膜性肾病与肠道菌群关联的研究进展:肠–肾轴视角
Research Progress on the Association between Membranous Nephropathy and Intestinal Microbiota: From the Perspective of the Gut-Kidney Axis
DOI: 10.12677/acm.2025.15123679, PDF, HTML, XML,    科研立项经费支持
作者: 聂小敏, 沈 清*:重庆医科大学附属第一医院肾脏内科,重庆
关键词: 膜性肾病(R692.3)肠道菌群(R378.99)肠–肾轴(R363)Membranous Nephropathy (R692.3) Gut Microbiota (R378.99) Gut-Kidney Axis (R363)
摘要: 膜性肾病(MN)作为成人肾病综合征的主要病因,其发病机制与自身免疫介导的肾小球损伤密切相关,但现有免疫抑制剂治疗存在应答率有限和不良反应等问题。近年来研究揭示,肠道菌群失调通过“肠–肾轴”参与MN的发生发展:MN患者肠道菌群呈现变形菌门富集、厚壁菌门(Firmicutes)减少的特征性改变,伴随短链脂肪酸(SCFAs)产生菌(如毛螺菌属)丰度降低及促炎菌属(如埃希菌–志贺菌属、链球菌属)升高。菌群代谢产物如脂多糖可激活TLR4/NF-κB炎症通路,而SCFAs缺乏则削弱肠屏障功能并影响调节性T细胞分化。临床干预研究显示,粪菌移植、益生菌及中药方剂等手段可通过重塑菌群结构改善MN病理进程,但机制复杂性和个体差异仍制约其临床转化。未来研究需聚焦菌群–免疫–肾脏互作的分子机制,结合宏基因组学开发个体化菌群干预策略,为MN的精准诊疗提供新方向。
Abstract: Membranous nephropathy (MN), a major cause of nephrotic syndrome in adults, is characterized by autoimmune-mediated glomerular injury. Current immunosuppressive therapies face limitations in response rate and safety, prompting exploration of novel pathogenetic mechanisms. Emerging evidence highlights the gut-kidney axis as a key mediator, where dysbiosis in MN patients is marked by enriched Proteobacteria, reduced Firmicutes, and depletion of short-chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospira), alongside expansion of proinflammatory genera (e.g., Escherichia-Shigella, Streptococcus). Microbial metabolites like lipopolysaccharide (LPS) activate TLR4/NF-κB signaling, while SCFA deficiency impairs intestinal barrier function and Treg cell differentiation. Interventional studies show fecal microbiota transplantation, probiotics, and traditional Chinese medicine formulas may ameliorate MN by remodeling the microbiota, though mechanistic complexity and interindividual variability hinder clinical translation. Future research should focus on molecular mechanisms of microbiota-immune-kidney crosstalk, leveraging metagenomics for personalized microbiota-based therapies to advance precision medicine in MN.
文章引用:聂小敏, 沈清. 膜性肾病与肠道菌群关联的研究进展:肠–肾轴视角[J]. 临床医学进展, 2025, 15(12): 2470-2478. https://doi.org/10.12677/acm.2025.15123679

1. 前言

膜性肾病(MN)是成人肾病综合征的主要病因,约20%~30%的原发性肾小球疾病与其相关[1]。MN由自身抗体攻击足细胞抗原(如PLA2R)引发,导致免疫复合物沉积和补体激活[2]。当前治疗(免疫抑制剂、利妥昔单抗等)存在30%无应答率、感染风险及高复发率等局限性,亟需探索新机制与靶点。

肠道菌群通过免疫调节和代谢功能与宿主共生,其失调与自身免疫及慢性炎症疾病密切相关[3]。菌群通过短链脂肪酸(SCFA)等代谢产物调控免疫稳态,而菌群紊乱(如Akkermansia muciniphila减少)可破坏肠屏障,促使细菌毒素(如TMAO)进入循环,触发全身炎症和肾脏损伤[4]。研究表明,MN患者可能存在特征性菌群改变,通过“肠–肾轴”影响疾病进展。

本研究旨在系统阐述肠道菌群与MN的关联,包括菌群组成及代谢产物的变化、肠–肾轴分子机制,以及菌群调控的诊断和治疗潜力[5] [6]。未来需通过多组学整合、孟德尔随机化验证因果关系,并建立标准化样本库以推动临床转化[7] [8]。当前研究受限于样本量小、混杂因素多及技术差异,需跨学科协作解决[9]

2. 研究背景

肠–肾轴的理论基础

肠道菌群失调与肾脏疾病之间存在复杂的双向调控机制。在免疫途径方面,肠道屏障功能受损(如紧密连接蛋白ZO-1、occludin表达下降)可导致细菌成分(如脂多糖LPS)和代谢产物移位进入循环系统,激活宿主免疫系统[10] [11]。代谢途径方面,肠道菌群通过代谢饮食成分产生多种尿毒症毒素,直接损伤肾脏[12]。炎症途径中,肠道菌群失调可通过“肠漏–炎症–肾损伤”轴形成恶性循环[13]

