破骨细胞在骨关节炎中的作用及其调控机制
The Role of Osteoclasts in Osteoarthritis and Their Regulatory Mechanisms
DOI: 10.12677/acm.2025.15123680, PDF, HTML, XML,   
作者: 倪宇伟:绍兴文理学院医学院,浙江 绍兴;周 平*:绍兴市人民医院骨科,浙江 绍兴
关键词: 骨关节炎破骨细胞软骨下骨骨重塑Osteoarthritis Osteoclast Subchondral Bone Bone Remodeling
摘要: 骨关节炎(Osteoarthritis, OA)是全球最常见的关节疾病,其发病机制复杂,涉及多种致病因素,导致治疗效果常不理想。经过多年的研究与探索,学者们逐渐认识到软骨下骨在OA发病中的关键作用。研究表明,在关节软骨病变显现之前,软骨下骨已发生显著的病理变化。作为调控骨吸收的主要细胞,破骨细胞在软骨下骨的病理过程中发挥着至关重要的作用。软骨下破骨细胞通过分泌降解酶、参与免疫调节以及调控细胞信号通路,维持软骨下骨的稳态。然而,在OA病理状态下,破骨细胞活性受到自噬、RANKL/RANK/OPG信号通路、炎症信号通路以及非编码RNA (ncRNA)等的异常激活,导致骨吸收过度,破坏了骨重塑的动态平衡,引发软骨下骨质流失、骨密度下降,继而导致关节软骨结构损伤和关节疼痛的加剧。随着骨生物学和靶向治疗研究的深入,学者们发现软骨下破骨细胞的活性和功能受多种途径的精细调控。本文系统综述了软骨下破骨细胞在OA中的作用机制,并总结了针对其功能特性开发的最新治疗进展。展望未来,软骨下破骨细胞靶向治疗在临床应用中的发展趋势备受关注。这一领域的研究旨在填补当前OA治疗知识的空白,为制定创新的治疗策略提供科学依据。
Abstract: Osteoarthritis (OA) is the most common joint disease worldwide, characterized by a complex pathophysiology involving multiple pathogenic factors, which often leads to suboptimal treatment outcomes. After years of research and exploration, the pivotal role of the subchondral bone in OA pathogenesis has been increasingly recognized. Studies have demonstrated that significant pathological alterations occur in the subchondral bone prior to the manifestation of articular cartilage lesions. As the primary cells responsible for regulating bone resorption, osteoclasts play a crucial role in the pathological processes within the subchondral bone. Subchondral osteoclasts maintain bone homeostasis through the secretion of degrading enzymes, participation in immune regulation, and modulation of cellular signaling pathways. However, under OA pathological conditions, osteoclast activity is aberrantly activated by mechanisms such as autophagy, the RANKL/RANK/OPG signaling pathway, inflammatory signaling pathways, and non-coding RNAs (ncRNAs). This aberrant activation leads to excessive bone resorption, disrupts the dynamic balance of bone remodeling, and subsequently induces subchondral bone loss, reduced bone density, structural damage to the articular cartilage, and exacerbation of joint pain. With advances in bone biology and targeted therapy research, it has been revealed that the activity and function of subchondral osteoclasts are finely regulated by multiple pathways. This article systematically reviews the mechanisms of action of subchondral osteoclasts in OA and summarizes recent therapeutic advances developed to target their functional properties. Looking forward, the development trends of subchondral osteoclast-targeted therapies for clinical application are of significant interest. Research in this field aims to address current gaps in knowledge regarding OA treatment and provide a scientific basis for developing innovative therapeutic strategies.
文章引用:倪宇伟, 周平. 破骨细胞在骨关节炎中的作用及其调控机制[J]. 临床医学进展, 2025, 15(12): 2479-2487. https://doi.org/10.12677/acm.2025.15123680

1. 引言

骨关节炎(Osteoarthritis, OA)是全球最常见的关节疾病,尤其多发于老年人[1]。其发病机制复杂,致病因素多样。OA的典型临床表现包括关节疼痛、僵硬、肿胀及活动受限[2]。晚期患者可能出现关节畸形(如骨赘形成)和功能丧失[3]。X线检查常显示关节间隙狭窄、骨赘(osteophytes)和骨下骨硬化等特征[4]。尽管症状因个体差异而异,但OA的慢性进展性特点显著降低了患者的生活质量[5]

传统上,OA被视为一种“磨损性”疾病,主要归因于机械应力和老化[6]。危险因素包括年龄、性别(女性更易患)、肥胖(增加关节负荷)、关节创伤史及遗传倾向(如COL2A1基因变异) [7]

关节疼痛和功能丧失是治疗OA的主要原因。现在临床常见的治疗方法包括非药物治疗,如体重控制和物理治疗。药物治疗包括非甾体抗炎药(非甾体抗炎药)、糖皮质激素和透明质酸,而手术治疗包括关节置换术[8]。由于OA的致病因素众多,病理过程复杂,传统治疗只能缓解症状,而不能逆转OA的进展或恢复正常的关节结构,并且通常伴有一定的副作用,如长期服用非甾体抗炎药可能导致胃溃疡和出血;手术治疗则会伴有一定的手术风险,如感染、出血等以及人工关节松动、关节僵硬等手术并发症[9]-[12]。因此,发现一种新的骨关节炎治疗方法成为当务之急。

