|
[1]
|
Ruopp, N.F. and Cockrill, B.A. (2022) Diagnosis and Treatment of Pulmonary Arterial Hypertension. JAMA, 327, 1379-1391. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
李涵飞, 祝田田, 赵繁荣, 等. 肺动脉高压发病机制及治疗研究进展[J]. 新乡医学院学报, 2025, 42(5): 426-431.
|
|
[3]
|
Mocumbi, A., Humbert, M., Saxena, A., Jing, Z., Sliwa, K., Thienemann, F., et al. (2024) Pulmonary Hypertension. Nature Reviews Disease Primers, 10, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bhogal, S., Khraisha, O., Al Madani, M., Treece, J., Baumrucker, S.J. and Paul, T.K. (2019) Sildenafil for Pulmonary Arterial Hypertension. American Journal of Therapeutics, 26, e520-e526. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Thenappan, T., Ormiston, M.L., Ryan, J.J. and Archer, S.L. (2018) Pulmonary Arterial Hypertension: Pathogenesis and Clinical Management. BMJ, 360, j5492. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Coons, J.C., Pogue, K., Kolodziej, A.R., Hirsch, G.A. and George, M.P. (2019) Pulmonary Arterial Hypertension: A Pharmacotherapeutic Update. Current Cardiology Reports, 21, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shah, A.J., Beckmann, T., Vorla, M. and Kalra, D.K. (2023) New Drugs and Therapies in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 24, Article 5850. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
苑英慧, 潘禹硕, 姚思成, 等. 肺动脉高压程序性细胞死亡和中医药干预作用研究进展[J/OL]. 中国实验方剂学杂志, 1-19. 2025-12-14.[CrossRef]
|
|
[9]
|
曹闲雅, 谭骏岚, 郑润锈, 等. 基于络病理论探讨靶向肺血管重塑治疗肺动脉高压[J]. 中国中医药信息杂志, 2024, 31(9): 18-23.
|
|
[10]
|
罗云梅, 李铭铭, 熊乙林, 等. 基于CX3CL1介导的炎症反应研究淫羊藿苷对缺氧诱导的肺动脉高压小鼠的作用[J]. 中草药, 2022, 53(4): 1068-1075.
|
|
[11]
|
李铭铭, 熊乙林, 罗云梅, 等. 淫羊藿苷抗缺氧诱导小鼠肺动脉高压的作用[J]. 中国新药与临床杂志, 2020, 39(4): 235-240.
|
|
[12]
|
Kırcı, D., Demirci, F. and Demirci, B. (2023) Microbial Transformation of Hesperidin and Biological Evaluation. ACS Omega, 8, 42610-42621. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
He, J. and Liao, J. (2025) Potential Role of Hesperidin in Improving Experimental Pulmonary Arterial Hypertension in Rats via Modulation of the NF‐κB Pathway. Chemical Biology & Drug Design, 105, e70068. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, Y., Cai, C., Yang, L., Xiang, Y., Zhao, H. and Zeng, C. (2020) Inhibitory Effects of Formononetin on the Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats. Molecular Medicine Reports, 21, 1192-1200. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
张晓丹, 李文娣, 张茹, 等. 基于NLRP3炎症小体探讨葛根素对缺氧致肺动脉平滑肌细胞焦亡的影响[J]. 中国药房, 2021, 32(11): 1337-1344.
|
|
[16]
|
周帅, 芦山, 郭森. 基于Notch信号通路探究葛根素对肺动脉高压小鼠治疗作用机制研究[J]. 辽宁中医杂志, 2022, 49(7): 197-201+224.
|
|
[17]
|
张宁宁, 邱奇, 陈永锋, 等. 槲皮素可改善大鼠肺动脉高压: 基于调控HMGB1/RAGE/NF-κB通路[J]. 南方医科大学学报, 2023, 43(9): 1606-1612.