TLR/NF-κB信号通路是肠–肾轴互作的核心机制之一[14] [15]。肠道菌群代谢产物(如LPS、肽聚糖)或损伤相关分子模式(DAMPs)激活肾组织中的TLR2/TLR4,通过髓样分化因子88 (MyD88)依赖途径激活NF-κB,促使p65亚基入核,调控促炎基因(如IL-1β、COX-2)和粘附分子表达。在膜性肾病患者中,该通路激活与足细胞损伤和蛋白尿加重密切相关。抑制TLR4/NF-κB信号可减轻实验性肾炎的肾小球炎症和足细胞凋亡[16]

吲哚与硫酸对甲酚的致病作用为吲哚通过激活芳香烃受体(AhR)促进Th17细胞分化,加剧肾脏炎症;其代谢产物IS则通过抑制肾近端小管细胞的有机阴离子转运体(OATs),导致毒素蓄积和能量代谢紊乱。pCS可通过上调NADPH氧化酶4 (Nox4)诱导肾小管上皮细胞内活性氧(ROS)生成,触发线粒体功能障碍和纤维化。在慢性肾病模型中,减少肠道产pCS菌群(如减少Enterobacteriaceae)可显著降低血清pCS水平,延缓肾功能恶化[17]

综上,肠道菌群失调通过多途径、多通路与肾脏疾病形成双向调控网络,其中TLR/NF-κB信号和尿毒症毒素代谢是关键环节[18]。针对肠–肾轴的干预策略(如益生菌调节菌群、吸附毒素)为膜性肾病等肾脏疾病的治疗提供了新方向。

3. 研究现状

3.1. 肠道菌群与肾脏疾病的关联研究

GP等学者通过深入研究发现,CKD患者肠道内尿素酶和尿酸酶含量增加的细菌数量增多,加重肾脏排泄负担[19]。而短链脂肪酸产生菌却呈现减少趋势。这种肠道菌群的失衡,引发系统性炎症和氧化应激,最终加速肾功能下降。同时,肠道菌群失调还会对宿主代谢产生不良影响,进一步加重肾脏的损伤程度[20] [21]

相关研究表明,IgAN患者肠道内某些菌群发生了显著变化,例如MegasphaeraBilophila的丰度有所增加,而MegamonasVeillonellaKlebsiella的丰度则降低[16] [22]。这些菌群的改变,推动了IgA肾病的发病进程。依据He等的研究成果,IgAN患者肠道菌群的多样性降低,并且这种降低与疾病活动性密切相关[23]

3.2. 膜性肾病患者菌群失调特异性

多项研究显示,MN患者肠道菌群的α-多样性低于健康对照组。如Li等发现特发性膜性肾病患者的Chao、Sobs、Shannon和Simpson指数均显著低于健康对照组,表明IMN患者肠道菌群的丰富度和多样性降低[2]。Zhang等研究也表明,与健康对照组相比,伴有肾病综合征的成人特发性膜性肾病患者的Chao1指数和系统发育多样性指数更低,意味着物种丰富度和群落的系统发育多样性减少。

研究发现门水平的核心改变表现为变形菌门显著富集,MN患者中变形菌门丰度升高,较健康对照增加2~3倍(如9.86% vs. 3.41%),其下属的肠杆菌科是主要贡献菌科。厚壁菌门丰度降低,表现为整体比例下降(如MN患者47.2% vs. HC 50.7%),与短链脂肪酸产生菌(如毛螺菌属)减少直接相关[2] [13] [24]-[26]

属水平的关键菌属变化有菌群富集及减少。富集菌属包括链球菌属、埃希菌–志贺菌属,链球菌属在MN患者中丰度显著升高(如0.61% vs. 0.29%);埃希菌–志贺菌属丰度增加(如6.24% vs. 1.04%)。减少菌属包括毛螺菌属、严格梭菌属,Lachnospira丰度显著降低(如0.63% vs. 1.83%);严格梭菌属丰度下降(如0.28% vs. 1.02%)。

MN患者肠道菌群产生短链脂肪酸的能力下降。Zhang等研究发现,INS患者粪便中的丙酸和丁酸含量显著低于健康对照组,这与产生短链脂肪酸的细菌(如Lachnospira)减少有关[24]。Jiang等研究发现,MN患者存在色氨酸代谢异常,血清中由色氨酸产生的吲哚衍生物水平改变,且与肠道中部分益生菌的相对丰度相关[25]

