|
[1]
|
Gagneux, A., Winstein, S. and Young, W.G. (1960) Rearrangement of Allylic Azides. Journal of the American Chemical Society, 82, 5956-5957. [Google Scholar] [CrossRef]
|
|
[2]
|
Breslow, R. and Guo, T. (1988) Diels-Alder Reactions in Nonaqueous Polar Solvents. Kinetic Effects of Chaotropic and Antichaotropic Agents and of .β.-Cyclodextrin. Journal of the American Chemical Society, 110, 5613-5617. [Google Scholar] [CrossRef]
|
|
[3]
|
Vander Werf, C.A., Heisler, R.V. and McEwen, W.E. (1954) The Reaction of Sodium Azide with Some Representative Epoxides. Journal of the American Chemical Society, 76, 1231-1235. [Google Scholar] [CrossRef]
|
|
[4]
|
VanderWerf, C.A. and Heasley, V.L. (1966) Studies on the Preparation and Rearrangements of Allylic Azides. The Journal of Organic Chemistry, 31, 3534-3537. [Google Scholar] [CrossRef]
|
|
[5]
|
Ott, A.A., Packard, M.H., Ortuño, M.A., Johnson, A., Suding, V.P., Cramer, C.J., et al. (2018) Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. The Journal of Organic Chemistry, 83, 8214-8224. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ott, A.A. and Topczewski, J.J. (2018) Catalytic Racemization of Activated Organic Azides. Organic Letters, 20, 7253-7256. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wade, J.L.G. (2010) Organic Chemistry. 7th Edition, Prentice Hall.
|
|
[8]
|
Takasu, H., Tsuji, Y., Sajiki, H. and Hirota, K. (2005) Rearrangement of Allylic Azide and Phenylthio Groups of 3’-Azido-Or 3’-Phenylthio-4’, 5’-Didehydro-5’-Deoxyarabinofuranosyluridines. Tetrahedron, 61, 11027-11031. [Google Scholar] [CrossRef]
|
|
[9]
|
Noble, W.J.L. (1963) The Effect of Pressure on the Equilibration of α-and γ-Methylallyl Azide. The Journal of Physical Chemistry, 67, 2451-2453. [Google Scholar] [CrossRef]
|
|
[10]
|
Walling, C. and Naiman, M. (1962) Organic Reactions under High Pressure. VI. Some Claisen and Cope Rearrangements. Journal of the American Chemical Society, 84, 2628-2632. [Google Scholar] [CrossRef]
|
|
[11]
|
Padwa, A. and Sá, M.M. (1997) Intramolecular O-H Insertion Reaction of Azido Substituted Diazoesters and Its Relevance to the Mechanism of the Allylic Azide Rearrangement. Tetrahedron Letters, 38, 5087-5090. [Google Scholar] [CrossRef]
|
|
[12]
|
Padwa, A. and Sá, M.M. (1999) Rhodium(II)-Catalysed Intramolecular O-H Insertion of α-Diazo-γ-Azido-Delta-Hydroxy-β-Ketoesters: Evidence for a Novel Sigmatropic Rearrangement of an Allylic Azide Intermediate. Journal of the Brazilian Chemical Society, 10, 231-236. [Google Scholar] [CrossRef]
|
|
[13]
|
Cardillo, G., Fabbroni, S., Gentilucci, L., Perciaccante, R., Piccinelli, F. and Tolomelli, A. (2005) Highly Diastereoselective Allylic Azide Formation and Isomerization. Synthesis of 3(2’-Amino)-β-Lactams. Organic Letters, 7, 533-536. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gagnon, D., Lauzon, S., Godbout, C. and Spino, C. (2005) Sterically Biased 3, 3-Sigmatropic Rearrangement of Azides: Efficient Preparation of Nonracemic α-Amino Acids and Heterocycles. Organic Letters, 7, 4769-4771. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lauzon, S., Tremblay, F., Gagnon, D., Godbout, C., Chabot, C., Mercier-Shanks, C., et al. (2008) Sterically Biased 3, 3-Sigmatropic Rearrangement of Chiral Allylic Azides: Application to the Total Syntheses of Alkaloids. The Journal of Organic Chemistry, 73, 6239-6250. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hu, T. and Panek, J.S. (2002) Enantioselective Synthesis of the Protein Phosphatase Inhibitor (−)-Motuporin. Journal of the American Chemical Society, 124, 11368-11378. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Klepper, F., Jahn, E., Hickmann, V. and Carell, T. (2007) Synthesis of the Transfer‐RNA Nucleoside Queuosine by Using a Chiral Allyl Azide Intermediate. Angewandte Chemie International Edition, 46, 2325-2327. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ott, A.A., Goshey, C.S. and Topczewski, J.J. (2017) Dynamic Kinetic Resolution of Allylic Azides via Asymmetric Dihydroxylation. Journal of the American Chemical Society, 139, 7737-7740. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Panek, J.S., Yang, M. and Muler, I. (1992) Sequential Diastereoselective Addition and Allylic Azide Isomerization of Syn-and Anti-.α.-Azido-.β.-(Dimethylphenylsilyl)-(e)-Hex-4-Enoates with Acetals: Asymmetric Synthesis of .γ.-Hydroxy-.α.-Amino Acid Synthons. The Journal of Organic Chemistry, 57, 4063-4064. [Google Scholar] [CrossRef]
|
|
[20]
|
Hassner, A., Fibiger, R. and Andisik, D. (1984) Synthetic Methods. 19. Lewis Acid Catalyzed Conversion of Alkenes and Alcohols to Azides. The Journal of Organic Chemistry, 49, 4237-4244. [Google Scholar] [CrossRef]
|
|
[21]
|
Doherty, W. and Evans, P. (2016) Aminooxylation Horner-Wadsworth-Emmons Sequence for the Synthesis of Enantioenriched γ-Functionalized Vinyl Sulfones. The Journal of Organic Chemistry, 81, 1416-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Feldman, A.K., Colasson, B., Sharpless, K.B. and Fokin, V.V. (2005) The Allylic Azide Rearrangement: Achieving Selectivity. Journal of the American Chemical Society, 127, 13444-13445. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Packard, M.H., Cox, J.H., Suding, V.P. and Topczewski, J.J. (2017) The Effect of Proximal Functionality on the Allylic Azide Equilibrium. European Journal of Organic Chemistry, 2017, 6365-6368. [Google Scholar] [CrossRef]
|
|
[24]
|
Porter, M.R., Shaker, R.M., Calcanas, C. and Topczewski, J.J. (2018) Stereoselective Dynamic Cyclization of Allylic Azides: Synthesis of Tetralins, Chromanes, and Tetrahydroquinolines. Journal of the American Chemical Society, 140, 1211-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fava, C., Galeazzi, R., Mobbili, G. and Orena, M. (2001) Steric Constraints against [3,3]-Sigmatropic Rearrangement of Allylic Azides. A Convenient Approach to β-L-4-Aminopent-2-Enoglyceropyranosides. Tetrahedron: Asymmetry, 12, 2731-2741. [Google Scholar] [CrossRef]
|
|
[26]
|
Hung, R.R., Straub, J.A. and Whitesides, G.M. (1991) .α.-Amino Aldehyde Equivalents as Substrates for Rabbit Muscle Aldolase: Synthesis of 1,4-Dideoxy-D-Arabinitol and 2(R), 5(R)-Bis(Hydroxymethyl)-3(R), 4(R)-Dihydroxypyrrolidine. The Journal of Organic Chemistry, 56, 3849-3855.[CrossRef]
|
|
[27]
|
Sampath Kumar, H.M., Subba Reddy, B.V., Anjaneyulu, S. and Yadav, J.S. (1998) An Expedient and Highly Selective Conversion of Alcohols to Azides Using a System. Tetrahedron Letters, 39, 7385-7388. [Google Scholar] [CrossRef]
|
|
[28]
|
Hajipour, A.R., Rajaei, A. and Ruoho, A.E. (2009) A Mild and Efficient Method for Preparation of Azides from Alcohols Using Acidic Ionic Liquid [H-NMP]HSO4. Tetrahedron Letters, 50, 708-711. [Google Scholar] [CrossRef]
|
|
[29]
|
Thompson, A.S., Humphrey, G.R., DeMarco, A.M., Mathre, D.J. and Grabowski, E.J.J. (1993) Direct Conversion of Activated Alcohols to Azides Using Diphenyl Phosphorazidate. A Practical Alternative to Mitsunobu Conditions. The Journal of Organic Chemistry, 58, 5886-5888. [Google Scholar] [CrossRef]
|
|
[30]
|
Scott, J.P., Alam, M., Bremeyer, N., Goodyear, A., Lam, T., Wilson, R.D., et al. (2011) Mitsunobu Inversion of a Secondary Alcohol with Diphenylphosphoryl Azide. Application to the Enantioselective Multikilogram Synthesis of a HCV Polymerase Inhibitor. Organic Process Research & Development, 15, 1116-1123. [Google Scholar] [CrossRef]