目前关于OA的发病机制尚不明确,但随着近年来对其的不断深入研究发现,OA的发生发展与关节内的骨细胞有关,包括破骨细胞、成骨细胞和软骨细胞。在不同类型的OA中,病理机制可能有所不同。例如,衰老性OA通常伴随着软骨下骨的退化和破骨细胞的过度活跃,而创伤性OA则常常由于关节损伤后局部应力的变化导致破骨细胞的异常激活,骨重塑失衡。其中有关于破骨细胞与骨关节炎之间关系的研究结果表明,在骨关节炎的发病机制中,破骨细胞处于激活状态[13]。破骨细胞的激活被认为是骨关节炎(OA)发病机制中的核心细胞事件,其在疾病进程中的关键作用日益受到关注。因此,调控骨关节炎中破骨细胞的活性可能成为一种具有广阔前景的新型治疗靶点。近期研究发现,靶向破骨细胞的药物在治疗骨关节炎中表现出积极效果,进一步验证了破骨细胞作为OA治疗新靶点的潜力。本综述重点讨论衰老相关性OA的发病机制,聚焦于破骨细胞在骨关节炎发生与发展中的病理作用,系统探讨其分子机制,并深入分析基于破骨细胞调控的新型治疗策略及其临床应用前景。此外,还将简要讨论不同病因引起的OA (如创伤后OA、代谢性OA等)在软骨下骨病理变化中的潜在机制差异,以便更全面地理解OA的多样性与复杂性。

2. 软骨下骨

软骨下骨是指位于关节软骨下方的一层骨组织,通常包括软骨下骨板和其下的骨小梁[14]。软骨下骨板由一层薄薄的皮质骨组成,与钙化软骨相邻。皮质骨板有明显的孔隙,是一种可渗透的结构,在关节软骨和软骨下小梁之间提供了一个直接的连接通道,它通过血管和神经网络与软骨紧密相连,起到支撑关节软骨、分散机械应力和维持关节稳定性的作用[15]。软骨下小梁则由靠近骨髓腔的松质骨组成,这种骨髓结构更稀疏,代谢活跃,富含血管和神经[16];软骨下骨不仅是关节的结构性基础,还含有多种具有不同功能的细胞,包括破骨细胞、成骨细胞、骨细胞和内皮细胞,通过分泌细胞因子和生长因子参与骨-软骨界面的生物学交互[17] [18]

骨下骨重塑是一个动态过程,由基本多细胞单位内的两种主要骨细胞——负责骨吸收的破骨细胞和负责骨形成的成骨细胞——协同介导,这一动态过程的持续与平衡对于骨转换和维持体内平衡至关重要[19]。骨下骨重塑在OA的发生和发展中具有关键作用,在OA中,破骨细胞的异常活跃被认为是驱动疾病进展的关键因素之一,尤其是在骨下骨的重塑失衡和关节退变中发挥重要作用。不同病因的OA在软骨下骨的变化上有显著差异,衰老性OA通常伴随骨吸收增加和骨硬化,而创伤性OA则更可能在早期出现局部骨质流失和骨小梁增生,这些差异在治疗策略上需要考虑。有研究证明骨下骨重塑异常可能是OA的早期事件,甚至先于软骨明显退变,其不仅是疾病的结果,还可能是驱动病理进程的主动因素[20]-[22]。骨下骨在OA中经历早期骨吸收增加和晚期骨硬化的双相变化,骨下骨重塑异常(如骨硬化或骨小梁增厚)改变了对软骨的机械支撑,导致局部应力集中,加速软骨退变[23]。同时,重塑过程中,骨下骨通过释放基质金属蛋白酶(MMPs)和炎症因子(如IL-1β、TNF-α),直接损伤软骨基质并促进软骨细胞凋亡,并参与OA的微环境变化,与破骨细胞活性增强密切相关[24] [25]。骨下骨重塑失衡增强局部炎症反应,吸引免疫细胞并激活破骨细胞,进一步加剧骨吸收和软骨破坏[26]。重塑异常导致血管新生和骨下骨微裂隙形成,促进了软骨下侵蚀和骨囊变(cysts),与OA疼痛和功能丧失密切相关[16]

3. 破骨细胞与骨重塑失衡

破骨细胞是来源于骨髓巨噬细胞的具有多种功能的特化细胞,主要负责骨吸收和重塑,以维持骨骼的正常生理状态[27]。其通过与骨表面结合并释放溶酶体中的酸和酶来降解和溶解骨组织中的无机盐和有机基质,从而控制骨的生长和更新[28]。破骨细胞异常激活导致OA早期软骨下骨发生病理改变,晚期则以成骨异常和骨赘形成为主[29];但软骨下破骨细胞在OA中的作用机制尚不清楚。