|
|
[18]
|
Gao, R., Aikeremu, N., Cao, N., Chen, C., Ma, K., Li, L., et al. (2024) Quercetin Regulates Pulmonary Vascular Remodeling in Pulmonary Hypertension by Downregulating TGF-β1-Smad2/3 Pathway. BMC Cardiovascular Disorders, 24, Article No. 535. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yin, Q., Wang, S., Yang, J., Fan, C., Yu, Y., Li, J., et al. (2023) Nobiletin Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension through PI3K/Akt/STAT3 Pathway. Journal of Pharmacy and Pharmacology, 75, 1100-1110. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zuo, W., Liu, N., Zeng, Y., Xiao, Z., Wu, K., Yang, F., et al. (2021) Luteolin Ameliorates Experimental Pulmonary Arterial Hypertension via Suppressing Hippo-Yap/PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 12, Article ID: 663551. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chang, Z., Wang, J., Jing, Z., Ma, P., Xu, Q., Na, J., et al. (2020) Protective Effects of Isorhamnetin on Pulmonary Arterial Hypertension: In Vivo and in Vitro Studies. Phytotherapy Research, 34, 2730-2744. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chen, Y., Ma, P., Bo, L., et al. (2024) Isorhamnetin Alleviates Symptoms and Inhibits Oxidative Stress Levels in Rats with Pulmonary Arterial Hypertension. Iranian Journal of Basic Medical Sciences, 27, 1616-1623.
|
|
[23]
|
Xue, X., Zhang, S., Jiang, W., Wang, J., Xin, Q., Sun, C., et al. (2021) Protective Effect of Baicalin against Pulmonary Arterial Hypertension Vascular Remodeling through Regulation of TNF‐α Signaling Pathway. Pharmacology Research & Perspectives, 9, e00703. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
蒋雯, 孙超, 王珏, 等. 黄芩苷通过抑制血管重构对实验性肺动脉高压的治疗作用研究(英文) [J]. 中国药学科学杂志, 2020, 29(10): 719-728.
|
|
[25]
|
张晶晶, 王洪新. 黄芩苷通过PDGF/P38 MAPK信号通路对肺动脉高压大鼠的保护作用[J]. 中国临床解剖学杂志, 2024, 42(1): 54-58.
|
|
[26]
|
Yu, M., Wu, X., Wang, J., He, M., Han, H., Hu, S., et al. (2022) Paeoniflorin Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats by Suppressing Tak1-Mapk/NF-κB Pathways. International Journal of Medical Sciences, 19, 681-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yu, M., Peng, L., Liu, P., Yang, M., Zhou, H., Ding, Y., et al. (2020) Paeoniflorin Ameliorates Chronic Hypoxia/SU5416-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition. Drug Design, Development and Therapy, 14, 1191-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
张赛, 田云娜, 宋正阳, 等. 三七总皂苷通过抑制ADAM10/Notch3信号通路改善野百合碱诱导的大鼠肺动脉高压[J]. 生理学报, 2023, 75(4): 503-511.
|
|
[29]
|
宋正阳, 王新雨, 田云娜, 等. 三七总皂苷对肺动脉高压大鼠肺血管重构的影响及其机制[J]. 中国应用生理学杂志, 2022, 38(6): 650-655.
|
|
[30]
|
张赛, 宋正阳, 王淑远, 等. 三七总皂苷通过Notch3/Hes-1/p27Kip1信号通路抑制低氧性肺动脉高压大鼠肺血管重构[J]. 中国病理生理杂志, 2022, 38(2): 209-214.
|
|
[31]
|
施晓倩, 宋正阳, 田云娜, 等. 三七总皂苷通过AMPK通路对PASMCs自噬的影响[J]. 中国细胞生物学学报, 2022, 44(3): 429-436.
|
|
[32]
|
张喜民, 刘思佳, 孙亚彬, 等. 丹参酮ⅡA通过介导PI3K/Akt-eNOS信号通路改善野百合碱所致大鼠肺动脉高压[J]. 南方医科大学学报, 2022, 42(5): 718-723.
|
|
[33]
|
祝文静, 李娜, 王萌, 等. 雷公藤甲素生物药剂学分类研究[J]. 时珍国医国药, 2023, 34(7): 1586-1589.
|
|
[34]
|
王梅爱, 黄秋虹, 陈慧勤, 等. 雷公藤甲素对肺动脉高压大鼠免疫炎症的影响及其作用机制[J]. 中国免疫学杂志, 2024, 40(2): 343-347+354.
