|
[1]
|
Wang, J., Wu, W. and Wu, H. (2025) Obinutuzumab for Treatment of Membranous Nephropathy in Patients Positive and Negative for the Phospholipase A2 Receptor Antibody: Case Reports. Frontiers in Immunology, 16, Article 1561638. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, M., Wei, L., Sun, J., Zhu, Q., Yang, H., Zhang, Y., et al. (2022) Association of Gut Microbiota with Idiopathic Membranous Nephropathy. BMC Nephrology, 23, Article No. 164. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ma, J., Piao, X., Mahfuz, S., Long, S. and Wang, J. (2022) The Interaction among Gut Microbes, the Intestinal Barrier and Short Chain Fatty Acids. Animal Nutrition, 9, 159-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Martin-Gallausiaux, C., Marinelli, L., Blottière, H.M., Larraufie, P. and Lapaque, N. (2020) SCFA: Mechanisms and Functional Importance in the Gut. Proceedings of the Nutrition Society, 80, 37-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jo, H.A., Hyeon, J.S., Yang, S.H., Jung, Y., Ha, H., Jeong, C.W., et al. (2021) Fumarate Modulates Phospholipase A2 Receptor Autoimmunity-Induced Podocyte Injury in Membranous Nephropathy. Kidney International, 99, 443-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zheng, M., Han, R., Yuan, Y., Xing, Y., Zhang, W., Sun, Z., et al. (2023) The Role of Akkermansia muciniphila in Inflammatory Bowel Disease: Current Knowledge and Perspectives. Frontiers in Immunology, 13, Article 1089600. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gao, J., Zhao, X., Hu, S., Huang, Z., Hu, M., Jin, S., et al. (2022) Gut Microbial Dl-Endopeptidase Alleviates Crohn’s Disease via the NOD2 Pathway. Cell Host & Microbe, 30, 1435-1449.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yuan, D., Chen, Y., Zheng, H., Liu, G., Yang, Q., Chen, L., et al. (2025) Mendelian Randomization Analysis Reveals a Causal Relationship between Membranous Nephropathy and the Gut Microbiome. Nephron, 149, 311-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, J., Luo, D., Lin, Z., Zhou, W., Rao, J., Li, Y., et al. (2020) Dysbiosis of Gut Microbiota in Adult Idiopathic Membranous Nephropathy with Nephrotic Syndrome. Microbial Pathogenesis, 147, Article ID: 104359. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Miao, H., Zhang, Y., Yu, X., Zou, L. and Zhao, Y. (2022) Membranous Nephropathy: Systems Biology-Based Novel Mechanism and Traditional Chinese Medicine Therapy. Frontiers in Pharmacology, 13, Article 969930. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mertowska, P., Mertowski, S., Wojnicka, J., Korona-Głowniak, I., Grywalska, E., Błażewicz, A., et al. (2021) A Link between Chronic Kidney Disease and Gut Microbiota in Immunological and Nutritional Aspects. Nutrients, 13, Article 3637. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hurtado, A. and Johnson, R.J. (2005) Hygiene Hypothesis and Prevalence of Glomerulonephritis. Kidney International, 68, S62-S67. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhu, Y., He, H., Sun, W., Wu, J., Xiao, Y., Peng, Y., et al. (2024) IgA Nephropathy: Gut Microbiome Regulates the Production of Hypoglycosilated Iga1 via the TLR4 Signaling Pathway. Nephrology Dialysis Transplantation, 39, 1624-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Stavropoulou, E., Kantartzi, K., Tsigalou, C., Konstantinidis, T., Romanidou, G., Voidarou, C., et al. (2021) Focus on the Gut-Kidney Axis in Health and Disease. Frontiers in Medicine, 7, Article 620102. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, Y., Chen, D., Chen, L., Liu, J., Vaziri, N.D., Guo, Y., et al. (2019) Microbiome-Metabolome Reveals the Contribution of Gut-Kidney Axis on Kidney Disease. Journal of Translational Medicine, 17, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Monteiro, R.C. and Berthelot, L. (2021) Role of Gut-Kidney Axis in Renal Diseases and IgA Nephropathy. Current Opinion in Gastroenterology, 37, 565-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pyatchenkov, M.O., Markov, A.G. and Rumyantsev, A.S. (2022) Structural and Functional Intestinal Barrier Abnormalities and Chronic Kidney Disease. Literature Review. Part I. Nephrology (Saint-Petersburg), 26, 10-26. [Google Scholar] [CrossRef]
|
|
[18]
|