骨重塑是一个复杂的动态过程,由破骨细胞和成骨细胞协同作用维持骨的结构和功能。正常情况下,破骨细胞负责骨吸收,而成骨细胞负责骨形成,这两者的平衡对于骨的稳定至关重要。然而,在OA中,破骨细胞的活性异常增加,导致骨吸收过度,进而破坏骨重塑的平衡。部分研究指出,OA不同阶段破骨细胞的作用可能不同。Wang等强调,破骨细胞介导的骨吸收是OA早期病理的关键驱动因素,影响软骨退变的进程[30]。另有研究发现,早期OA以破骨细胞介导的骨吸收为主,而晚期可能因成骨细胞活性增强导致骨硬化,提示治疗策略需考虑疾病阶段[31]。OA早期,软骨下破骨细胞数量和活性异常增高,骨吸收率明显增高。这破坏了骨重塑的平衡,导致软骨下骨丢失增加,骨髓腔增大,骨密度降低。过度的骨吸收会导致软骨下骨不规则,从而导致骨囊肿的形成,可引起骨痛和不适[32] [33]。此外,Zhao等的研究表明,破骨细胞分泌的白血病抑制因子可能在早期异常骨重塑中起双重调节作用,增加了研究复杂性[34]

众所周知,RANKL/RANK/OPG系统的平衡可以维持破骨细胞生成的稳态,进而保持骨矿物质稳态[35]。这个生物学过程始于成骨细胞和基质细胞分泌RANKL,它与破骨细胞前体相互作用并结合RANK受体[36]。这种相互作用触发了一系列转录因子的激活,包括NF-κB、激活蛋白1、AKT、活化t细胞质核因子1 (NFATc1)和mapk相关大分子如ERK、JNK和P38,进而启动与破骨细胞分化和骨吸收相关的基因的转录,包括编码抗酒石酸磷酸酶(TRAP)、组织蛋白酶K (CTSK)、降钙素受体(CTR)和MMP-9的基因,最终导致成熟的多核破细胞的形成[36]-[38]。TNF受体相关因子6 (TRAF6)也是RANKL-RANK信号通路的重要组成部分,TRAF6的募集激活NF-κB、MAPK、PI3K/AKT等信号通路,从而促进破骨细胞的分化和成熟[39] [40]

骨保护素(OPG)是成骨细胞产生的一种分泌蛋白和细胞因子受体蛋白,OPG可以替代RANK并与RANKL结合,从而抑制成熟破骨细胞的形成,从而下调骨吸收,减缓骨关节炎的发病过程,包括骨小梁分离增加、软骨下骨骨质流失和关节软骨退变[41] [42];另外,OPG可通过MAPK信号传导等途径引起破骨细胞的破坏,保护骨皮质[43];但在OA中,OPG的表达通常较低,导致RANKL和RANK的联合作用增强,进而增加破骨细胞的数量和活性,显著增加骨吸收,破坏骨重塑平衡,从而引起关节损伤[44]

有研究显示,破骨细胞在OA中过度活跃,通过分泌降解酶(如组织蛋白酶K)和酸性物质,增强骨吸收,导致骨下骨微结构改变。例如,Chen等发现,OA中破骨细胞通过自噬和RANKL/RANK/OPG通路过度激活,破坏骨重塑平衡,增加骨下骨损失和软骨损伤[45]。Takaaki Shirai等人通过对阿仑膦酸钠(Alendronate, ALN)在兔前交叉韧带切断(ACLT)骨关节炎(OA)模型中对软骨退变和周围骨质量的研究,发现阿仑磷酸钠可抑制软骨区和软骨化区RANKL的表达以及软骨下骨髓间隙破骨细胞的数量,从而防止关节周围骨质流失和软骨退行性变,并且阿仑膦酸钠通过抑制破骨细胞活性改变了异常的软骨下骨重塑,减少了OA早期的神经支配和疼痛行为[46] [47]。Sagar等人的研究表明,在大鼠骨关节炎模型中,使用OPG-Fc进行预防性治疗可显著减少破骨细胞数量、抑制骨赘形成并改善关节内的结构病理,从而阻止骨关节炎的发展[48]。Moreno等人发现塞来昔布降低了RANKL的表达,从而提高了OPG/RANKL的比值,证明了塞来昔布可能通过调节RANKL/RANK/OPG系统来抑制破骨细胞,从而缓解临床症状[49]

此外,越来越多的证据表明,自噬作为细胞自我更新的过程,能通过放大RANKL诱导的破骨细胞分化信号,加剧骨吸收。cd147介导的自噬被激活后,Beclin-1和可溶性RANKL水平升高,促进破骨细胞生成[50]。GIT1通过促进Beclin1 Thr119位点的磷酸化和破坏Beclin1与BCL2的结合来促进破骨细胞的自噬[51]。IL-17A通过调节Beclin-1介导的自噬来调节RANKL诱导的破骨细胞形成[52]。TRAF6介导Beclin1在Lys117位点的泛素化,促进RANKL刺激的破骨细胞分化[53]。作为一种特征性的自噬衔接蛋白,p62/sqstm1激活自噬,并受LC3积累和f -肌动蛋白环形成的影响,参与RANKL诱导的破骨细胞分化[54]。此外,mTOR通过AMPK/mTOR/P70S6K信号通路调节自噬,影响破骨细胞分化[55]。HIF-1α介导miRNAs参与破骨细胞的自噬调节[56]

近年来,除了经典的RANK/RANKL/OPG信号通路外,破骨细胞的活性还受到多种因素的调控。例如,钙调素[57]、ROS [58] [59]、ncRNA [60]等共同调节破骨细胞的功能,进而影响OA的进程。此外,凋亡[61]、雌激素[62]以及其他分子在破骨细胞的调控中也扮演着重要角色,这些因素通过调节破骨细胞的活性,进一步促进关节破坏的加剧。