|
|
[35]
|
Yao, Y., Song, L., Zuo, Z., Chen, Z., Wang, Y., Cai, H., et al. (2024) Parthenolide Attenuates Hypoxia-Induced Pulmonary Hypertension through Inhibiting STAT3 Signaling. Phytomedicine, 134, Article 155976. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, J., Liu, H., Jing, Z., Zhao, F. and Zhou, R. (2022) 18β-Glycyrrhetinic Acid Ameliorates Endoplasmic Reticulum Stress-Induced Inflammation in Pulmonary Arterial Hypertension through PERK/eIF2α/NF-κB Signaling. Chinese Journal of Physiology, 65, 187-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yamamura, A., Fujiwara, M., Kawade, A., Amano, T., Hossain, A., Nayeem, M.J., et al. (2024) Corosolic Acid Attenuates Platelet-Derived Growth Factor Signaling in Macrophages and Smooth Muscle Cells of Pulmonary Arterial Hypertension. European Journal of Pharmacology, 973, Article 176564. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chaudhary, S., Naikade, N.K., Tiwari, M.K., Yadav, L., Shyamlal, B.R.K. and Puri, S.K. (2016) New Orally Active Diphenylmethyl-Based Ester Analogues of Dihydroartemisinin: Synthesis and Antimalarial Assessment against Multidrug-Resistant Plasmodium Yoelii Nigeriensis in Mice. Bioorganic & Medicinal Chemistry Letters, 26, 1536-1541. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tang, M., Wang, R., Feng, P., Dong, Q., Chen, W., Zhao, Y., et al. (2020) Dihydroartemisinin Attenuates Pulmonary Hypertension through Inhibition of Pulmonary Vascular Remodeling in Rats. Journal of Cardiovascular Pharmacology, 76, 337-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Nie, X., Wu, Z., Shang, J., Zhu, L., Liu, Y. and Qi, Y. (2023) Curcumol Suppresses Endothelial-to-Mesenchymal Transition via Inhibiting the Akt/GSK3β Signaling Pathway and Alleviates Pulmonary Arterial Hypertension in Rats. European Journal of Pharmacology, 943, Article 175546. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
王文琛, 陈鸣, 吴双洁, 等. 雷公藤甲素减毒策略的研究进展[J]. 中国实验方剂学杂志, 2025, 31(16): 278-287.
|
|
[42]
|
曾媛媛, 杨东鹏, 董柱, 等. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报(医学版), 2022, 60(11): 63-69.
|
|
[43]
|
Huang, H., Kong, L., Luan, S., Qi, C. and Wu, F. (2021) Ligustrazine Suppresses Platelet-Derived Growth Factor-Bb-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/Akt Signaling Pathway. The American Journal of Chinese Medicine, 49, 437-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, Q., Chen, Y., Wang, Q., Wang, Y., Feng, W., Chai, L., et al. (2023) Hmgb1-Induced Activation of ER Stress Contributes to Pulmonary Artery Hypertension in Vitro and in Vivo. Respiratory Research, 24, Article No. 149. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wande, Y., jie, L., aikai, Z., yaguo, Z., linlin, Z., yue, G., et al. (2020) Berberine Alleviates Pulmonary Hypertension through Trx1 and β-Catenin Signaling Pathways in Pulmonary Artery Smooth Muscle Cells. Experimental Cell Research, 390, Article 111910. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Li, M., Ying, M., Gu, S., Zhou, Z. and Zhao, R. (2024) Matrine Alleviates Hypoxia‐Induced Inflammation and Pulmonary Vascular Remodelling via RPS5/NF‐κB Signalling Pathway. Journal of Biochemical and Molecular Toxicology, 38, e23583. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lv, Y., Ma, P., Wang, J., Xu, Q., Fan, J., Yan, L., et al. (2021) Betaine Alleviates Right Ventricular Failure via Regulation of Rho A/ROCK Signaling Pathway in Rats with Pulmonary Arterial Hypertension. European Journal of Pharmacology, 910, Article 174311. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
赵梅, 邢诒雄, 陈鑫. 黄芪甲苷Ⅳ通过靶向Wnt/β-catenin信号通路调控低氧诱导的人肺动脉平滑肌细胞的增殖和迁移[J]. 中国热带医学, 2022, 22(8): 762-768.