与健康对照相比,MN患者变形菌门升高、厚壁菌门降低,且链球菌属、埃希菌–志贺菌属等富集,毛螺菌属、韦荣球菌属等减少[26]。与糖尿病肾病相比,MN患者变形菌门和链球菌属的富集更为显著,而糖尿病肾病患者可能存在其他菌属(如拟杆菌门)的差异[24] [27]。与微小病变(MCD)相比,MN患者特异性富集15个菌属(如布劳特菌属、摩根菌属),而MCD患者拟杆菌门和副拟杆菌属等丰度更高[25]。与IGAN相比,MN以变形菌门和促炎菌属(如链球菌、肠球菌)的显著富集为核心,伴随产SCFAs菌属的大量减少,更易引发全身炎症和肾损伤[13]

3.3. 肠道菌群通过多种机制参与MN的免疫病理过程

膜性肾病患者部分菌群丰富增加,其中,链球菌属可能通过分泌致热外毒素B (SPeB)诱导肾小球基底膜免疫损伤,其产生的脂多糖可激活TLR4/NF-κB通路,促进促炎因子释放,加剧足细胞损伤。色氨酸代谢产物等尿毒症毒素积累(如IS、pCS)通过激活AhR、诱导ROS生成等机制,促进肾脏炎症与纤维化。

短链脂肪酸对维持肠道健康和免疫调节具有重要作用,其代谢异常可能影响MN的发生发展,MN患者毛螺菌属等SCFAs产生菌减少,导致丁酸等代谢物缺乏,削弱肠道屏障功能,影响调节性T细胞分化,打破Treg/Th17平衡。此外,MN患者益生菌的减少与血清中吲哚-3-丙酮酸(IpyA)、吲哚-3-醛(IAld)和色胺(tryptamine)水平降低相关,同时与吲哚-3-乳酸(ILA)和吲哚-3-乙酸(IAA)水平升高相关,这些代谢物的变化可能通过激活肾内芳香烃受体(AhR)信号通路影响MN的病情。

埃希菌–志贺菌属在MN患者中与蛋白尿呈负相关,可能反映其作为炎症标志物的复杂作用。拟杆菌属和克雷伯菌属与MN分期呈正相关,提示其可能参与疾病进展。放线菌门与估算肾小球滤过率呈强负相关(r = −0.414),提示菌群失调可能预示肾功能损伤[16]

多项孟德尔分析发现Ruminococcaceae UCG003、Ruminiclostridium 5、Oxalobacter等,与MN风险增加存在因果关联,如Ruminococcaceae UCG003可能通过影响黏膜免疫等功能参与MN的发生发展。Alistipes indistinctusBifidobacterium bifidumOscillibacter等,与MN风险降低有关,例如Alistipes indistinctus可能通过其产生的短链脂肪酸等代谢产物发挥抗炎作用,从而降低MN风险。反向孟德尔随机化分析未发现MN对肠道菌群有明显的因果作用,这提示肠道菌群可能是MN发病的潜在影响因素,而不是MN导致肠道菌群的改变。通过中介孟德尔随机化分析发现,与MN存在因果关系的肠道菌群与多种免疫细胞特征也有因果关系,表明免疫细胞可能在肠道菌群影响MN的机制中起中介作用[28]-[32]

3.4. 多种菌群干预手段在MN中展现出潜力

Zhou等人的研究报告了1例用FMT治疗膜性肾病合并慢性腹泻患者的病例。经两次FMT后,血清白蛋白和总蛋白水平升高,肌酐、24小时尿蛋白及PLA2R抗体滴度下降,水肿和腹泻症状消失,表明FMT可能对膜性肾病治疗有效,但还需更多研究验证其疗效及机制[33]。Shang等人研究发现,肠道菌群的存在是膜性肾病发病的重要前提。通过对大鼠进行相关操作,改变肠道菌群状态后,观察到肾脏病变情况有所改变,提示通过FMT等手段调节肠道菌群,可能影响膜性肾病的发病进程[34]。这为FMT应用于膜性肾病治疗提供了动物实验层面的理论支持[35]

特定菌株如LactobacillusBifidobacterium在膜性肾病中的作用机制已得到初步阐明。这些益生菌通过增加短链脂肪酸的产生,尤其是乙酸,显著抑制促炎因子TNF-α的释放,同时促进抗炎细胞因子IL-10的分泌[36] [37]。SCFAs通过激活GPR43/41受体调节Treg/Th17细胞平衡,这一机制在MN的自身抗体产生过程中具有关键作用[37]。宏基因组分析显示,Bifidobacterium lactis BL-99等菌株可特异性降低Escherichia-Shigella等致病菌丰度,改善肠道屏障功能,减少细菌易位引发的全身炎症,这与MN患者常见的肠漏症和菌群失调特征高度吻合。