综上所述,破骨细胞在OA中的核心作用是通过异常骨吸收驱动骨下骨重塑失衡,进而影响软骨退变和关节功能,其核心调控通路为RANKL/RANK/OPG系统。通过干扰这些破骨细胞调控机制,有可能减轻OA患者的症状并减缓疾病进展。然而,鉴于OA阶段性差异和研究争议,未来需进一步探索破骨细胞的动态调控机制,以开发更精准的干预措施。近期关于调节破骨细胞的药物在治疗骨关节炎中的积极作用的发现也表明,破骨细胞是治疗骨关节炎的新型靶点。

4. 破骨细胞与炎症及疼痛信号

炎症细胞是由免疫细胞形成的,可通过产生如IL-1β、IL-6等多种细胞因子和趋化因子来调节破骨细胞的生理过程。破骨细胞不仅是骨骼的“破坏者”,也是炎症环境的“放大器”和疼痛信号的“启动者”。破骨细胞不仅通过骨吸收调节骨代谢,还通过释放促炎因子(如IL-1β、TNF-α)放大局部炎症反应,影响软骨细胞和免疫细胞的交互[63] [64]。破骨细胞的异常活跃可能通过骨下骨释放生长因子(如VEGF)和基质金属蛋白酶(MMPs),间接损伤软骨基质[30]。研究表明,IL-1β可通过上调成骨细胞或基质细胞中RANKL的表达来刺激破骨细胞生成,从而显著提高骨吸收速率,破坏骨代谢平衡,导致骨结构破坏,加速OA的进展[65]。此外,IL-1β还可激活JAK-STAT和MAPK通路,刺激破骨细胞生成[66]。与此同时,IL-1β可通过NF-κB信号通路影响破骨细胞[67]。另外,IL-6通过激活JAK-STAT通路,调控破骨细胞的分化和活性,与此同时,IL-6也可激活NF-κB和MAPK信号通路,从而调节破骨细胞的活性和功能[68]。一个意外的发现是,破骨细胞通过分泌netrin-1诱导感觉神经生长和骨下骨神经侵入,参与OA疼痛的发生[41]。这为OA相关疼痛的发生提供了新的视角:破骨细胞通过神经侵入促进疼痛信号的传递,导致关节的敏感性增加。有学者研究发现,抑制破骨细胞活性可减少亚软骨骨神经侵入,缓解OA相关疼痛[69]。这一发现提示,通过靶向破骨细胞的药物可能不仅有助于改善骨代谢,还可能在缓解疼痛方面提供新的治疗策略。

5. 结论与展望

OA是一种不可逆转的慢性退行性关节疾病。其主要特征是软骨退变和软骨下骨的异常重塑。当前传统治疗的主要重点集中在延缓疾病的发展、减轻疼痛上,其治疗效果随着时间的推移和病情的加重失去有效性,发现一个能够实现OA长期疾病管理和改善患者预后的治疗方案是当前所急需。

靶向治疗可以干预导致软骨下骨溶解的病理生理过程,如炎症、骨质疏松和软骨损伤,从而减缓疾病进展并保护关节结构;靶向治疗可根据患者的疾病特点来制定治疗方案,从而更好地满足患者的需求,并且靶向治疗通常具有更少的全身副作用。而且,靶向治疗可以提供更持久的疗效。那么,确定一个治疗OA行之有效的治疗靶点为重中之重。

骨重塑是一个复杂而微妙的过程,它对维持骨骼的机械能力和协调新旧骨的替换至关重要。破骨细胞是参与骨吸收的主要细胞,在维持骨重塑中起着重要作用。随着对OA中骨重塑过程和破骨细胞活动的认识不断加深,软骨下破骨细胞似乎是OA早期病理改变的关键,有望成为治疗OA的新靶点。总结破骨细胞在OA中的关键作用及其研究进展,软骨下破骨细胞作为调控OA的靶点成为治疗OA的新策略。

OA的治疗是一个长期的过程,旨在改善疾病进展和提升患者生活质量。未来的研究将持续探索破骨细胞的分子调控机制,以期发现新的药物靶点,为更有效地治疗骨关节炎铺平道路,并制定个性化的治疗策略,为OA患者提供更精确、有效的治疗方法。此外,多学科研究团队的合作将促进炎症、骨吸收和破骨细胞等多个领域研究的整合,为OA的综合治疗提供新的视角。

Table 1. Table of different signaling pathways of osteoclasts regulating OA

1. 破骨细胞调控OA的不同信号通路表

信号通路

作用

影响

RANKL/RANK/OPG

维持破骨细胞生成的平衡

破骨细胞活性增加,骨吸收过度

IL-1β

上调RANKL的表达,刺激破骨细胞生成

加剧炎症反应,促进骨吸收,破坏骨重塑

ROS

通过氧化压力影响破骨细胞分化

促进破骨细胞的活性与骨吸收

netrin-1

促进神经生长,增加骨下骨的神经侵入

引发OA相关疼痛

ncRNA

通过调节基因表达影响破骨细胞的活性

可能通过影响破骨细胞的功能加剧OA进展

综上所述,本文综述了OA软骨下破骨细胞致病机制及破骨细胞靶向干预的最新进展。软骨下破骨细胞可能在OA发病中起核心作用。我们希望这项工作能够加深对OA的理解,并助力制定新的策略,以针对性地治疗OA (表1)。

