|
[1]
|
McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2023) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 44, 3627-3639. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Owan, T.E., Hodge, D.O., Herges, R.M., Jacobsen, S.J., Roger, V.L. and Redfield, M.M. (2006) Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 355, 251-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Campbell, P., Rutten, F.H., Lee, M.M., Hawkins, N.M. and Petrie, M.C. (2024) Heart Failure with Preserved Ejection Fraction: Everything the Clinician Needs to Know. The Lancet, 403, 1083-1092. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shah, K.S., Xu, H., Matsouaka, R.A., Bhatt, D.L., Heidenreich, P.A., Hernandez, A.F., et al. (2017) Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. Journal of the American College of Cardiology, 70, 2476-2486. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Greenberg, B. (2017) Jumping down the Rabbit Hole: Unravelling the Right Ventricle in Heart Failure. European Journal of Heart Failure, 19, 1672-1674. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Omote, K., Verbrugge, F.H. and Borlaug, B.A. (2022) Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annual Review of Medicine, 73, 321-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
周京敏, 王华, 黎励文. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023 [J]. 中国循环杂志, 2023, 38(4): 375-393.
|
|
[8]
|
Anker, S.D., Usman, M.S., Anker, M.S., Butler, J., Böhm, M., Abraham, W.T., et al. (2023) Patient Phenotype Profiling in Heart Failure with Preserved Ejection Fraction to Guide Therapeutic Decision Making. a Scientific Statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and the European Society of Hypertension. European Journal of Heart Failure, 25, 936-955. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Palazzuoli, A., Tramonte, F. and Beltrami, M. (2023) Laboratory and Metabolomic Fingerprint in Heart Failure with Preserved Ejection Fraction: From Clinical Classification to Biomarker Signature. Biomolecules, 13, Article 173. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sanz, J., Sánchez-Quintana, D., Bossone, E., Bogaard, H.J. and Naeije, R. (2019) Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 1463-1482. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hahn, R.T., Lerakis, S., Delgado, V., Addetia, K., Burkhoff, D., Muraru, D., et al. (2023) Multimodality Imaging of Right Heart Function: JACC Scientific Statement. Journal of the American College of Cardiology, 81, 1954-1973. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Torrent-Guasp, F., Kocica, M.J., Corno, A.F., Komeda, M., Carreras-Costa, F., Flotats, A., et al. (2005) Towards New Understanding of the Heart Structure and Function. European Journal of Cardio-Thoracic Surgery, 27, 191-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Naeije, R. and Badagliacca, R. (2017) The Overloaded Right Heart and Ventricular Interdependence. Cardiovascular Research, 113, 1474-1485. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gorter, T.M., van Veldhuisen, D.J., Bauersachs, J., Borlaug, B.A., Celutkiene, J., Coats, A.J.S., et al. (2017) Right Heart Dysfunction and Failure in Heart Failure with Preserved Ejection Fraction: Mechanisms and Management. Position Statement on Behalf of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 20, 16-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kraigher-Krainer, E., Shah, A.M., Gupta, D.K., Santos, A., Claggett, B., Pieske, B., et al. (2014) Impaired Systolic Function by Strain Imaging in Heart Failure with Preserved Ejection Fraction. Journal of the American College of Cardiology, 63, 447-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Miao, Y. and Kang, X. (2021) Evaluation of Left Ventricular Function in Patients with Heart Failure after Myocardial Infarction by Real-Time Three-Dimensional Transesophageal Echocardiography. American Journal of Translational Research, 13, 10380-10387.
|
|
[17]
|
Fudim, M., Fathallah, M., Shaw, L.K., Liu, P.R., James, O., Samad, Z., et al. (2019) The Prognostic Value of Diastolic and Systolic Mechanical Left Ventricular Dyssynchrony among Patients with Coronary Heart Disease. JACC: Cardiovascular Imaging, 12, 1215-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
冒惠, 崔磊, 周仲胤. 三维超声心动图评估左心室收缩失同步在射血分数保留心衰中的应用研究[J]. 中国超声医学杂志, 2024, 40(3): 293-296.
|
|
[19]
|
杨晓青, 王立美, 王紫韫, 等. 实时三维超声心动图联合三维斑点追踪技术对心肌梗死后心力衰竭患者右心功能的评估价值[J]. 中国医刊, 2022, 57(12): 1321-1325.
|
|
[20]
|
Baratto, C., Dewachter, C., Forton, K., Muraru, D., Gagliardi, M.F., Tomaselli, M., et al. (2025) Right Ventricular Reserve in Cardiopulmonary Disease: A Simultaneous Hemodynamic and Three-Dimensional Echocardiographic Study. The Journal of Heart and Lung Transplantation, 44, 916-926. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, W., Mu, G., Liu, C., Xie, J., Zhang, H., Zhang, X., et al. (2022) A Novel Three-Dimensional and Tissue Doppler Echocardiographic Index for Diagnosing and Prognosticating Heart Failure with Preserved Ejection Fraction. Frontiers in Cardiovascular Medicine, 9, Article 822314. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
齐治, 蔺祥伟, 杨林静, 等. 左室射血分数保留的心力衰竭患者左室节段性运动变异程度研究[J]. 中国超声医学杂志, 2022, 38(9): 1008-1011.