益生元对宿主代谢的影响主要体现在选择性促进有益菌增殖及代谢产物调控[38] [39]。低聚果糖(FOS)与BL-99联用可使乙酸产量提升22.33%,同时降低CO2和H2S等有害代谢物水平[40]。这种代谢重编程作用可能通过减少尿毒症毒素(如对甲酚硫酸盐)积累缓解MN进展[37]。菊粉等膳食纤维还能上调ZO-1等紧密连接蛋白表达,这与MN病理中肠肾轴的破坏机制形成互补[37]。值得注意的是,益生元对菌群的调节效果存在个体差异,受宿主基线菌群组成和肾功能状态显著影响[41]

合生元在协同增效方面展现出独特优势。含Lactobacillus paracasei DKGF1的合生元制剂在随机对照试验中使老年患者的腹痛缓解率达81.8%,显著高于安慰剂组[42],其机制涉及多靶点调控:既增强Blautia等有益菌定植,又通过SCFAs抑制TLR4/NF-κB通路激活[40] [37]。Meta分析证实,合生元在炎症性肠病中的疗效优于单一成分[36] [37]。这可能为MN治疗提供跨疾病借鉴[43]

健脾祛湿方通过调节肠道菌群,使有益菌属如Bacteroides (拟杆菌属)等发挥优势,减少有害菌属如Alistipes (阿利斯普菌属)、Lachnospira (拟杆菌科)等的丰度[44]

穿山龙总皂苷给药后大鼠肠道菌群的α多样性分析结果发现肠道菌群多样性、丰度、均匀性指数均有改变,影响膜性肾病发展;β多样性分析结果发现给药组大鼠肠道内厚壁菌门、变形菌门、梭菌纲、颤螺菌目、毛螺菌目、乳杆菌属、穆里巴库拉菌科丰度上升;拟杆菌门、拟杆菌纲、普雷沃氏菌属丰度下降。从药效学角度出发,穿山龙总皂苷能够有效降低膜性肾病大鼠的24 h尿蛋白,减少大鼠血清内Cr、BUN、CHO、TG、LDL-C,增加ALB、TP含量。从微观角度,穿山龙总皂苷能够有效缓解大鼠肾组织损伤,减低肾小球异常数量并减少炎性细胞浸润,减少足细胞足突的融合、损伤起到保护足细胞的作用[45]

Xie等人研究发现四神丸通过调节肠道微生物群降低TMAO水平,SSP煎剂可缓解腹泻与肾阳虚综合征,并减轻由TMAO水平升高引起的炎症反应。可能机制为SSP通过调节FirmicutesSuccinatimonas hippeiClostridium tyrobutyricum来降低TMAO水平,从而阻止“肠–肾轴”传递NLRP3和IL-1b等炎症因子,改善肠道屏障损伤和肾纤维化[46]

高纤维饮食可显著增加肠道中短链脂肪酸(SCFAs)产生菌的丰度,如LactobacillaceaeBacteroidaceae,其代谢产物SCFAs通过调节Treg/Th17平衡和增强肠道屏障功能发挥抗炎作用[47]。一项针对老年人的随机对照试验显示,多酚饮食显著提升血清吲哚-3-丙酸(IPA)水平,该代谢物与Clostridiales菌目丰度呈正相关,可能通过减轻炎症反应保护肾功能[41]。此外,高纤维饮食还能促进Blautia等有益菌定植,通过SCFAs抑制TLRs通路激活[40],这与MN病理中免疫调节失衡的机制密切相关。

低蛋白饮食(LPD)在慢性肾病中显示出双重调节作用。纵向研究表明,LPD可显著降低尿毒症毒素对甲酚硫酸盐(pCS)水平,同时改变肠道菌群结构[48]。Meta分析证实LPD能特异性增加LactobacillaceaeBacteroidaceae丰度,减少Roseburia faecis等产毒素菌种[42],但未显著影响整体菌群多样性。值得注意的是,复合膳食纤维与优质蛋白联合干预(CFP)在糖尿病模型中发现可重塑菌群组成,改善氨基酸代谢相关菌群功能,同时减轻肾脏损伤,这为MN的饮食干预策略提供了来自其他疾病模型的借鉴依据[49]

4. 研究挑战和争议

尽管已有大量研究证实肠道菌群失调与膜性肾病(MN)存在关联,但其具体分子机制仍不明确。例如,变形菌门丰度增加如何通过肠–肾轴触发肾小球免疫损伤、短链脂肪酸(SCFAs)缺乏与足细胞功能障碍的因果关系等关键环节尚未完全阐明。此外,现有动物模型虽能模拟部分菌群失调表型,但与人类MN的病理复杂性仍存在差异,例如人类特有的HLA基因背景与菌群互作机制难以在动物模型中复现。