NOTES

*通讯作者。

参考文献

[1] Assi, R., Quintiens, J., Monteagudo, S. and Lories, R.J. (2023) Innovation in Targeted Intra-Articular Therapies for Osteoarthritis. Drugs, 83, 649-663. [Google Scholar] [CrossRef] [PubMed]
[2] Mobasheri, A., Rayman, M.P., Gualillo, O., Sellam, J., van der Kraan, P. and Fearon, U. (2017) The Role of Metabolism in the Pathogenesis of Osteoarthritis. Nature Reviews Rheumatology, 13, 302-311. [Google Scholar] [CrossRef] [PubMed]
[3] Goldring, M.B. (2012) Chondrogenesis, Chondrocyte Differentiation, and Articular Cartilage Metabolism in Health and Osteoarthritis. Therapeutic Advances in Musculoskeletal Disease, 4, 269-285. [Google Scholar] [CrossRef] [PubMed]
[4] Bruno, M.C., Cristiano, M.C., Celia, C., d’Avanzo, N., Mancuso, A., Paolino, D., et al. (2022) Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano, 16, 19665-19690. [Google Scholar] [CrossRef] [PubMed]
[5] Sellam, J. and Berenbaum, F. (2010) The Role of Synovitis in Pathophysiology and Clinical Symptoms of Osteoarthritis. Nature Reviews Rheumatology, 6, 625-635. [Google Scholar] [CrossRef] [PubMed]
[6] Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., et al. (2014) The Global Burden of Hip and Knee Osteoarthritis: Estimates from the Global Burden of Disease 2010 Study. Annals of the Rheumatic Diseases, 73, 1323-1330. [Google Scholar] [CrossRef] [PubMed]
[7] Takeuchi, T., Yoshida, H. and Tanaka, S. (2021) Role of Interleukin-6 in Bone Destruction and Bone Repair in Rheumatoid Arthritis. Autoimmunity Reviews, 20, Article ID: 102884. [Google Scholar] [CrossRef] [PubMed]
[8] Wang, Y., Fan, X., Xing, L. and Tian, F. (2019) Wnt Signaling: A Promising Target for Osteoarthritis Therapy. Cell Communication and Signaling, 17, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
[9] Bijlsma, J.W., Berenbaum, F. and Lafeber, F.P. (2011) Osteoarthritis: An Update with Relevance for Clinical Practice. The Lancet, 377, 2115-2126. [Google Scholar] [CrossRef] [PubMed]
[10] Roman-Blas, J.A., Bizzi, E., Largo, R., Migliore, A. and Herrero-Beaumont, G. (2016) An Update on the up and Coming Therapies to Treat Osteoarthritis, a Multifaceted Disease. Expert Opinion on Pharmacotherapy, 17, 1745-1756. [Google Scholar] [CrossRef] [PubMed]
[11] The Editors of The Lancet, (2017) Retraction and Republication—Effectiveness of Non-Steroidal Anti-Inflammatory Drugs for the Treatment of Osteoarthritis Pain: A Network Meta-Analysis. The Lancet, 390, 109. [Google Scholar] [CrossRef] [PubMed]
[12] Sinatti, P., Sánchez Romero, E.A., Martínez-Pozas, O. and Villafañe, J.H. (2022) Effects of Patient Education on Pain and Function and Its Impact on Conservative Treatment in Elderly Patients with Pain Related to Hip and Knee Osteoarthritis: A Systematic Review. International Journal of Environmental Research and Public Health, 19, Article 6194. [Google Scholar] [CrossRef] [PubMed]
[13] Wang, X., Yamauchi, K. and Mitsunaga, T. (2020) A Review on Osteoclast Diseases and Osteoclastogenesis Inhibitors Recently Developed from Natural Resources. Fitoterapia, 142, Article ID: 104482. [Google Scholar] [CrossRef] [PubMed]
[14] Madry, H., van Dijk, C.N. and Mueller‐Gerbl, M. (2010) The Basic Science of the Subchondral Bone. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 419-433. [Google Scholar] [CrossRef] [PubMed]
[15] Lories, R.J. and Luyten, F.P. (2010) The Bone-Cartilage Unit in Osteoarthritis. Nature Reviews Rheumatology, 7, 43-49. [Google Scholar] [CrossRef] [PubMed]
[16] Li, G., Yin, J., Gao, J., Cheng, T.S., Pavlos, N.J., Zhang, C., et al. (2013) Subchondral Bone in Osteoarthritis: Insight into Risk Factors and Microstructural Changes. Arthritis Research & Therapy, 15, Article No. 223. [Google Scholar] [CrossRef] [PubMed]
[17] Goldring, M.B. and Goldring, S.R. (2010) Articular Cartilage and Subchondral Bone in the Pathogenesis of Osteoarthritis. Annals of the New York Academy of Sciences, 1192, 230-237. [Google Scholar] [CrossRef] [PubMed]
