RPE细胞损伤在糖尿病视网膜病变中的作用及可能机制的综述
A Review of the Role and Mechanisms of RPE Cell Injury in Diabetic Retinopathy
摘要: 糖尿病视网膜病变(diabetic retinopathy, DR)作为糖尿病的常见并发症,是导致失明和视力损伤的主要病因。视网膜色素上皮(retinal pigment epithelium, RPE)是视网膜的基本组成部分,在视觉功能中发挥重要作用。近年来,越来越多的研究表明,RPE细胞功能障碍与DR的发生及发展密切相关。本文对RPE细胞在DR中的形态及功能改变进行了系统综述,并深入探讨了其潜在的分子机制,包括氧化应激、炎症反应、细胞外基质沉积、自噬能力改变、上皮-间充质转化以及血管生成因子失衡等。此外,本文还归纳总结了针对RPE细胞的潜在治疗策略,旨在为DR的临床治疗提供全新的理论依据和研究方向。
Abstract: Diabetic retinopathy (DR), a common complication of diabetes, is a leading cause of blindness and visual impairment. The retinal pigment epithelium (RPE), an essential component of the retina, plays a critical role in maintaining visual function. In recent years, increasing evidence has demonstrated that RPE cell dysfunction is closely associated with the onset and progression of DR. This review provides a systematic summary of the morphological and functional alterations of RPE cells in DR and explores their underlying molecular mechanisms, including oxidative stress, inflammatory responses, extracellular matrix deposition, impaired autophagy, epithelial–mesenchymal transition, and imbalance of angiogenic factors. Furthermore, the potential therapeutic strategies targeting RPE cells are summarized, aiming to provide new theoretical insights and research directions for the clinical treatment of DR.
文章引用:肖瑶, 蒋飘, 刘书婷, 程扬. RPE细胞损伤在糖尿病视网膜病变中的作用及可能机制的综述[J]. 眼科学, 2025, 14(4): 151-160. https://doi.org/10.12677/hjo.2025.144021

1. 引言

作为糖尿病最为常见的并发症之一,糖尿病视网膜病变(diabetic retinopathy, DR)已成为工作年龄人群视力下降甚至失明的重要原因[1]。根据微血管动脉瘤、视网膜前血管化、视网膜出血、视网膜内微血管异常等病理生理改变,DR可分为增殖期糖尿病视网膜病变(proliferative diabetic retinopathy, PDR)和非增殖期糖尿病视网膜病变(non-proliferative diabetic retinopathy, NPDR)两大类。PDR作为DR的晚期阶段,其典型特征为玻璃体视网膜界面处出现新生血管,并伴有纤维化膜的生长。PDR最初被归类为以病理性新生血管形成为特征的微血管疾病,近几年的相关综述着重强调,DR的发生与进展过程中,几乎所有类型的视网膜细胞均发挥重要作用[2]。细胞外基质(extracellular matrix, ECM)的过度沉积、细胞异常增殖及新生血管形成是DR向PDR转化的关键环节[3],星形胶质细胞、Müller细胞、小胶质细胞,视网膜色素上皮(retinal pigment epithelium, RPE)细胞以及血管内皮细胞(endothelial cells, EC)等多种细胞参与其中[4]

RPE层位于视网膜的最外层,由单层多边形细胞组成。其外侧的内折结构显著增加了细胞的表面积,有利于物质的交换;基底膜通过半桥粒与基底皱褶紧密连接。RPE细胞在维持正常的视网膜生理和视觉功能中发挥着至关重要的作用。包括维持光感受器功能和视网膜内环境稳态[5];参与构成外层血–视网膜屏障(outer-blood-retinal barrier, oBRB);参与葡萄糖转运过程,为视网膜提供60%~80%的葡萄糖需求[6] [7];从血液中摄取营养物质,如视黄醇、脂肪酸、抗坏血酸等,并调节其向光感受器的转运[8];RPE细胞还通过加工维生素A和再生11–顺视黄醛以运输回光感受器,在视觉循环中发挥作用[9]。此外,RPE具备一套复杂的代谢系统,能够减少活性氧(reactive oxygen species, ROS)的过度积累和由此引发的氧化损伤[10]