孟德尔随机化分析依赖于一些假设,如工具变量的强度、无多效性等,可能存在一定的局限性。肠道菌群的分类和功能较为复杂,目前的研究主要关注到属或种的水平,在更精细的分类水平上可能还存在未被发现的因果关系。肠道菌群与MN之间的具体作用机制尚未完全明确,需要进一步的实验研究来深入探讨。反向孟德尔随机化分析显示MN对肠道菌群无显著因果作用,但横断面研究难以排除混杂因素(如免疫抑制剂使用、慢性炎症状态)对菌群的影响。

肠道菌群具有高度个体化特征,不同患者的核心差异菌群(如AkkermansiaFaecalibacterium)丰度差异显著,导致标准化益生菌或粪菌移植方案疗效不稳定。例如,部分患者补充双歧杆菌后肠道屏障功能改善,但另一些患者可能因基线菌群中存在拮抗菌而无效。目前干预性研究多为病例报告或小样本观察性研究,缺乏多中心、随机对照试验(RCT)验证菌群干预的安全性和长期疗效。此外,FMT的供体菌群选择、移植剂量及频次等关键参数尚未标准化。

部分菌群在不同研究中作用相反,例如拟杆菌属在一项研究中与MN患者炎症负相关,而在另一项研究中却与疾病进展正相关,可能与地域人群差异、疾病分期或测序技术误差有关。

5. 结论与未来方向

MN患者存在显著肠道菌群失调,表现为α多样性降低、变形菌门富集、产SCFAs菌减少,且菌群组成与疾病活动度(如PLA2R抗体滴度)相关。动物模型中,FMT或益生菌可逆转菌群失调,改善肾损伤;临床个案显示FMT可能通过重塑肠道免疫减轻MN患者蛋白尿。

目前研究存在一定空白,如纵向研究缺失,缺乏从健康人群到MN发病的动态菌群监测数据,难以明确菌群失调的时间顺序及关键窗口期;对特定功能菌群(如产吲哚丙酸的埃希氏菌属、产丁酸的罗斯氏菌属)的代谢产物调控机制尚未深入,限制了精准干预策略的开发。

未来,可以通过设计体外与动物实验,验证Escherichia-Shigella等促炎菌的外膜囊泡(OMVs)是否可直接激活足细胞TLR4/NF-κB通路,或诱导PLA2R自身抗原暴露,从而启动肾小球免疫损伤。整合宏基因组、代谢组与临床数据,构建机器学习模型,识别“菌群–免疫”表型,预测哪些MN患者可能对FMT或特定益生菌方案有应答,推动个体化治疗。构建能持续分泌SCFAs或抗炎因子(如IL-10)的工程化益生菌,或开发吲哚降解酶、丁酸前体药物等代谢干预制剂,在动物模型中评估其肾脏保护效果。建立从健康到发病的前瞻性MN高危人群队列,结合宏基因组、单细胞转录组与代谢组数据,动态解析菌群演变与肾脏免疫应答的时序关系,识别早期干预窗口。