[18] Hu, W., Chen, Y., Dou, C. and Dong, S. (2021) Microenvironment in Subchondral Bone: Predominant Regulator for the Treatment of Osteoarthritis. Annals of the Rheumatic Diseases, 80, 413-422. [Google Scholar] [CrossRef] [PubMed]
[19] Feng, X. and McDonald, J.M. (2011) Disorders of Bone Remodeling. Annual Review of Pathology: Mechanisms of Disease, 6, 121-145. [Google Scholar] [CrossRef] [PubMed]
[20] Zhen, G., Wen, C., Jia, X., Li, Y., Crane, J.L., Mears, S.C., et al. (2013) Inhibition of TGF-β Signaling in Mesenchymal Stem Cells of Subchondral Bone Attenuates Osteoarthritis. Nature Medicine, 19, 704-712. [Google Scholar] [CrossRef] [PubMed]
[21] Cui, Z., Crane, J., Xie, H., Jin, X., Zhen, G., Li, C., et al. (2016) Halofuginone Attenuates Osteoarthritis by Inhibition of TGF-β Activity and H-Type Vessel Formation in Subchondral Bone. Annals of the Rheumatic Diseases, 75, 1714-1721. [Google Scholar] [CrossRef] [PubMed]
[22] Bolamperti, S., Villa, I. and Rubinacci, A. (2022) Bone Remodeling: An Operational Process Ensuring Survival and Bone Mechanical Competence. Bone Research, 10, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
[23] Burr, D.B. and Gallant, M.A. (2012) Bone Remodelling in Osteoarthritis. Nature Reviews Rheumatology, 8, 665-673. [Google Scholar] [CrossRef] [PubMed]
[24] Yuan, X.L., Meng, H.Y., Wang, Y.C., Peng, J., Guo, Q.Y., Wang, A.Y., et al. (2014) Bone-Cartilage Interface Crosstalk in Osteoarthritis: Potential Pathways and Future Therapeutic Strategies. Osteoarthritis and Cartilage, 22, 1077-1089. [Google Scholar] [CrossRef] [PubMed]
[25] Maeda, K., Yoshida, K., Nishizawa, T., Otani, K., Yamashita, Y., Okabe, H., et al. (2022) Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 23, Article 2871. [Google Scholar] [CrossRef] [PubMed]
[26] Fang, Q., Zhou, C. and Nandakumar, K.S. (2020) Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators of Inflammation, 2020, Article ID: 3830212. [Google Scholar] [CrossRef] [PubMed]
[27] Wang, L., You, X., Zhang, L., Zhang, C. and Zou, W. (2022) Mechanical Regulation of Bone Remodeling. Bone Research, 10, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
[28] Udagawa, N., Koide, M., Nakamura, M., Nakamichi, Y., Yamashita, T., Uehara, S., et al. (2020) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. [Google Scholar] [CrossRef] [PubMed]
[29] Bar‐Shavit, Z. (2007) The Osteoclast: A Multinucleated, Hematopoietic‐Origin, Bone‐Resorbing Osteoimmune Cell. Journal of Cellular Biochemistry, 102, 1130-1139. [Google Scholar] [CrossRef] [PubMed]
[30] Strassle, B.W., Mark, L., Leventhal, L., Piesla, M.J., Jian Li, X., Kennedy, J.D., et al. (2010) Inhibition of Osteoclasts Prevents Cartilage Loss and Pain in a Rat Model of Degenerative Joint Disease. Osteoarthritis and Cartilage, 18, 1319-1328. [Google Scholar] [CrossRef] [PubMed]
[31] Adamopoulos, I.E. and Mellins, E.D. (2014) Alternative Pathways of Osteoclastogenesis in Inflammatory Arthritis. Nature Reviews Rheumatology, 11, 189-194. [Google Scholar] [CrossRef] [PubMed]
[32] Ding, D., Yan, J., Feng, G., Zhou, Y., Ma, L. and Jin, Q. (2021) Dihydroartemisinin Attenuates Osteoclast Formation and Bone Resorption via Inhibiting the NF-κB, MAPK and NFATc1 Signaling Pathways and Alleviates Osteoarthritis. International Journal of Molecular Medicine, 49, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[33] Yang, X., Liang, J., Wang, Z., Su, Y., Zhan, Y., Wu, Z., et al. (2021) Sesamolin Protects Mice from Ovariectomized Bone Loss by Inhibiting Osteoclastogenesis and Rankl-Mediated NF-κB and MAPK Signaling Pathways. Frontiers in Pharmacology, 12, Article 664697. [Google Scholar] [CrossRef] [PubMed]
[34] Teitelbaum, S.L. (2016) Therapeutic Implications of Suppressing Osteoclast Formation versus Function. Rheumatology, 55, ii61-ii63. [Google Scholar] [CrossRef] [PubMed]
[35] Martin, T.J. and Sims, N.A. (2015) RANKL/OPG; Critical Role in Bone Physiology. Reviews in Endocrine and Metabolic Disorders, 16, 131-139. [Google Scholar] [CrossRef] [PubMed]
[36] Eriksen, E.F. (2010) Cellular Mechanisms of Bone Remodeling. Reviews in Endocrine and Metabolic Disorders, 11, 219-227. [Google Scholar] [CrossRef] [PubMed]