Suganya, K., Son, T., Kim, K. and Koo, B. (2021) Impact of Gut Microbiota: How It Could Play Roles beyond the Digestive System on Development of Cardiovascular and Renal Diseases. Microbial Pathogenesis, 152, Article ID: 104583. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hobby, G.P., Karaduta, O., Dusio, G.F., Singh, M., Zybailov, B.L. and Arthur, J.M. (2019) Chronic Kidney Disease and the Gut Microbiome. American Journal of Physiology-Renal Physiology, 316, F1211-F1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, H., Ainiwaer, A., Song, Y., Qin, L., Peng, A., Bao, H., et al. (2023) Perturbed Gut Microbiome and Fecal and Serum Metabolomes Are Associated with Chronic Kidney Disease Severity. Microbiome, 11, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, H. and Chen, M. (2024) Exploring the Preventive and Therapeutic Mechanisms of Probiotics in Chronic Kidney Disease through the Gut-Kidney Axis. Journal of Agricultural and Food Chemistry, 72, 8347-8364. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, R., Tang, Y., Feng, X., Lu, X., Zhao, M., Jin, J., et al. (2025) Targeted Modulation of Intestinal Barrier and Mucosal Immune-Related Microbiota Attenuates Iga Nephropathy Progression. Gut Microbes, 17, Article ID: 2458184. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
He, J., Zhou, X., Lv, J. and Zhang, H. (2020) Perspectives on How Mucosal Immune Responses, Infections and Gut Microbiome Shape Iga Nephropathy and Future Therapies. Theranostics, 10, 11462-11478. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, Y., Zhao, J., Qin, Y., Wang, Y., Yu, Z., Ning, X., et al. (2022) Specific Alterations of Gut Microbiota in Patients with Membranous Nephropathy: A Systematic Review and Meta-analysis. Frontiers in Physiology, 13, Article 909491. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jiang, Y., Wang, T., Yu, W., Wu, F., Guo, R., Li, H., et al. (2023) Combination of the Gut Microbiota and Clinical Indicators as a Potential Index for Differentiating Idiopathic Membranous Nephropathy and Minimal Change Disease. Renal Failure, 45, Article ID: 2209392. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, Z., Wang, R., Yao, M., Zhao, J. and Liang, B. (2025) Genetical Predicted Causal Relationship between Gut Microbiota and Different Types of Kidney Diseases. Kidney Diseases, 11, 170-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yu, W., Shang, J., Guo, R., Zhang, F., Zhang, W., Zhang, Y., et al. (2020) The Gut Microbiome in Differential Diagnosis of Diabetic Kidney Disease and Membranous Nephropathy. Renal Failure, 42, 1100-1110. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Feng, Z., Zhang, Y., Lai, Y., Jia, C., Wu, F. and Chen, D. (2024) Causal Relationship between Gut Microbiota and Kidney Diseases: A Two-Sample Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1277554. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wu, J., Zhang, J., Huang, G., Zhong, Y., Yang, Y. and Deng, P. (2024) Evidence from Mendelian Randomization Identifies Several Causal Relationships between Primary Membranous Nephropathy and Gut Microbiota. Renal Failure, 46, Article ID: 2349136. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ma, Q., Wen, X. and Xu, G. (2024) The Causal Association of Specific Gut Microbiota on the Risk of Membranous Nephropathy: A Mendelian Randomization Study. International Urology and Nephrology, 56, 2021-2030. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, Q., Zheng, T., Xie, S., Zhu, J., Yuan, L., Wei, W., et al. (2024) The Influence of Gut Microbiota on Membranous Nephropathy: A Two-Sample Mendelian Randomization Study. Clinical Nephrology, 102, 134-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hsu, C., Su, S., Chang, L., Shao, S., Yang, K., Chen, C., et al. (2021) Effects of Low Protein Diet on Modulating Gut Microbiota in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis of International Studies. International Journal of Medical Sciences, 18, 3839-3850. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhou, G., Zeng, J., Peng, L., Wang, L., Zheng, W., Di Wu,, et al. (2021) Fecal Microbiota Transplantation for Membranous Nephropathy. CEN Case Reports, 10, 261-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shang, J., Zhang, Y., Guo, R., Liu, W., Zhang, J., Yan, G., et al. (2022) Gut Microbiome Analysis Can Be Used as a Noninvasive Diagnostic Tool and Plays an Essential Role in the Onset of Membranous Nephropathy. Advanced Science, 9, e2201581. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Yang, Y., Liang, Y., Lang, R., Zeng, Q., Yan, L., et al. (2022) Structural Modulation of Gut Microbiota during Alleviation of Experimental Passive Heymann Nephritis in Rats by a Traditional Chinese Herbal Formula. Biomedicine & Pharmacotherapy, 145, Article ID: 112475. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhang, X., Guan, X., Tang, Y., Sun, J., Wang, X., Wang, W., et al. (2021) Clinical Effects and Gut Microbiota Changes of Using Probiotics, Prebiotics or Synbiotics in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. European Journal of Nutrition, 60, 2855-2875. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Roy, S. and Dhaneshwar, S. (2023) Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World Journal of Gastroenterology, 29, 2078-2100. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xu, J., Xu, J., Shi, T., Zhang, Y., Chen, F., Yang, C., et al. (2022) Probiotic‐inspired Nanomedicine Restores Intestinal Homeostasis in Colitis by Regulating Redox Balance, Immune Responses, and the Gut Microbiome. Advanced Materials, 35, e2207890. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Miao, H., Wang, Y., Yu, X., Zou, L., Guo, Y., Su, W., et al. (2023) Lactobacillus Species Ameliorate Membranous Nephropathy through Inhibiting the Aryl Hydrocarbon Receptor Pathway via Tryptophan‐Produced Indole Metabolites. British Journal of Pharmacology, 181, 162-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, Q., Zhao, W., Zhao, Y., Duan, S., Liu, W., Zhang, C., et al. (2022) In Vitro Study of Bifidobacterium Lactis BL-99 with Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Frontiers in Nutrition, 9, Article 890316. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Peron, G., Meroño, T., Gargari, G., Hidalgo‐Liberona, N., Miñarro, A., Lozano, E.V., et al. (2022) A Polyphenol‐Rich Diet Increases the Gut Microbiota Metabolite Indole 3‐Propionic Acid in Older Adults with Preserved Kidney Function. Molecular Nutrition & Food Research, 66, e2100349. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Oh, J.H., Jang, Y.S., Kang, D., Kim, H.S., Kim, E., Park, S., et al. (2022) Efficacy of a Synbiotic Containing Lactobacillus paracasei DKGF1 and Opuntia humifusa in Elderly Patients with Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Gut and Liver, 17, 100-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhang, Q., Chen, B., Zhang, J., Dong, J., Ma, J., Zhang, Y., et al. (2023) Effect of Prebiotics, Probiotics, Synbiotics on Depression: Results from a Meta-Analysis. BMC Psychiatry, 23, Article No. 477. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lang, R., Wang, X., Li, A., Liang, Y., Zhu, B., Shi, B., et al. (2020) Effects of Jian Pi Qu Shi Formula on Intestinal Bacterial Flora in Patients with Idiopathic Membranous Nephropathy: A Prospective Randomized Controlled Trial. Chronic Diseases and Translational Medicine, 6, 124-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
王丹廷. 穿山龙总皂苷对膜性肾病大鼠肾损伤及肠道菌群的影响[D]: [硕士学位论文]. 太原: 山西省中医药研究院, 2025.
|
|
[46]
|
Xie, S., Fang, L., Deng, N., Shen, J., Tan, Z. and Peng, X. (2024) Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Medical Science Monitor, 30, e944185. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mafra, D., Kemp, J.A., Borges, N.A., Wong, M. and Stenvinkel, P. (2023) Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins, 15, Article 499. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Black, A.P., Anjos, J.S., Cardozo, L., Carmo, F.L., Dolenga, C.J., Nakao, L.S., et al. (2018) Does Low-Protein Diet Influence the Uremic Toxin Serum Levels from the Gut Microbiota in Nondialysis Chronic Kidney Disease Patients? Journal of Renal Nutrition, 28, 208-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ni, Y., Zheng, A., Hu, Y., Rong, N., Zhang, Q., Long, W., et al. (2022) Compound Dietary Fiber and High-Grade Protein Diet Improves Glycemic Control and Ameliorates Diabetes and Its Comorbidities through Remodeling the Gut Microbiota in Mice. Frontiers in Nutrition, 9, Article 959703. [Google Scholar] [CrossRef] [PubMed]
|