|
|
[23]
|
孙世杰, 刘冲, 田家玮. 左室压力-应变环评价心肌做功在射血分数保留型心衰中的应用价值[J]. 中国超声医学杂志, 2022, 38(7): 779-782.
|
|
[24]
|
Sorimachi, H., Verbrugge, F.H., Omote, K., Omar, M., Obokata, M., Reddy, Y.N.V., et al. (2022) Longitudinal Evolution of Cardiac Dysfunction in Heart Failure and Preserved Ejection Fraction with Normal Natriuretic Peptide Levels. Circulation, 146, 500-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lang, R.M., Badano, L.P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2015) Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28, 1-39.e14. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lu, H., Inciardi, R.M., Abanda, M., Shah, A.M., Cikes, M., Claggett, B.L., et al. (2025) Multiparametric Assessment of Right Ventricular Dysfunction in Heart Failure: An Analysis from Paragon‐HF. Journal of the American Heart Association, 14, e037380. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lejeune, S., Roy, C., Ciocea, V., Slimani, A., de Meester, C., Amzulescu, M., et al. (2020) Right Ventricular Global Longitudinal Strain and Outcomes in Heart Failure with Preserved Ejection Fraction. Journal of the American Society of Echocardiography, 33, 973-984.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Houard, L., Benaets, M., de Meester de Ravenstein, C., Rousseau, M.F., Ahn, S.A., Amzulescu, M., et al. (2019) Additional Prognostic Value of 2D Right Ventricular Speckle-Tracking Strain for Prediction of Survival in Heart Failure and Reduced Ejection Fraction: A Comparative Study with Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 12, 2373-2385. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bosch, L., Lam, C.S.P., Gong, L., Chan, S.P., Sim, D., Yeo, D., et al. (2017) Right Ventricular Dysfunction in Left‐Sided Heart Failure with Preserved versus Reduced Ejection Fraction. European Journal of Heart Failure, 19, 1664-1671. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hubesch, G., Dewachter, C., Chomette, L., Hupkens, E., Jespers, P., Vegh, G., et al. (2024) Early Alteration of Right Ventricle-Pulmonary Artery Coupling in Experimental Heart Failure with Preserved Ejection Fraction. Journal of the American Heart Association, 13, e032201. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, T., Gong, L., Zhang, C., Zhang, D. and Li, X. (2023) Three-Dimensional Echocardiography and Strain Cardiac Imaging in Patients with Prediabetes and Type 2 Diabetes Mellitus. Quantitative Imaging in Medicine and Surgery, 13, 7753-7764. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Meng, Y., Zhu, S., Xie, Y., Zhang, Y., Qian, M., Gao, L., et al. (2021) Prognostic Value of Right Ventricular 3D Speckle-Tracking Strain and Ejection Fraction in Patients with HFpEF. Frontiers in Cardiovascular Medicine, 8, Article 694365. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, Y., Wan, X., Xiao, Q., Zhang, Y., Sun, W., Xie, Y., et al. (2020) Value of 3D versus 2D Speckle-Tracking Echocardiography for RV Strain Measurement: Validation with Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 13, 2056-2058. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lakatos, B.K., Rako, Z., Szijártó, Á., da Rocha, B.R.B., Richter, M.J., Fábián, A., et al. (2024) Right Ventricular Pressure-Strain Relationship-Derived Myocardial Work Reflects Contractility: Validation with Invasive Pressure-Volume Analysis. The Journal of Heart and Lung Transplantation, 43, 1183-1187. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tolvaj, M., Fábián, A., Tokodi, M., Lakatos, B., Assabiny, A., Ladányi, Z., et al. (2023) There Is More than Just Longitudinal Strain: Prognostic Significance of Biventricular Circumferential Mechanics. Frontiers in Cardiovascular Medicine, 10, Article 1082725. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, X., Zhang, H., Yue, J., Yin, L., Li, W., Ding, G., et al. (2024) A Multi-Task Deep Learning Approach for Real-Time View Classification and Quality Assessment of Echocardiographic Images. Scientific Reports, 14, Article No. 20484. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
郭马特, 宋艳杰, 石婵, 等. 基于深度学习的超声心动图自动识别瓣膜反流[J]. 中国医学影像学杂志, 2025, 33(2): 147-151.
|
|
[38]
|
Kusunose, K., Haga, A., Inoue, M., Fukuda, D., Yamada, H. and Sata, M. (2020) Clinically Feasible and Accurate View Classification of Echocardiographic Images Using Deep Learning. Biomolecules, 10, Article 665. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
赫兰, 路洋, 夏志刚, 等. 基于深度学习的人工智能模型自动量化超声心动图左心室射血分数初步探索[J]. 实用临床医药杂志, 2024, 28(9): 9-14.
|