[37] Vaananen, K. (2005) Mechanism of Osteoclast Mediated Bone Resorption—Rationale for the Design of New Therapeutics. Advanced Drug Delivery Reviews, 57, 959-971. [Google Scholar] [CrossRef] [PubMed]
[38] Amin, N., Boccardi, V., Taghizadeh, M. and Jafarnejad, S. (2019) Probiotics and Bone Disorders: The Role of RANKL/RANK/OPG Pathway. Aging Clinical and Experimental Research, 32, 363-371. [Google Scholar] [CrossRef] [PubMed]
[39] Zhang, Y., Liang, J., Liu, P., Wang, Q., Liu, L. and Zhao, H. (2022) The RANK/RANKL/OPG System and Tumor Bone Metastasis: Potential Mechanisms and Therapeutic Strategies. Frontiers in Endocrinology, 13, Article 1063815. [Google Scholar] [CrossRef] [PubMed]
[40] Chen, W., Wang, Q., Tao, H., Lu, L., Zhou, J., Wang, Q., et al. (2024) Subchondral Osteoclasts and Osteoarthritis: New Insights and Potential Therapeutic Avenues. Acta Biochimica et Biophysica Sinica, 56, 499-512. [Google Scholar] [CrossRef] [PubMed]
[41] Zhu, S., Zhu, J., Zhen, G., Hu, Y., An, S., Li, Y., et al. (2019) Subchondral Bone Osteoclasts Induce Sensory Innervation and Osteoarthritis Pain. Journal of Clinical Investigation, 129, 1076-1093. [Google Scholar] [CrossRef] [PubMed]
[42] Shirai, T., Kobayashi, M., Nishitani, K., Satake, T., Kuroki, H., Nakagawa, Y., et al. (2011) Chondroprotective Effect of Alendronate in a Rabbit Model of Osteoarthritis. Journal of Orthopaedic Research, 29, 1572-1577. [Google Scholar] [CrossRef] [PubMed]
[43] Sagar, D.R., Ashraf, S., Xu, L., Burston, J.J., Menhinick, M.R., Poulter, C.L., et al. (2014) Osteoprotegerin Reduces the Development of Pain Behaviour and Joint Pathology in a Model of Osteoarthritis. Annals of the Rheumatic Diseases, 73, 1558-1565. [Google Scholar] [CrossRef] [PubMed]
[44] Moreno‐Rubio, J., Herrero‐Beaumont, G., Tardı´o, L., álvarez‐Soria, M.á. and Largo, R. (2010) Nonsteroidal Antiinflammatory Drugs and Prostaglandin E2 Modulate the Synthesis of Osteoprotegerin and RANKL in the Cartilage of Patients with Severe Knee Osteoarthritis. Arthritis & Rheumatism, 62, 478-488. [Google Scholar] [CrossRef] [PubMed]
[45] Cappariello, A., Maurizi, A., Veeriah, V. and Teti, A. (2014) The Great Beauty of the Osteoclast. Archives of Biochemistry and Biophysics, 558, 70-78. [Google Scholar] [CrossRef] [PubMed]
[46] Zhao, X., Ma, L., Guo, H., Wang, J., Zhang, S., Yang, X., et al. (2022) Osteoclasts Secrete Leukemia Inhibitory Factor to Promote Abnormal Bone Remodeling of Subchondral Bone in Osteoarthritis. BMC Musculoskeletal Disorders, 23, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
[47] Li, D., Xu, J., Zhang, Y., et al. (2018) Wear Particles Enhance Autophagy through Up-Regulation of CD147 to Promote Osteoclasto-Genesis. Iranian Journal of Basic Medical Sciences, 21, 806-812.
[48] Zhao, S., Kong, F., Cai, W., Xu, T., Zhou, Z., Wang, Z., et al. (2018) GIT1 Contributes to Autophagy in Osteoclast through Disruption of the Binding of Beclin1 and Bcl2 under Starvation Condition. Cell Death & Disease, 9, Article No. 1195. [Google Scholar] [CrossRef] [PubMed]
[49] Xue, Y., Liang, Z., Fu, X., Wang, T., Xie, Q. and Ke, D. (2019) IL-17A Modulates Osteoclast Precursors’ Apoptosis through Autophagy-TRAF3 Signaling during Osteoclastogenesis. Biochemical and Biophysical Research Communications, 508, 1088-1092. [Google Scholar] [CrossRef] [PubMed]
[50] Arai, A., Kim, S., Goldshteyn, V., Kim, T., Park, N., Wang, C., et al. (2019) Beclin1 Modulates Bone Homeostasis by Regulating Osteoclast and Chondrocyte Differentiation. Journal of Bone and Mineral Research, 34, 1753-1766. [Google Scholar] [CrossRef] [PubMed]
[51] Li, R., Chen, G., Ren, J., Zhang, W., Wu, Z., Liu, B., et al. (2014) The Adaptor Protein P62 Is Involved in Rankl-Induced Autophagy and Osteoclastogenesis. Journal of Histochemistry & Cytochemistry, 62, 879-888. [Google Scholar] [CrossRef] [PubMed]
[52] Tong, X., Gu, J., Song, R., Wang, D., Sun, Z., Sui, C., et al. (2018) Osteoprotegerin Inhibit Osteoclast Differentiation and Bone Resorption by Enhancing Autophagy via AMPK/mTOR/p70S6K Signaling Pathway in Vitro. Journal of Cellular Biochemistry, 120, 1630-1642. [Google Scholar] [CrossRef] [PubMed]