通过开展更多关于肠道菌群与MN之间具体作用机制的研究,探索基于肠道菌群的潜在诊断标志物和治疗靶点,为MN的早期诊断和干预提供新的策略。

基金项目

“TGM2结合GPR56调控肾小球内皮细胞血管新生在糖尿病肾病中的作用及机制研究”,重庆市科技局(CSTB2024NSCQ-MSX0322)。

NOTES

*通讯作者。

参考文献

[1] Wang, J., Wu, W. and Wu, H. (2025) Obinutuzumab for Treatment of Membranous Nephropathy in Patients Positive and Negative for the Phospholipase A2 Receptor Antibody: Case Reports. Frontiers in Immunology, 16, Article 1561638. [Google Scholar] [CrossRef] [PubMed]
[2] Li, M., Wei, L., Sun, J., Zhu, Q., Yang, H., Zhang, Y., et al. (2022) Association of Gut Microbiota with Idiopathic Membranous Nephropathy. BMC Nephrology, 23, Article No. 164. [Google Scholar] [CrossRef] [PubMed]
[3] Ma, J., Piao, X., Mahfuz, S., Long, S. and Wang, J. (2022) The Interaction among Gut Microbes, the Intestinal Barrier and Short Chain Fatty Acids. Animal Nutrition, 9, 159-174. [Google Scholar] [CrossRef] [PubMed]
[4] Martin-Gallausiaux, C., Marinelli, L., Blottière, H.M., Larraufie, P. and Lapaque, N. (2020) SCFA: Mechanisms and Functional Importance in the Gut. Proceedings of the Nutrition Society, 80, 37-49. [Google Scholar] [CrossRef] [PubMed]
[5] Jo, H.A., Hyeon, J.S., Yang, S.H., Jung, Y., Ha, H., Jeong, C.W., et al. (2021) Fumarate Modulates Phospholipase A2 Receptor Autoimmunity-Induced Podocyte Injury in Membranous Nephropathy. Kidney International, 99, 443-455. [Google Scholar] [CrossRef] [PubMed]
[6] Zheng, M., Han, R., Yuan, Y., Xing, Y., Zhang, W., Sun, Z., et al. (2023) The Role of Akkermansia muciniphila in Inflammatory Bowel Disease: Current Knowledge and Perspectives. Frontiers in Immunology, 13, Article 1089600. [Google Scholar] [CrossRef] [PubMed]
[7] Gao, J., Zhao, X., Hu, S., Huang, Z., Hu, M., Jin, S., et al. (2022) Gut Microbial Dl-Endopeptidase Alleviates Crohn’s Disease via the NOD2 Pathway. Cell Host & Microbe, 30, 1435-1449.e9. [Google Scholar] [CrossRef] [PubMed]
[8] Yuan, D., Chen, Y., Zheng, H., Liu, G., Yang, Q., Chen, L., et al. (2025) Mendelian Randomization Analysis Reveals a Causal Relationship between Membranous Nephropathy and the Gut Microbiome. Nephron, 149, 311-323. [Google Scholar] [CrossRef] [PubMed]
[9] Zhang, J., Luo, D., Lin, Z., Zhou, W., Rao, J., Li, Y., et al. (2020) Dysbiosis of Gut Microbiota in Adult Idiopathic Membranous Nephropathy with Nephrotic Syndrome. Microbial Pathogenesis, 147, Article ID: 104359. [Google Scholar] [CrossRef] [PubMed]
[10] Miao, H., Zhang, Y., Yu, X., Zou, L. and Zhao, Y. (2022) Membranous Nephropathy: Systems Biology-Based Novel Mechanism and Traditional Chinese Medicine Therapy. Frontiers in Pharmacology, 13, Article 969930. [Google Scholar] [CrossRef] [PubMed]
[11] Mertowska, P., Mertowski, S., Wojnicka, J., Korona-Głowniak, I., Grywalska, E., Błażewicz, A., et al. (2021) A Link between Chronic Kidney Disease and Gut Microbiota in Immunological and Nutritional Aspects. Nutrients, 13, Article 3637. [Google Scholar] [CrossRef] [PubMed]
[12] Hurtado, A. and Johnson, R.J. (2005) Hygiene Hypothesis and Prevalence of Glomerulonephritis. Kidney International, 68, S62-S67. [Google Scholar] [CrossRef] [PubMed]
[13] Zhu, Y., He, H., Sun, W., Wu, J., Xiao, Y., Peng, Y., et al. (2024) IgA Nephropathy: Gut Microbiome Regulates the Production of Hypoglycosilated Iga1 via the TLR4 Signaling Pathway. Nephrology Dialysis Transplantation, 39, 1624-1641. [Google Scholar] [CrossRef] [PubMed]
[14] Stavropoulou, E., Kantartzi, K., Tsigalou, C., Konstantinidis, T., Romanidou, G., Voidarou, C., et al. (2021) Focus on the Gut-Kidney Axis in Health and Disease. Frontiers in Medicine, 7, Article 620102. [Google Scholar] [CrossRef] [PubMed]
[15] Chen, Y., Chen, D., Chen, L., Liu, J., Vaziri, N.D., Guo, Y., et al. (2019) Microbiome-Metabolome Reveals the Contribution of Gut-Kidney Axis on Kidney Disease. Journal of Translational Medicine, 17, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
[16] Monteiro, R.C. and Berthelot, L. (2021) Role of Gut-Kidney Axis in Renal Diseases and IgA Nephropathy. Current Opinion in Gastroenterology, 37, 565-571. [Google Scholar] [CrossRef] [PubMed]
[17] Pyatchenkov, M.O., Markov, A.G. and Rumyantsev, A.S. (2022) Structural and Functional Intestinal Barrier Abnormalities and Chronic Kidney Disease. Literature Review. Part I. Nephrology (Saint-Petersburg), 26, 10-26. [Google Scholar] [CrossRef