|
|
[49]
|
Xi, J., Ma, Y., Liu, D. and Li, R. (2023) Astragaloside IV Restrains Pyroptosis and Fibrotic Development of Pulmonary Artery Smooth Muscle Cells to Ameliorate Pulmonary Artery Hypertension through the PHD2/HIF1α Signaling Pathway. BMC Pulmonary Medicine, 23, Article No. 386. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yao, J., Fang, X., Zhang, C., Yang, Y., Wang, D., Chen, Q., et al. (2021) Astragaloside IV Attenuates Hypoxia-Induced Pulmonary Vascular Remodeling via the Notch Signaling Pathway. Molecular Medicine Reports, 23, Article 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Sun, Y., Lu, M., Sun, T. and Wang, H. (2021) Astragaloside IV Attenuates Inflammatory Response Mediated by NLRP‐3/Calpain‐1 Is Involved in the Development of Pulmonary Hypertension. Journal of Cellular and Molecular Medicine, 25, 586-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
龚晓男, 孙洋, 王洪新. 黄芪甲苷通过Calpain-1/HIF-1α改善野百合碱诱导的肺动脉高压大鼠氧化应激[J]. 中药药理与临床, 2021, 37(2): 33-38.
|
|
[53]
|
孙洋, 王洪新. 黄芪甲苷通过NF-κB/NLRP3信号通路减轻肺动脉高压大鼠的炎症反应[J]. 中成药, 2023, 45(2): 578-582.
|
|
[54]
|
田小雪, 鲁美丽, 王洪新. 黄芪甲苷通过calpain-1/NF-κB信号通路对低氧诱导的肺动脉高压小鼠的保护作用[J]. 中国医院药学杂志, 2022, 42(13): 1293-1298.
|
|
[55]
|
Liu, N., Ji, Y., Liu, R. and Jin, X. (2024) The State of Astragaloside IV Research: A Bibliometric and Visualized Analysis. Fundamental & Clinical Pharmacology, 38, 208-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Deng, J., Wei, R., Zhang, W., Shi, C., Yang, R., Jin, M., et al. (2024) Crocin’s Role in Modulating MMP2/TIMP1 and Mitigating Hypoxia-Induced Pulmonary Hypertension in Mice. Scientific Reports, 14, Article No. 12716. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Sheng, Y., Gong, X., Zhao, J., Liu, Y. and Yuan, Y. (2022) Effects of Crocin on CCL2/CCR2 Inflammatory Pathway in Monocrotaline-Induced Pulmonary Arterial Hypertension Rats. The American Journal of Chinese Medicine, 50, 241-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Dianat, M., Radan, M., Mard, S.A., Sohrabi, F. and Saryazdi, S.S.N. (2020) Contribution of Reactive Oxygen Species via the OXR1 Signaling Pathway in the Pathogenesis of Monocrotaline-Induced Pulmonary Arterial Hypertension: The Protective Role of Crocin. Life Sciences, 256, Article 117848. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
陈志慧, 王文彩, 郭微, 等. 栀子源藏红花素的生物合成研究进展[J/OL]. 分子植物育种, 1-13. https://link.cnki.net/urlid/46.1068.S.20220325.1803.005, 2025-12-14.
|
|
[60]
|
Wang, Y., Duo, D., Yan, Y., He, R. and Wu, X. (2020) Magnesium Lithospermate B Ameliorates Hypobaric Hypoxia-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition and Its Potential Targets. Biomedicine & Pharmacotherapy, 130, Article 110560. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Liu, J., Fang, G., Lan, C., Qiu, C., Yao, L., Zhang, Q., et al. (2024) Forsythoside B Mitigates Monocrotaline-Induced Pulmonary Arterial Hypertension via Blocking the NF-κB Signaling Pathway to Attenuate Vascular Remodeling. Drug Design, Development and Therapy, 18, 767-780. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
刘文光, 刘思佟, 张薇薇, 等. 虎杖苷调节YAP1/TAZ信号通路对缺氧性肺动脉高压新生大鼠肺动脉平滑肌细胞增殖与凋亡的影响[J]. 华中科技大学学报(医学版), 2024, 53(1): 68-74.
|