[53] Sun, K., Chen, M.Y.C., Tu, M., Wang, I., Chang, S. and Li, C. (2015) MicroRNA-20a Regulates Autophagy Related Protein-ATG16L1 in Hypoxia-Induced Osteoclast Differentiation. Bone, 73, 145-153. [Google Scholar] [CrossRef] [PubMed]
[54] Williams, J.P., Micoli, K. and McDonald, J.M. (2010) Calmodulin—An Often‐Ignored Signal in Osteoclasts. Annals of the New York Academy of Sciences, 1192, 358-364. [Google Scholar] [CrossRef] [PubMed]
[55] Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D., Bae, Y.S., et al. (2005) A Crucial Role for Reactive Oxygen Species in Rankl-Induced Osteoclast Differentiation. Blood, 106, 852-859. [Google Scholar] [CrossRef] [PubMed]
[56] An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., et al. (2019) Activation of ROS/MAPKs/NF‐κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast‐Mediated Diabetic Osteoporosis. The FASEB Journal, 33, 12515-12527. [Google Scholar] [CrossRef] [PubMed]
[57] Hu, T., Zhang, Z., Deng, C., Ma, X. and Liu, X. (2022) Effects of Β2 Integrins on Osteoclasts, Macrophages, Chondrocytes, and Synovial Fibroblasts in Osteoarthritis. Biomolecules, 12, Article 1653. [Google Scholar] [CrossRef] [PubMed]
[58] Mercurio, F. and Manning, A.M. (1999) Multiple Signals Converging on NF-κB. Current Opinion in Cell Biology, 11, 226-232. [Google Scholar] [CrossRef] [PubMed]
[59] Hu, L., Liu, R. and Zhang, L. (2022) Advance in Bone Destruction Participated by JAK/STAT in Rheumatoid Arthritis and Therapeutic Effect of JAK/STAT Inhibitors. International Immunopharmacology, 111, Article ID: 109095. [Google Scholar] [CrossRef] [PubMed]
[60] Morgan, M., Thai, J., Nazemian, V., Song, R. and Ivanusic, J.J. (2021) Changes to the Activity and Sensitivity of Nerves Innervating Subchondral Bone Contribute to Pain in Late-Stage Osteoarthritis. Pain, 163, 390-402. [Google Scholar] [CrossRef] [PubMed]
[61] Martínez-Calatrava, M.J., Prieto-Potín, I., Roman-Blas, J.A., Tardio, L., Largo, R. and Herrero-Beaumont, G. (2012) RANKL Synthesized by Articular Chondrocytes Contributes to Juxta-Articular Bone Loss in Chronic Arthritis. Arthritis Research & Therapy, 14, Article No. R149. [Google Scholar] [CrossRef] [PubMed]
[62] Jenei-Lanzl, Z., Meurer, A. and Zaucke, F. (2019) Interleukin-1β Signaling in Osteoarthritis—Chondrocytes in Focus. Cellular Signalling, 53, 212-223. [Google Scholar] [CrossRef] [PubMed]
[63] Tateiwa, D., Yoshikawa, H. and Kaito, T. (2019) Cartilage and Bone Destruction in Arthritis: Pathogenesis and Treatment Strategy: A Literature Review. Cells, 8, Article 818. [Google Scholar] [CrossRef] [PubMed]
[64] Bultink, I.E.M. and Lems, W.F. (2013) Osteoarthritis and Osteoporosis: What Is the Overlap? Current Rheumatology Reports, 15, Article No. 328. [Google Scholar] [CrossRef] [PubMed]
[65] Wang, S., Liu, Z., Wang, J., Ji, X., Yao, Z. and Wang, X. (2020) miR-21 Promotes Osteoclastogenesis through Activation of PI3K/Akt Signaling by Targeting Pten in RAW264.7 Cells. Molecular Medicine Reports, 21, 1125-1132. [Google Scholar] [CrossRef] [PubMed]
[66] Jilka, R.L., Noble, B. and Weinstein, R.S. (2013) Osteocyte Apoptosis. Bone, 54, 264-271. [Google Scholar] [CrossRef] [PubMed]
[67] Srikanth, V.K., Fryer, J.L., Zhai, G., Winzenberg, T.M., Hosmer, D. and Jones, G. (2005) A Meta-Analysis of Sex Differences Prevalence, Incidence and Severity of Osteoarthritis. Osteoarthritis and Cartilage, 13, 769-781. [Google Scholar] [CrossRef] [PubMed]
[68] Nagae, M., Hiraga, T., Wakabayashi, H., Wang, L., Iwata, K. and Yoneda, T. (2006) Osteoclasts Play a Part in Pain Due to the Inflammation Adjacent to Bone. Bone, 39, 1107-1115. [Google Scholar] [CrossRef] [PubMed]
[69] Bertuglia, A., Lacourt, M., Girard, C., Beauchamp, G., Richard, H. and Laverty, S. (2016) Osteoclasts Are Recruited to the Subchondral Bone in Naturally Occurring Post-Traumatic Equine Carpal Osteoarthritis and May Contribute to Cartilage Degradation. Osteoarthritis and Cartilage, 24, 555-566. [Google Scholar] [CrossRef] [PubMed]