[18] Suganya, K., Son, T., Kim, K. and Koo, B. (2021) Impact of Gut Microbiota: How It Could Play Roles beyond the Digestive System on Development of Cardiovascular and Renal Diseases. Microbial Pathogenesis, 152, Article ID: 104583. [Google Scholar] [CrossRef] [PubMed]
[19] Hobby, G.P., Karaduta, O., Dusio, G.F., Singh, M., Zybailov, B.L. and Arthur, J.M. (2019) Chronic Kidney Disease and the Gut Microbiome. American Journal of Physiology-Renal Physiology, 316, F1211-F1217. [Google Scholar] [CrossRef] [PubMed]
[20] Wang, H., Ainiwaer, A., Song, Y., Qin, L., Peng, A., Bao, H., et al. (2023) Perturbed Gut Microbiome and Fecal and Serum Metabolomes Are Associated with Chronic Kidney Disease Severity. Microbiome, 11, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
[21] Huang, H. and Chen, M. (2024) Exploring the Preventive and Therapeutic Mechanisms of Probiotics in Chronic Kidney Disease through the Gut-Kidney Axis. Journal of Agricultural and Food Chemistry, 72, 8347-8364. [Google Scholar] [CrossRef] [PubMed]
[22] Zhang, R., Tang, Y., Feng, X., Lu, X., Zhao, M., Jin, J., et al. (2025) Targeted Modulation of Intestinal Barrier and Mucosal Immune-Related Microbiota Attenuates Iga Nephropathy Progression. Gut Microbes, 17, Article ID: 2458184. [Google Scholar] [CrossRef] [PubMed]
[23] He, J., Zhou, X., Lv, J. and Zhang, H. (2020) Perspectives on How Mucosal Immune Responses, Infections and Gut Microbiome Shape Iga Nephropathy and Future Therapies. Theranostics, 10, 11462-11478. [Google Scholar] [CrossRef] [PubMed]
[24] Zhang, Y., Zhao, J., Qin, Y., Wang, Y., Yu, Z., Ning, X., et al. (2022) Specific Alterations of Gut Microbiota in Patients with Membranous Nephropathy: A Systematic Review and Meta-analysis. Frontiers in Physiology, 13, Article 909491. [Google Scholar] [CrossRef] [PubMed]
[25] Jiang, Y., Wang, T., Yu, W., Wu, F., Guo, R., Li, H., et al. (2023) Combination of the Gut Microbiota and Clinical Indicators as a Potential Index for Differentiating Idiopathic Membranous Nephropathy and Minimal Change Disease. Renal Failure, 45, Article ID: 2209392. [Google Scholar] [CrossRef] [PubMed]
[26] Chen, Z., Wang, R., Yao, M., Zhao, J. and Liang, B. (2025) Genetical Predicted Causal Relationship between Gut Microbiota and Different Types of Kidney Diseases. Kidney Diseases, 11, 170-185. [Google Scholar] [CrossRef] [PubMed]
[27] Yu, W., Shang, J., Guo, R., Zhang, F., Zhang, W., Zhang, Y., et al. (2020) The Gut Microbiome in Differential Diagnosis of Diabetic Kidney Disease and Membranous Nephropathy. Renal Failure, 42, 1100-1110. [Google Scholar] [CrossRef] [PubMed]
[28] Feng, Z., Zhang, Y., Lai, Y., Jia, C., Wu, F. and Chen, D. (2024) Causal Relationship between Gut Microbiota and Kidney Diseases: A Two-Sample Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1277554. [Google Scholar] [CrossRef] [PubMed]
[29] Wu, J., Zhang, J., Huang, G., Zhong, Y., Yang, Y. and Deng, P. (2024) Evidence from Mendelian Randomization Identifies Several Causal Relationships between Primary Membranous Nephropathy and Gut Microbiota. Renal Failure, 46, Article ID: 2349136. [Google Scholar] [CrossRef] [PubMed]
[30] Ma, Q., Wen, X. and Xu, G. (2024) The Causal Association of Specific Gut Microbiota on the Risk of Membranous Nephropathy: A Mendelian Randomization Study. International Urology and Nephrology, 56, 2021-2030. [Google Scholar] [CrossRef] [PubMed]
[31] Wu, Q., Zheng, T., Xie, S., Zhu, J., Yuan, L., Wei, W., et al. (2024) The Influence of Gut Microbiota on Membranous Nephropathy: A Two-Sample Mendelian Randomization Study. Clinical Nephrology, 102, 134-143. [Google Scholar] [CrossRef] [PubMed]
[32] Hsu, C., Su, S., Chang, L., Shao, S., Yang, K., Chen, C., et al. (2021) Effects of Low Protein Diet on Modulating Gut Microbiota in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis of International Studies. International Journal of Medical Sciences, 18, 3839-3850. [Google Scholar] [CrossRef] [PubMed]
[33] Zhou, G., Zeng, J., Peng, L., Wang, L., Zheng, W., Di Wu,, et al. (2021) Fecal Microbiota Transplantation for Membranous Nephropathy. CEN Case Reports, 10, 261-264. [Google Scholar] [CrossRef] [PubMed]
