|
[1]
|
Cheng, X., Jiang, F., Liu, L., Wang, Y., Chen, S. and Cui, W. (2025) Discovery of Rapid-Acting, Orally Available Antidepressants by Activating TrkB Signaling. Journal of Medicinal Chemistry, 68, 16781-16801. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Matteo, M., Cristian, P., Laura, M., Federico, M., Chiara, R., Lorenzo, G., et al. (2021) The Use of Esketamine in Comorbid Treatment Resistant Depression and Obsessive Compulsive Disorder Following Extensive Pharmacogenomic Testing: A Case Report. Annals of General Psychiatry, 20, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Deyama, S. (2020) Resolvins as Novel Targets for Rapid-Acting Antidepressants. Folia Pharmacologica Japonica, 155, 381-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hope, J., Copolov, D., Tiller, J., Galbally, M., Hopwood, M., Newton, R., et al. (2023) What Clinicians Need to Know about Intranasal Esketamine for Treatment-Resistant Depression? Australasian Psychiatry, 31, 841-845. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Khorassani, F. and Talreja, O. (2020) Intranasal Esketamine: A Novel Drug for Treatment-Resistant Depression. American Journal of Health-System Pharmacy, 77, 1382-1388. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Halaris, A. and Cook, J. (2023) The Glutamatergic System in Treatment-Resistant Depression and Comparative Effectiveness of Ketamine and Esketamine: Role of Inflammation? In: Kim, Y.K., Ed., Advances in Experimental Medicine and Biology, Springer Nature, 487-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zang, X., Zhang, J., Hu, J., Mo, X., Zheng, T., Ji, J., et al. (2025) Electroconvulsive Therapy Combined with Esketamine Improved Depression through PI3K/AKT/GLT-1 Pathway. Journal of Affective Disorders, 368, 282-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hu, N., Chen, X., Chen, C., Liu, X., Yi, P., Xu, T., et al. (2023) Exploring the Role of Esketamine in Alleviating Depressive Symptoms in Mice via the PGC-1α/Irisin/ERK1/2 Signaling Pathway. Scientific Reports, 13, Article No. 16611. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yao, H., Wang, X., Chi, J., Chen, H., Liu, Y., Yang, J., et al. (2024) Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules, 29, Article 964. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Petersen, J., Ludwig, M.Q., Juozaityte, V., Ranea-Robles, P., Svendsen, C., Hwang, E., et al. (2024) GLP-1-Directed NMDA Receptor Antagonism for Obesity Treatment. Nature, 629, 1133-1141. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Millen, A.M., Daniels, W.M. and Baijnath, S. (2024) Depression, an Unmet Health Need in Africa: Understanding the Promise of Ketamine. Heliyon, 10, e28610. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kong, C.H., Min, H.S., Jeon, M., Kang, W.C., Park, K., Kim, M.S., et al. (2024) Cheonwangbosimdan Mitigates Post-Traumatic Stress Disorder-Like Behaviors through GluN2B-Containing NMDA Receptor Antagonism in Mice. Journal of Ethnopharmacology, 330, Article 118270. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Giuliano, K., Etchill, E., Zhou, X., Lui, C., Suarez-Pierre, A., Sharma, R., et al. (2021) NMDA Receptor Antagonism for Neuroprotection in a Canine Model of Hypothermic Circulatory Arrest. Journal of Surgical Research, 260, 177-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lv, S., Yao, K., Zhang, Y. and Zhu, S. (2023) NMDA Receptors as Therapeutic Targets for Depression Treatment: Evidence from Clinical to Basic Research. Neuropharmacology, 225, Article 109378. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Banerjee, M. and Shenoy, R.R. (2021) Emphasizing Roles of BDNF Promoters and Inducers in Alzheimer’s Disease for Improving Impaired Cognition and Memory. Journal of Basic and Clinical Physiology and Pharmacology, 34, 125-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hoerndli, F.J., Brockie, P.J., Wang, R., Mellem, J.E., Kallarackal, A., Doser, R.L., et al. (2022) MAPK Signaling and a Mobile Scaffold Complex Regulate AMPA Receptor Transport to Modulate Synaptic Strength. Cell Reports, 38, Article 110577. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lazarevic, V., Yang, Y., Flais, I. and Svenningsson, P. (2021) Ketamine Decreases Neuronally Released Glutamate via Retrograde Stimulation of Presynaptic Adenosine A1 Receptors. Molecular Psychiatry, 26, 7425-7435. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pan, M.M., Wang, Q.Y., Hou, J.L., Zhang, T., Jiang, Y. and Yang, L.P. (2023) Effects of Umbilical Moxibustion on Phobic Behavior and Monoamine Neurotransmitters in Stress-Model Rats. Chinese Acupuncture and Moxibustion, 43, 191-196.
