant Position, and Limb Alignment in Robotic-Arm-Assisted Total Knee Arthroplasty: A Prospective Single-Centre Study. Journal of Orthopaedic Surgery and Research, 17, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Parratte, S., Price, A.J., Jeys, L.M., Jackson, W.F. and Clarke, H.D. (2019) Accuracy of a New Robotically Assisted Technique for Total Knee Arthroplasty: A Cadaveric Study. The Journal of Arthroplasty, 34, 2799-2803. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mullaji, A. (2020) Can Isolated Removal of Osteophytes Achieve Correction of Varus Deformity and Gap-Balance in Computer-Assisted Total Knee Arthroplasty? The Bone & Joint Journal, 102, 49-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sriphirom, P., Siramanakul, C., Chanopas, B. and Boonruksa, S. (2018) Effects of Posterior Condylar Osteophytes on Gap Balancing in Computer-Assisted Total Knee Arthroplasty with Posterior Cruciate Ligament Sacrifice. European Journal of Orthopaedic Surgery & Traumatology, 28, 677-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Gustke, K.A., Cherian, J.J., Simon, P. and Morrison, T.A. (2022) Effect of Posterior Osteophytes on Total Knee Arthroplasty Coronal Soft Tissue Balance: Do They Matter? The Journal of Arthroplasty, 37, S226-S230. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lee, J.H., Jung, H.J., Lee, J.K., Hwang, J.H. and Kim, J.I. (2023) Large Osteophytes over 10 mm at Posterior Medial Femoral Condyle Can Lead to Asymmetric Extension Gap Following Bony Resection in Robotic Arm-Assisted Total Knee Arthroplasty with Pre-Resection Gap Balancing. Journal of Clinical Medicine, 12, Article No. 5980. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ebrahimzadeh, S., Islam, N., Dawit, H., et al. (2022) Thoracic Imaging Tests for the Diagnosis of COVID-19. The Cochrane Database of Systematic Reviews, 5, CD013639.
|
|
[57]
|
Roemer, F.W., Engelke, K., Li, L., Laredo, J.-. and Guermazi, A. (2023) MRI Underestimates Presence and Size of Knee Osteophytes Using CT as a Reference Standard. Osteoarthritis and Cartilage, 31, 656-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Koski, J., Kamel, A., Waris, P., Waris, V., Tarkiainen, I., Karvanen, E., et al. (2015) Atlas-Based Knee Osteophyte Assessment with Ultrasonography and Radiography: Relationship to Arthroscopic Degeneration of Articular Cartilage. Scandinavian Journal of Rheumatology, 45, 158-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Saarakkala, S., Waris, P., Waris, V., Tarkiainen, I., Karvanen, E., Aarnio, J., et al. (2012) Diagnostic Performance of Knee Ultrasonography for Detecting Degenerative Changes of Articular Cartilage. Osteoarthritis and Cartilage, 20, 376-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Schmitz, R.J., Wang, H., Polprasert, D.R., Kraft, R.A. and Pietrosimone, B.G. (2017) Evaluation of Knee Cartilage Thickness: A Comparison between Ultrasound and Magnetic Resonance Imaging Methods. The Knee, 24, 217-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Keshava, S.N., Gibikote, S.V., Mohanta, A., Poonnoose, P., Rayner, T., Hilliard, P., et al. (2015) Ultrasound and Magnetic Resonance Imaging of Healthy Paediatric Ankles and Knees: A Baseline for Comparison with Haemophilic Joints. Haemophilia, 21, e210-e222. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Buttgereit, F., Burmester, G. and Bijlsma, J.W.J. (2015) Non-Surgical Management of Knee Osteoarthritis: Where Are We Now and Where Do We Need to Go? RMD Open, 1, e000027. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Cho, Y., Jeong, S., Kim, H., Kang, D., Lee, J., Kang, S., et al. (2021) Disease-Modifying Therapeutic Strategies in Osteoarthritis: Current Status and Future Directions. Experimental & Molecular Medicine, 53, 1689-1696. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Li, H., Hu, F., Pan, X., Wang, Q., Liang, H., Lv, L., et al. (2025) Multidimensional Regulation of Bone Marrow Niche Using Extracorporeal Shock Wave Responsive Nanocomposites for Osteoporosis Therapy. Small, 21, e05863. [Google Scholar] [CrossRef]
|
|
[65]
|
Kim, S., Lee, H., Hong, J., Kim, S.H.L., Kwon, E., Park, T.H., et al. (2023) Bone‐Targeted Delivery of Cell‐Penetrating‐RUNX2 Fusion Protein in Osteoporosis Model. Advanced Science, 10, e2301570. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zeng, L., Deng, Y., He, Q., Yang, K., Li, J., Xiang, W., et al. (2022) Safety and Efficacy of Probiotic Supplementation in 8 Types of Inflammatory Arthritis: A Systematic Review and Meta-Analysis of 34 Randomized Controlled Trials. Frontiers in Immunology, 13, Article ID: 961325. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Wu, K.T., Wang, Y.W., Wu, R.W., Huang, C.C. and Chen, Y.C. (2022) Association of a Femoral Neck T Score with Knee Joint Osteophyte Formation but Not with Skeletal Muscle Mass. Clinical Rheumatology, 42, 917-922. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Zhu, D., Wang, X., Xi, Z., Chen, K., Feng, Y., Zi, C., et al. (2024) Diet Influences Knee Osteoarthritis Osteophyte Formation via Gut Microbiota and Serum Metabolites. iScience, 27, 110111. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Xi, Y., Zheng, K., Deng, F., Liu, Y., Sun, H., Zheng, Y., et al. (2024) Themis: Advancing Precision Oncology through Comprehensive Molecular Subtyping and Optimization. Briefings in Bioinformatics, 25, bbae261. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Thakur, R. and Singh, P.K. (2021) Molecular Subtypes of Pancreatic Cancer: A Proteomics Approach. Clinical Cancer Research, 27, 3272-3274. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
He, J., Liu, N. and Zhao, L. (2025) New Progress in Imaging Diagnosis and Immunotherapy of Breast Cancer. Frontiers in Immunology, 16, Article ID: 1560257. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Hambright, W.S., Duke, V.R., Goff, A.D., Goff, A.W., Minas, L.T., Kloser, H., et al. (2024) Clinical Validation of C12FDG as a Marker Associated with Senescence and Osteoarthritic Phenotypes. Aging Cell, 23, e14113. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Gatti, A.A., Blankemeier, L., Veen, D.V., et al. (2024) ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs.
|