|
[1]
|
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994) GroupLens: An Open Architecture for Collaborative Filtering of Netnews. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work—CSCW’94, Chapel Hill, 22-26 October 1994, 175-186. [Google Scholar] [CrossRef]
|
|
[2]
|
张艳菊, 余冰冰. 考虑情境异质图神经网络的跨境电商推荐模型研究[J/OL]. 计算机工程与应用: 1-13. https://link.cnki.net/urlid/11.2127.tp.20251028.1716.016, 2025-11-03.
|
|
[3]
|
Ricci, F., Rokach, L. and Shapira, B. (2010) Introduction to Recommender Systems Handbook. In: Ricci, F., Rokach, L., Shapira, B. and Kantor, P.B., Eds., Recommender Systems Handbook, Springer, 1-35.
|
|
[4]
|
Adomavicius, G. and Tuzhilin, A. (2005) Toward the Next Generation of Recommender Systems: A Survey of the State-Of-The-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 17, 734-749. [Google Scholar] [CrossRef]
|
|
[5]
|
Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., et al. (2012) Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. IEEE Transactions on Learning Technologies, 5, 318-335. [Google Scholar] [CrossRef]
|
|
[6]
|
Jannach, D., Zanker, M., Felfernig, A. and Friedrich, G. (2010) Recommender Systems: An Introduction. Cambridge University Press. [Google Scholar] [CrossRef]
|
|
[7]
|
Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl, J. (1999) An Algorithmic Framework for Performing Collaborative Filtering. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, 15-19 August 1999, 230-237. [Google Scholar] [CrossRef]
|
|
[8]
|
Linden, G., Smith, B. and York, J. (2003) Amazon.com Recommendations: Item-To-Item Collaborative Filtering. IEEE Internet Computing, 7, 76-80. [Google Scholar] [CrossRef]
|
|
[9]
|
Schein, A.I., Popescul, A., Ungar, L.H. and Pennock, D.M. (2002) Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval—SIGIR’02, Tampere, 11-15 August 2002, 253-260. [Google Scholar] [CrossRef]
|
|
[10]
|
Goldberg, D., Nichols, D., Oki, B.M. and Terry, D. (1992) Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM, 35, 61-70. [Google Scholar] [CrossRef]
|
|
[11]
|
Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001) Item-Based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web, Hong Kong SAR, 1-5 May 2001, 285-295. [Google Scholar] [CrossRef]
|
|
[12]
|
Koren, Y., Bell, R. and Volinsky, C. (2009) Matrix Factorization Techniques for Recommender Systems. Computer, 42, 30-37. [Google Scholar] [CrossRef]
|
|
[13]
|
Melville, P., Mooney, R.J. and Nagarajan, R. (2002) Content-Boosted Collaborative Filtering for Improved Recommendations. Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, July 2002, 187-192.
|
|
[14]
|
He, X., Liao, L., Zhang, H., Nie, L., Hu, X. and Chua, T. (2017) Neural Collaborative Filtering. Proceedings of the 26th International Conference on World Wide Web, Perth, 3-7 April 2017, 173-182. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, X., He, X., Wang, M., Feng, F. and Chua, T. (2019) Neural Graph Collaborative Filtering. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, 21-25 July 2019, 165-174. [Google Scholar] [CrossRef]
|
|
[16]
|
Pazzani, M.J. and Billsus, D. (2007) Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A. and Nejdl, W., Eds., The Adaptive Web, Springer, 325-341.
|
|
[17]
|
Mooney, R.J. and Roy, L. (2000) Content-Based Book Recommending Using Learning for Text Categorization. Proceedings of the Fifth ACM Conference on Digital Libraries, Denver, 7-11 June 2005, 195-204. [Google Scholar] [CrossRef]
|
|
[18]
|
Pazzani, M. and Billsus, D. (1997) Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning, 27, 313-331. [Google Scholar] [CrossRef]
|
|
[19]
|
Ricci, F. and Werthner, H. (2001) Case Base Querying for Travel Planning Recommendation. Information Technology & Tourism, 4, 215-226.
|
|
[20]
|
Felfernig, A. and Burke, R. (2008) Constraint-Based Recommender Systems: Technologies and Research Issues. Proceedings of the 10th International Conference on Electronic Commerce, Innsbruck, 19-22 August 2008, 1-10. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhang, F., Yuan, N.J., Lian, D., Xie, X. and Ma, W. (2016) Collaborative Knowledge Base Embedding for Recommender Systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 353-362. [Google Scholar] [CrossRef]
|
|
[22]
|
Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al. (2016) Wide & Deep Learning for Recommender Systems. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, 15 September 2016, 7-10. [Google Scholar] [CrossRef]
|
|
[23]
|
Guo, H., Tang, R., Ye, Y., Li, Z. and He, X. (2017) DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 1725-1731. [Google Scholar] [CrossRef]
|
|
[24]
|
Wang, R., Fu, B., Fu, G. and Wang, M. (2017) Deep & Cross Network for Ad Click Predictions. Proceedings of the ADKDD’17, Halifax, 14 August 2017, 1-7. [Google Scholar] [CrossRef]
|
|
[25]
|
Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X. and Sun, G. (2018) xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1754-1763. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., et al. (2018) Deep Interest Network for Click-Through Rate Prediction. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1059-1068. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., et al. (2019) Deep Interest Evolution Network for Click-Through Rate Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 5941-5948. [Google Scholar] [CrossRef]
|
|
[28]
|
Feng, Y., Lv, F., Shen, W., Wang, M., Sun, F., Zhu, Y., et al. (2019) Deep Session Interest Network for Click-Through Rate Prediction. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao SAR, 10-16 August 2019, 2301-2307. [Google Scholar] [CrossRef]
|
|
[29]
|
Ma, X., Zhao, L., Huang, G., Wang, Z., Hu, Z., Zhu, X., et al. (2018) Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, 8-12 July 2018, 1137-1140. [Google Scholar] [CrossRef]
|
|
[30]
|
Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L. and Chi, E.H. (2018) Modeling Task Relationships in Multi-Task Learning with Multi-Gate Mixture-Of-Experts. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1930-1939. [Google Scholar] [CrossRef]
|
|
[31]
|
Tang, H., Liu, J., Zhao, M. and Gong, X. (2020) Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations. Fourteenth ACM Conference on Recommender Systems, 22-26 September 2020, 269-278. [Google Scholar] [CrossRef]
|
|
[32]
|
Huang, P., He, X., Gao, J., Deng, L., Acero, A. and Heck, L. (2013) Learning Deep Structured Semantic Models for Web Search Using Clickthrough Data. Proceedings of the 22nd ACM international conference on Information & Knowledge Management, San Francisco, 27 October-1 November 2013, 2333-2338. [Google Scholar] [CrossRef]
|
|
[33]
|
Zhou, C., Bai, J., Song, J., Liu, X., Zhao, Z., Chen, X., et al. (2018) ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 32, 4564-4571. [Google Scholar] [CrossRef]
|
|
[34]
|
Ma, J., Zhao, Z., Chen, J., Li, A., Hong, L. and Chi, E.H. (2019) SNR: Sub-Network Routing for Flexible Parameter Sharing in Multi-Task Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 216-223. [Google Scholar] [CrossRef]
|