|
|
[31]
|
Koziara, A. and Zwierzak, A. (1987) Iminophosphorane-mediated Transformation of Tertiary Alcohols into T-Alkylamines and Their N-Phosphorylated Derivatives. Tetrahedron Letters, 28, 6513-6516. [Google Scholar] [CrossRef]
|
|
[32]
|
Kabalka, G.W. and Li, G. (1997) Synthesis of Aromatic Amines Using Allyl Azide. Tetrahedron Letters, 38, 5777-5778. [Google Scholar] [CrossRef]
|
|
[33]
|
Forster, M.O. and Fierz, H.E. (1908) VIII.—The Triazo-Group. Part I. Triazoacetic acid and Triazoacetone (Acetonylazoimide). Journal of the Chemical Society, Transactions, 93, 72-85. [Google Scholar] [CrossRef]
|
|
[34]
|
Pramanik, S., Reddy, R.R. and Ghorai, P. (2015) Transition Metal-Free Generation of n-Unsubstituted Imines from Benzyl Azides: Synthesis of n-Unsubstituted Homoallylic Amines. The Journal of Organic Chemistry, 80, 3656-3663. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Bock, H. and Dammel, R. (1988) Gas-Phase Reactions. 66. Gas-Phase Pyrolyses of Alkyl Azides: Experimental Evidence for Chemical Activation. Journal of the American Chemical Society, 110, 5261-5269. [Google Scholar] [CrossRef]
|
|
[36]
|
Zhao, Y., Chew, X., Leung, G.Y.C. and Yeung, Y. (2012) Oxidative Transformation of Azides to Aryl Nitriles Using DIB/TBHP: Scope and Mechanistic Insights. Tetrahedron Letters, 53, 4766-4769. [Google Scholar] [CrossRef]
|
|
[37]
|
Yang, C. and Shen, H. (1993) One Pot Multiple-Steps Reactions of Allyl Azide and Alkenes Carrying Electron-Withdrawing Groups. Tetrahedron Letters, 34, 4051-4054. [Google Scholar] [CrossRef]
|
|
[38]
|
Gauthier, M., Whittingham, J.B.M., Hasija, A., Tetlow, D.J. and Leigh, D.A. (2024) Skeletal Editing of Mechanically Interlocked Molecules: Nitrogen Atom Deletion from Crown Ether-Dibenzylammonium Rotaxanes. Journal of the American Chemical Society, 146, 29496-29502. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nanan, D.A.R., Lomax, J.T., Bentley, J., Misener, L., Veinot, A.J., Shiu, W., et al. (2025) Self-Assembled Monolayers of Triazolylidenes on Gold and Mixed Gold/Dielectric Substrates. Journal of the American Chemical Society, 147, 5624-5631. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Peng, L., Zhao, Y., Okuda, Y., Le, L., Tang, Z., Yin, S., et al. (2023) Process-Divergent Syntheses of 4-and 5-Sulfur-Functionalized 1, 2, 3-Triazoles via Copper-Catalyzed Azide-Alkyne Cycloadditions of 1-Phosphinyl-2-Sulfanylethynes. The Journal of Organic Chemistry, 88, 3089-3108. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zeng, L., Li, J. and Cui, S. (2022) Rhodium‐Catalyzed Atroposelective Click Cycloaddition of Azides and Alkynes. Angewandte Chemie International Edition, 61, e202205037. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, G.F. and Zhang, Y.B. (2025) Rapid Crystallization and Versatile Metalation of Acetylhydrazone-Linked Covalent Organic Frameworks for Heterogenous Catalysis. Journal of the American Chemical Society, 147, 1840-1850.
|
|
[43]
|
Cheng, Z., Xu, H., Hu, Z., Zhu, M., Houk, K.N., Xue, X., et al. (2024) Carbene-Assisted Arene Ring-Opening. Journal of the American Chemical Society, 146, 16963-16970. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Murphy, P., Chadda, R. and McArdle, P. (2017) Allylic Azide Rearrangement in Tandem with Intramolecular Huisgen Cycloaddition for Iminosugar and Glycomimetic Synthesis: Functionalized Piperidine, Pyrrolidine, and Pyrrolotriazoles from D-Mannose. Synthesis, 49, 2138-2152. [Google Scholar] [CrossRef]
|