|
[1]
|
Assi, R., Quintiens, J., Monteagudo, S. and Lories, R.J. (2023) Innovation in Targeted Intra-Articular Therapies for Osteoarthritis. Drugs, 83, 649-663. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mobasheri, A., Rayman, M.P., Gualillo, O., Sellam, J., van der Kraan, P. and Fearon, U. (2017) The Role of Metabolism in the Pathogenesis of Osteoarthritis. Nature Reviews Rheumatology, 13, 302-311. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Goldring, M.B. (2012) Chondrogenesis, Chondrocyte Differentiation, and Articular Cartilage Metabolism in Health and Osteoarthritis. Therapeutic Advances in Musculoskeletal Disease, 4, 269-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bruno, M.C., Cristiano, M.C., Celia, C., d’Avanzo, N., Mancuso, A., Paolino, D., et al. (2022) Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano, 16, 19665-19690. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sellam, J. and Berenbaum, F. (2010) The Role of Synovitis in Pathophysiology and Clinical Symptoms of Osteoarthritis. Nature Reviews Rheumatology, 6, 625-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., et al. (2014) The Global Burden of Hip and Knee Osteoarthritis: Estimates from the Global Burden of Disease 2010 Study. Annals of the Rheumatic Diseases, 73, 1323-1330. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Takeuchi, T., Yoshida, H. and Tanaka, S. (2021) Role of Interleukin-6 in Bone Destruction and Bone Repair in Rheumatoid Arthritis. Autoimmunity Reviews, 20, Article ID: 102884. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Y., Fan, X., Xing, L. and Tian, F. (2019) Wnt Signaling: A Promising Target for Osteoarthritis Therapy. Cell Communication and Signaling, 17, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bijlsma, J.W., Berenbaum, F. and Lafeber, F.P. (2011) Osteoarthritis: An Update with Relevance for Clinical Practice. The Lancet, 377, 2115-2126. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Roman-Blas, J.A., Bizzi, E., Largo, R., Migliore, A. and Herrero-Beaumont, G. (2016) An Update on the up and Coming Therapies to Treat Osteoarthritis, a Multifaceted Disease. Expert Opinion on Pharmacotherapy, 17, 1745-1756. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
The Editors of The Lancet, (2017) Retraction and Republication—Effectiveness of Non-Steroidal Anti-Inflammatory Drugs for the Treatment of Osteoarthritis Pain: A Network Meta-Analysis. The Lancet, 390, 109. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sinatti, P., Sánchez Romero, E.A., Martínez-Pozas, O. and Villafañe, J.H. (2022) Effects of Patient Education on Pain and Function and Its Impact on Conservative Treatment in Elderly Patients with Pain Related to Hip and Knee Osteoarthritis: A Systematic Review. International Journal of Environmental Research and Public Health, 19, Article 6194. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, X., Yamauchi, K. and Mitsunaga, T. (2020) A Review on Osteoclast Diseases and Osteoclastogenesis Inhibitors Recently Developed from Natural Resources. Fitoterapia, 142, Article ID: 104482. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Madry, H., van Dijk, C.N. and Mueller‐Gerbl, M. (2010) The Basic Science of the Subchondral Bone. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 419-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lories, R.J. and Luyten, F.P. (2010) The Bone-Cartilage Unit in Osteoarthritis. Nature Reviews Rheumatology, 7, 43-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, G., Yin, J., Gao, J., Cheng, T.S., Pavlos, N.J., Zhang, C., et al. (2013) Subchondral Bone in Osteoarthritis: Insight into Risk Factors and Microstructural Changes. Arthritis Research & Therapy, 15, Article No. 223. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Goldring, M.B. and Goldring, S.R. (2010) Articular Cartilage and Subchondral Bone in the Pathogenesis of Osteoarthritis. Annals of the New York Academy of Sciences, 1192, 230-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hu, W., Chen, Y., Dou, C. and Dong, S. (2021) Microenvironment in Subchondral Bone: Predominant Regulator for the Treatment of Osteoarthritis. Annals of the Rheumatic Diseases, 80, 413-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Feng, X. and McDonald, J.M. (2011) Disorders of Bone Remodeling. Annual Review of Pathology: Mechanisms of Disease, 6, 121-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhen, G., Wen, C., Jia, X., Li, Y., Crane, J.L., Mears, S.C., et al. (2013) Inhibition of TGF-β Signaling in Mesenchymal Stem Cells of Subchondral Bone Attenuates Osteoarthritis. Nature Medicine, 19, 704-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cui, Z., Crane, J., Xie, H., Jin, X., Zhen, G., Li, C., et al. (2016) Halofuginone Attenuates Osteoarthritis by Inhibition of TGF-β Activity and H-Type Vessel Formation in Subchondral Bone. Annals of the Rheumatic Diseases, 75, 1714-1721. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bolamperti, S., Villa, I. and Rubinacci, A. (2022) Bone Remodeling: An Operational Process Ensuring Survival and Bone Mechanical Competence. Bone Research, 10, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Burr, D.B. and Gallant, M.A. (2012) Bone Remodelling in Osteoarthritis. Nature Reviews Rheumatology, 8, 665-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yuan, X.L., Meng, H.Y., Wang, Y.C., Peng, J., Guo, Q.Y., Wang, A.Y., et al. (2014) Bone-Cartilage Interface Crosstalk in Osteoarthritis: Potential Pathways and Future Therapeutic Strategies. Osteoarthritis and Cartilage, 22, 1077-1089. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Maeda, K., Yoshida, K., Nishizawa, T., Otani, K., Yamashita, Y., Okabe, H., et al. (2022) Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 23, Article 2871. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Fang, Q., Zhou, C. and Nandakumar, K.S. (2020) Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators of Inflammation, 2020, Article ID: 3830212. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, L., You, X., Zhang, L., Zhang, C. and Zou, W. (2022) Mechanical Regulation of Bone Remodeling. Bone Research, 10, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Udagawa, N., Koide, M., Nakamura, M., Nakamichi, Y., Yamashita, T., Uehara, S., et al. (2020) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bar‐Shavit, Z. (2007) The Osteoclast: A Multinucleated, Hematopoietic‐Origin, Bone‐Resorbing Osteoimmune Cell. Journal of Cellular Biochemistry, 102, 1130-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Strassle, B.W., Mark, L., Leventhal, L., Piesla, M.J., Jian Li, X., Kennedy, J.D., et al. (2010) Inhibition of Osteoclasts Prevents Cartilage Loss and Pain in a Rat Model of Degenerative Joint Disease. Osteoarthritis and Cartilage, 18, 1319-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Adamopoulos, I.E. and Mellins, E.D. (2014) Alternative Pathways of Osteoclastogenesis in Inflammatory Arthritis. Nature Reviews Rheumatology, 11, 189-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ding, D., Yan, J., Feng, G., Zhou, Y., Ma, L. and Jin, Q. (2021) Dihydroartemisinin Attenuates Osteoclast Formation and Bone Resorption via Inhibiting the NF-κB, MAPK and NFATc1 Signaling Pathways and Alleviates Osteoarthritis. International Journal of Molecular Medicine, 49, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yang, X., Liang, J., Wang, Z., Su, Y., Zhan, Y., Wu, Z., et al. (2021) Sesamolin Protects Mice from Ovariectomized Bone Loss by Inhibiting Osteoclastogenesis and Rankl-Mediated NF-κB and MAPK Signaling Pathways. Frontiers in Pharmacology, 12, Article 664697. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Teitelbaum, S.L. (2016) Therapeutic Implications of Suppressing Osteoclast Formation versus Function. Rheumatology, 55, ii61-ii63. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Martin, T.J. and Sims, N.A. (2015) RANKL/OPG; Critical Role in Bone Physiology. Reviews in Endocrine and Metabolic Disorders, 16, 131-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Eriksen, E.F. (2010) Cellular Mechanisms of Bone Remodeling. Reviews in Endocrine and Metabolic Disorders, 11, 219-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vaananen, K. (2005) Mechanism of Osteoclast Mediated Bone Resorption—Rationale for the Design of New Therapeutics. Advanced Drug Delivery Reviews, 57, 959-971. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Amin, N., Boccardi, V., Taghizadeh, M. and Jafarnejad, S. (2019) Probiotics and Bone Disorders: The Role of RANKL/RANK/OPG Pathway. Aging Clinical and Experimental Research, 32, 363-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, Y., Liang, J., Liu, P., Wang, Q., Liu, L. and Zhao, H. (2022) The RANK/RANKL/OPG System and Tumor Bone Metastasis: Potential Mechanisms and Therapeutic Strategies. Frontiers in Endocrinology, 13, Article 1063815. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, W., Wang, Q., Tao, H., Lu, L., Zhou, J., Wang, Q., et al. (2024) Subchondral Osteoclasts and Osteoarthritis: New Insights and Potential Therapeutic Avenues. Acta Biochimica et Biophysica Sinica, 56, 499-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhu, S., Zhu, J., Zhen, G., Hu, Y., An, S., Li, Y., et al. (2019) Subchondral Bone Osteoclasts Induce Sensory Innervation and Osteoarthritis Pain. Journal of Clinical Investigation, 129, 1076-1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shirai, T., Kobayashi, M., Nishitani, K., Satake, T., Kuroki, H., Nakagawa, Y., et al. (2011) Chondroprotective Effect of Alendronate in a Rabbit Model of Osteoarthritis. Journal of Orthopaedic Research, 29, 1572-1577. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Sagar, D.R., Ashraf, S., Xu, L., Burston, J.J., Menhinick, M.R., Poulter, C.L., et al. (2014) Osteoprotegerin Reduces the Development of Pain Behaviour and Joint Pathology in a Model of Osteoarthritis. Annals of the Rheumatic Diseases, 73, 1558-1565. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Moreno‐Rubio, J., Herrero‐Beaumont, G., Tardı´o, L., álvarez‐Soria, M.á. and Largo, R. (2010) Nonsteroidal Antiinflammatory Drugs and Prostaglandin E2 Modulate the Synthesis of Osteoprotegerin and RANKL in the Cartilage of Patients with Severe Knee Osteoarthritis. Arthritis & Rheumatism, 62, 478-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cappariello, A., Maurizi, A., Veeriah, V. and Teti, A. (2014) The Great Beauty of the Osteoclast. Archives of Biochemistry and Biophysics, 558, 70-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhao, X., Ma, L., Guo, H., Wang, J., Zhang, S., Yang, X., et al. (2022) Osteoclasts Secrete Leukemia Inhibitory Factor to Promote Abnormal Bone Remodeling of Subchondral Bone in Osteoarthritis. BMC Musculoskeletal Disorders, 23, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, D., Xu, J., Zhang, Y., et al. (2018) Wear Particles Enhance Autophagy through Up-Regulation of CD147 to Promote Osteoclasto-Genesis. Iranian Journal of Basic Medical Sciences, 21, 806-812.
|
|
[48]
|
Zhao, S., Kong, F., Cai, W., Xu, T., Zhou, Z., Wang, Z., et al. (2018) GIT1 Contributes to Autophagy in Osteoclast through Disruption of the Binding of Beclin1 and Bcl2 under Starvation Condition. Cell Death & Disease, 9, Article No. 1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Xue, Y., Liang, Z., Fu, X., Wang, T., Xie, Q. and Ke, D. (2019) IL-17A Modulates Osteoclast Precursors’ Apoptosis through Autophagy-TRAF3 Signaling during Osteoclastogenesis. Biochemical and Biophysical Research Communications, 508, 1088-1092. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Arai, A., Kim, S., Goldshteyn, V., Kim, T., Park, N., Wang, C., et al. (2019) Beclin1 Modulates Bone Homeostasis by Regulating Osteoclast and Chondrocyte Differentiation. Journal of Bone and Mineral Research, 34, 1753-1766. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Li, R., Chen, G., Ren, J., Zhang, W., Wu, Z., Liu, B., et al. (2014) The Adaptor Protein P62 Is Involved in Rankl-Induced Autophagy and Osteoclastogenesis. Journal of Histochemistry & Cytochemistry, 62, 879-888. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Tong, X., Gu, J., Song, R., Wang, D., Sun, Z., Sui, C., et al. (2018) Osteoprotegerin Inhibit Osteoclast Differentiation and Bone Resorption by Enhancing Autophagy via AMPK/mTOR/p70S6K Signaling Pathway in Vitro. Journal of Cellular Biochemistry, 120, 1630-1642. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sun, K., Chen, M.Y.C., Tu, M., Wang, I., Chang, S. and Li, C. (2015) MicroRNA-20a Regulates Autophagy Related Protein-ATG16L1 in Hypoxia-Induced Osteoclast Differentiation. Bone, 73, 145-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Williams, J.P., Micoli, K. and McDonald, J.M. (2010) Calmodulin—An Often‐Ignored Signal in Osteoclasts. Annals of the New York Academy of Sciences, 1192, 358-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D., Bae, Y.S., et al. (2005) A Crucial Role for Reactive Oxygen Species in Rankl-Induced Osteoclast Differentiation. Blood, 106, 852-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., et al. (2019) Activation of ROS/MAPKs/NF‐κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast‐Mediated Diabetic Osteoporosis. The FASEB Journal, 33, 12515-12527. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hu, T., Zhang, Z., Deng, C., Ma, X. and Liu, X. (2022) Effects of Β2 Integrins on Osteoclasts, Macrophages, Chondrocytes, and Synovial Fibroblasts in Osteoarthritis. Biomolecules, 12, Article 1653. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Mercurio, F. and Manning, A.M. (1999) Multiple Signals Converging on NF-κB. Current Opinion in Cell Biology, 11, 226-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Hu, L., Liu, R. and Zhang, L. (2022) Advance in Bone Destruction Participated by JAK/STAT in Rheumatoid Arthritis and Therapeutic Effect of JAK/STAT Inhibitors. International Immunopharmacology, 111, Article ID: 109095. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Morgan, M., Thai, J., Nazemian, V., Song, R. and Ivanusic, J.J. (2021) Changes to the Activity and Sensitivity of Nerves Innervating Subchondral Bone Contribute to Pain in Late-Stage Osteoarthritis. Pain, 163, 390-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Martínez-Calatrava, M.J., Prieto-Potín, I., Roman-Blas, J.A., Tardio, L., Largo, R. and Herrero-Beaumont, G. (2012) RANKL Synthesized by Articular Chondrocytes Contributes to Juxta-Articular Bone Loss in Chronic Arthritis. Arthritis Research & Therapy, 14, Article No. R149. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Jenei-Lanzl, Z., Meurer, A. and Zaucke, F. (2019) Interleukin-1β Signaling in Osteoarthritis—Chondrocytes in Focus. Cellular Signalling, 53, 212-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Tateiwa, D., Yoshikawa, H. and Kaito, T. (2019) Cartilage and Bone Destruction in Arthritis: Pathogenesis and Treatment Strategy: A Literature Review. Cells, 8, Article 818. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Bultink, I.E.M. and Lems, W.F. (2013) Osteoarthritis and Osteoporosis: What Is the Overlap? Current Rheumatology Reports, 15, Article No. 328. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wang, S., Liu, Z., Wang, J., Ji, X., Yao, Z. and Wang, X. (2020) miR-21 Promotes Osteoclastogenesis through Activation of PI3K/Akt Signaling by Targeting Pten in RAW264.7 Cells. Molecular Medicine Reports, 21, 1125-1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Jilka, R.L., Noble, B. and Weinstein, R.S. (2013) Osteocyte Apoptosis. Bone, 54, 264-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Srikanth, V.K., Fryer, J.L., Zhai, G., Winzenberg, T.M., Hosmer, D. and Jones, G. (2005) A Meta-Analysis of Sex Differences Prevalence, Incidence and Severity of Osteoarthritis. Osteoarthritis and Cartilage, 13, 769-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Nagae, M., Hiraga, T., Wakabayashi, H., Wang, L., Iwata, K. and Yoneda, T. (2006) Osteoclasts Play a Part in Pain Due to the Inflammation Adjacent to Bone. Bone, 39, 1107-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Bertuglia, A., Lacourt, M., Girard, C., Beauchamp, G., Richard, H. and Laverty, S. (2016) Osteoclasts Are Recruited to the Subchondral Bone in Naturally Occurring Post-Traumatic Equine Carpal Osteoarthritis and May Contribute to Cartilage Degradation. Osteoarthritis and Cartilage, 24, 555-566. [Google Scholar] [CrossRef] [PubMed]
|