|
|
[19]
|
Liang, X., Hou, Z., Chen, L., Wang, Y., Hua, K. and Sun, Y. (2023) Effect of Sleep Deprivation on the Metabolism of Hippocampal Amino Acids and Monoamine Neurotransmitters in Mice and Their Behaviors. Journal of Sichuan University (Medical Sciences), 54, 1139-1145.
|
|
[20]
|
Rozet, I. (2021) Ketamine in Depression and Electroconvulsive Therapy. Current Opinion in Anaesthesiology, 34, 556-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Qin, H., Yu, M., Han, N., Zhu, M., Li, X. and Zhou, J. (2024) Antidepressant Effects of Esketamine via the BDNF/Akt/mTOR Pathway in Mice with Postpartum Depression and Their Offspring. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 132, Article 110992. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Pardossi, S., Fagiolini, A. and Cuomo, A. (2024) Variations in BDNF and Their Role in the Neurotrophic Antidepressant Mechanisms of Ketamine and Esketamine: A Review. International Journal of Molecular Sciences, 25, Article 13098. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhao, G., Zhao, J., Kong, Y., Pang, Y., Zheng, X. and Zhang, Y. (2025) Effect of Esketamine and Etomidate Anesthesia on Neuroplasticity in Electroconvulsive Therapy for Treatment-Resistant Depression. World Journal of Psychiatry, 15, Article 109458. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, Y., Cai, Q., Wang, L. and Zhang, B. (2025) The Impact of Esketamine on Depression: Targeting Oxidative Stress and Neuronal Apoptosis through BDNF/TRKB/PI3K/AKT Pathway Activation. Neuropsychiatric Disease and Treatment, 21, 1783-1793. [Google Scholar] [CrossRef]
|
|
[25]
|
Calder, A.E., Hase, A. and Hasler, G. (2025) Effects of Psychoplastogens on Blood Levels of Brain-Derived Neurotrophic Factor (BDNF) in Humans: A Systematic Review and Meta-Analysis. Molecular Psychiatry, 30, 763-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, Y., Yang, Q., Chen, C., Yao, Y., Yuan, X. and Zhang, K. (2025) Inflammatory Cytokines, Cortisol, and Anhedonia in Patients with Treatment-Resistant Depression after Consecutive Infusions of Low-Dose Esketamine. European Archives of Psychiatry and Clinical Neuroscience, 275, 1383-1390. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ling, B., Zhu, Y., Yan, Z., Chen, H., Xu, H., Wang, Q., et al. (2023) Effect of Single Intravenous Injection of Esketamine on Postpartum Depression after Labor Analgesia and Potential Mechanisms: A Randomized, Double-Blinded Controlled Trial. BMC Pharmacology and Toxicology, 24, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shen, W., Yan, Y., Zhang, W., Xu, J., Li, Z. and Yang, L. (2025) Esketamine Mitigates Systemic Inflammation via Modulating Phenotypic Transformation of Monocytes in Patients Undergoing Thoracic Surgery. Life Sciences, 371, Article 123594. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Han, L., Tian, B. and Li, S. (2025) Esketamine Has Promising Anti-Inflammatory Effects in Orthopedic Surgery and Plays a Protective Role in Postoperative Cognitive Function and Pain Management. American Journal of Translational Research, 17, 277-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hu, N., Zheng, Y., Liu, X., Jia, J., Feng, J., Zhang, C., et al. (2025) Circkat6b Mediates the Antidepressant Effect of Esketamine by Regulating Astrocyte Function. Molecular Neurobiology, 62, 2587-2600. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, Y., Gong, Z., Zhang, L., Yang, X., Zhu, J., Zhou, X., et al. (2025) Esketamine Attenuates Traumatic Brain Injury by Modulating STAT3-Mediated Glycolysis and Immune Responses. BMC Neuroscience, 26, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Xu, H., Li, X. and Han, L. (2024) Role and Mechanism of Esketamine in Improving Postoperative Cognitive Dysfunction in Aged Mice through the TLR4/MyD88/p38 MAPK Pathway. The Kaohsiung Journal of Medical Sciences, 40, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Harding, L., Zhdanava, M., Teeple, A., Shah, A., Boonmak, P., Pilon, D., et al. (2025) Health Care Resource Use and Medical Costs among Patients with Major Depressive Disorder and Acute Suicidal Ideation or Behavior Initiated on Esketamine Nasal Spray or Traditional Treatments in the United States. Clinical Therapeutics, 47, 189-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Johnston, J.N., Zarate, C.A. and Kvarta, M.D. (2024) Esketamine in Depression: Putative Biomarkers from Clinical Research. European Archives of Psychiatry and Clinical Neuroscience, 275, 1559-1572. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Swainson, J., Thomas, R.K., Archer, S., Chrenek, C., MacKay, M., Baker, G., et al. (2019) Esketamine for Treatment Resistant Depression. Expert Review of Neurotherapeutics, 19, 899-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jawad, M.Y., Di Vincenzo, J.D., Ceban, F., Jaberi, S., Lui, L.M.W., Gillissie, E.S., et al. (2022) The Efficacy and Safety of Adjunctive Intranasal Esketamine Treatment in Major Depressive Disorder: A Systematic Review and Meta-Analysis. Expert Opinion on Drug Safety, 21, 841-852. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Stuiver, S., Van Verseveld, M., Koning, M.V., De Wit, N.C.J. and Van Waarde, J.A. (2023) IV Esketamine for Patients with a Treatment-Resistant Depression. Nederlands Tijdschrift voor Geneeskunde, 167, D7174.
|
|
[38]
|
Darwish, M.Y., Helal, A.A., Othman, Y.A., Mabrouk, M.A., Alrawi, A., Ashraf, T.A., et al. (2025) Efficacy and Safety of Ketamine and Esketamine in Reducing the Incidence of Postpartum Depression: An Updated Systematic Review and Meta-Analysis. BMC Pregnancy and Childbirth, 25, Article No. 125. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nayyer, M.A., Khan, S.M., Umer, M., Imran, H., Khalid, S., Murtaza, H., et al. (2024) Efficacy and Safety of Peri-Partum Esketamine for Prevention of Post-Partum Depression in Women Undergoing Caesarian Section: A Meta-Analysis and Systematic Review of Randomized Controlled Trials. Asian Journal of Psychiatry, 97, Article 104090. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Fedgchin, M., Trivedi, M., Daly, E.J., Melkote, R., Lane, R., Lim, P., et al. (2019) Efficacy and Safety of Fixed-Dose Esketamine Nasal Spray Combined with a New Oral Antidepressant in Treatment-Resistant Depression: Results of a Randomized, Double-Blind, Active-Controlled Study (Transform-1). International Journal of Neuropsychopharmacology, 22, 616-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Bozymski, K.M., Crouse, E.L., Titus-Lay, E.N., Ott, C.A., Nofziger, J.L. and Kirkwood, C.K. (2020) Esketamine: A Novel Option for Treatment-Resistant Depression. Annals of Pharmacotherapy, 54, 567-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lacerda, A.L.T. (2020) Esketamine/Ketamine for Treatment-Resistant Depression. Brazilian Journal of Psychiatry, 42, 579-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Nikayin, S., Murphy, E., Krystal, J.H. and Wilkinson, S.T. (2022) Long-Term Safety of Ketamine and Esketamine in Treatment of Depression. Expert Opinion on Drug Safety, 21, 777-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Bayes, A., Short, B., Zarate, C.A., Park, L., Murrough, J.W., McLoughlin, D.M., et al. (2022) The Ketamine Side Effect Tool (KSET): A Comprehensive Measurement-Based Safety Tool for Ketamine Treatment in Psychiatry. Journal of Affective Disorders, 308, 44-46. [Google Scholar] [CrossRef] [PubMed]
|