[34] Shang, J., Zhang, Y., Guo, R., Liu, W., Zhang, J., Yan, G., et al. (2022) Gut Microbiome Analysis Can Be Used as a Noninvasive Diagnostic Tool and Plays an Essential Role in the Onset of Membranous Nephropathy. Advanced Science, 9, e2201581. [Google Scholar] [CrossRef] [PubMed]
[35] Wang, X., Yang, Y., Liang, Y., Lang, R., Zeng, Q., Yan, L., et al. (2022) Structural Modulation of Gut Microbiota during Alleviation of Experimental Passive Heymann Nephritis in Rats by a Traditional Chinese Herbal Formula. Biomedicine & Pharmacotherapy, 145, Article ID: 112475. [Google Scholar] [CrossRef] [PubMed]
[36] Zhang, X., Guan, X., Tang, Y., Sun, J., Wang, X., Wang, W., et al. (2021) Clinical Effects and Gut Microbiota Changes of Using Probiotics, Prebiotics or Synbiotics in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. European Journal of Nutrition, 60, 2855-2875. [Google Scholar] [CrossRef] [PubMed]
[37] Roy, S. and Dhaneshwar, S. (2023) Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World Journal of Gastroenterology, 29, 2078-2100. [Google Scholar] [CrossRef] [PubMed]
[38] Xu, J., Xu, J., Shi, T., Zhang, Y., Chen, F., Yang, C., et al. (2022) Probiotic‐inspired Nanomedicine Restores Intestinal Homeostasis in Colitis by Regulating Redox Balance, Immune Responses, and the Gut Microbiome. Advanced Materials, 35, e2207890. [Google Scholar] [CrossRef] [PubMed]
[39] Miao, H., Wang, Y., Yu, X., Zou, L., Guo, Y., Su, W., et al. (2023) Lactobacillus Species Ameliorate Membranous Nephropathy through Inhibiting the Aryl Hydrocarbon Receptor Pathway via Tryptophan‐Produced Indole Metabolites. British Journal of Pharmacology, 181, 162-179. [Google Scholar] [CrossRef] [PubMed]
[40] Zhang, Q., Zhao, W., Zhao, Y., Duan, S., Liu, W., Zhang, C., et al. (2022) In Vitro Study of Bifidobacterium Lactis BL-99 with Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Frontiers in Nutrition, 9, Article 890316. [Google Scholar] [CrossRef] [PubMed]
[41] Peron, G., Meroño, T., Gargari, G., Hidalgo‐Liberona, N., Miñarro, A., Lozano, E.V., et al. (2022) A Polyphenol‐Rich Diet Increases the Gut Microbiota Metabolite Indole 3‐Propionic Acid in Older Adults with Preserved Kidney Function. Molecular Nutrition & Food Research, 66, e2100349. [Google Scholar] [CrossRef] [PubMed]
[42] Oh, J.H., Jang, Y.S., Kang, D., Kim, H.S., Kim, E., Park, S., et al. (2022) Efficacy of a Synbiotic Containing Lactobacillus paracasei DKGF1 and Opuntia humifusa in Elderly Patients with Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Gut and Liver, 17, 100-107. [Google Scholar] [CrossRef] [PubMed]
[43] Zhang, Q., Chen, B., Zhang, J., Dong, J., Ma, J., Zhang, Y., et al. (2023) Effect of Prebiotics, Probiotics, Synbiotics on Depression: Results from a Meta-Analysis. BMC Psychiatry, 23, Article No. 477. [Google Scholar] [CrossRef] [PubMed]
[44] Lang, R., Wang, X., Li, A., Liang, Y., Zhu, B., Shi, B., et al. (2020) Effects of Jian Pi Qu Shi Formula on Intestinal Bacterial Flora in Patients with Idiopathic Membranous Nephropathy: A Prospective Randomized Controlled Trial. Chronic Diseases and Translational Medicine, 6, 124-133. [Google Scholar] [CrossRef] [PubMed]
[45] 王丹廷. 穿山龙总皂苷对膜性肾病大鼠肾损伤及肠道菌群的影响[D]: [硕士学位论文]. 太原: 山西省中医药研究院, 2025.
[46] Xie, S., Fang, L., Deng, N., Shen, J., Tan, Z. and Peng, X. (2024) Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Medical Science Monitor, 30, e944185. [Google Scholar] [CrossRef] [PubMed]
[47] Mafra, D., Kemp, J.A., Borges, N.A., Wong, M. and Stenvinkel, P. (2023) Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins, 15, Article 499. [Google Scholar] [CrossRef] [PubMed]
[48] Black, A.P., Anjos, J.S., Cardozo, L., Carmo, F.L., Dolenga, C.J., Nakao, L.S., et al. (2018) Does Low-Protein Diet Influence the Uremic Toxin Serum Levels from the Gut Microbiota in Nondialysis Chronic Kidney Disease Patients? Journal of Renal Nutrition, 28, 208-214. [Google Scholar] [CrossRef] [PubMed]
[49] Ni, Y., Zheng, A., Hu, Y., Rong, N., Zhang, Q., Long, W., et al. (2022) Compound Dietary Fiber and High-Grade Protein Diet Improves Glycemic Control and Ameliorates Diabetes and Its Comorbidities through Remodeling the Gut Microbiota in Mice. Frontiers in Nutrition, 9, Article 959703. [Google Scholar] [CrossRef] [PubMed]