近年来,大量研究聚焦于RPE细胞损伤在DR中所发挥的作用及可能的机制。例如,糖尿病患者在视网膜病变前期即出现RPE细胞代谢改变,进而影响光感受器活动和视网膜健康状态受影响[11]。RPE细胞内的高糖水平可导致血管内皮生长因子(vascular endothelial growth factor, VEGF)分泌增加[12]以及视网膜中有氧糖酵解过程发生改变[6]。高糖可诱导RPE细胞中纤连蛋白、Ⅳ型胶原和层黏连蛋白的表达[13],同时上调RPE细胞中致纤维化因子的表达[14],进而参与DR发展过程中纤维化膜的形成。在DR患者和糖尿病小鼠模型中,观察到oBRB遭到破坏,使RPE细胞激活[15],启动上皮–间充质转化(epithelial-mesenchymal transition, EMT),促使RPE细胞增殖、迁移,并分泌ECM,最终推动视网膜纤维化[14]

尽管目前DR的常规治疗手段——包括视网膜全光凝、玻璃体腔内抗VEGF药物注射及玻璃体切除术——在临床上已取得一定疗效,但这些方法仍存在明显的局限性。具体表现为部分患者对治疗反应欠佳甚至无反应,同时还会引发一些副作用,例如永久性周边视力丧失和黄斑水肿加重等[15]-[17]。这充分凸显了对新型治疗策略的迫切需求。本文旨在全面综述RPE细胞在DR中的作用及其相关分子机制,以期为开发靶向RPE的治疗策略提供坚实的理论支撑。

2. DR中RPE细胞损伤的形态学表现

RPE细胞通过闭锁小带蛋白-1 (zonula occludens-1, ZO-1)、咬合蛋白(occludin)及紧密连接蛋白(claudin)形成紧密连接,参与构成脉络膜毛细血管和视网膜光敏层之间的屏障,并通过主动运输、被动扩散、内吞等机制完成物质转运[10]

糖尿病患者眼部组织学显示白蛋白从内层血–视网膜屏障(inner-blood-retinal barrier, iBRB)和oBRB渗入视网膜,oBRB的渗透性增加。葡萄糖浓度升高将导致RPE细胞间紧密连接受到损害,在糖尿病动物中观察到,视网膜中紧密连接链的吻合网络中存在大小不等的局灶性断裂以及紧密连接蛋白在糖尿病视网膜中出现不均匀分布[18]

电镜成像显示,糖尿病大鼠视网膜RPE层断裂,RPE细胞缺失和变性,细胞核皱缩,内质网扩张、减少,细胞膜内折,黑素小体分布改变;而在糖尿病患者视网膜中观察到,除黄斑区外,RPE厚度均降低[19]

3. RPE细胞损伤参与DR进展的可能机制

3.1. 氧化应激

视网膜易受氧化应激的影响,一方面因为它可以被可见光或紫外线持续攻击,进而产生ROS,还因为易氧化的多不饱和脂肪酸大量存在于视网膜的光感受器外节膜中。视网膜的活跃代谢及视觉成像功能依赖其高耗氧状态,这种高氧张力状态有利于ROS的形成[20]。有文献报道,高糖状态下氧化应激导致的视网膜损伤涉及多种经典的代谢通路激活:包括蛋白激酶C (protein kinase C, PKC)通路、多元醇途径、己糖胺途径,以及细胞内糖基化终末产物(advanced glycation end products, AGEs)的形成[21]-[24]。除了上述代谢紊乱外,不规律的表观遗传修饰,核因子的异常活性,包括高度活化的核因子-κB (NF-κB)和减弱的核因子E2相关因子2 (nuclear factor E2-related factor 2, Nrf2)活性,以及线粒体功能障碍,也会导致ROS的过量产生[25]-[28]。同时,自由基清除剂如谷胱甘肽过氧化物酶和抗坏血酸的水平降低,导致氧化损伤的增加[29]。因此,ROS水平升高以及视网膜应对氧化应激的能力降低共同造成DR中视网膜的氧化损伤。

RPE细胞含有丰富的色素颗粒,包括黑色素和脂褐素,可吸收和过滤自然光,保护视网膜。由于眼睛长期暴露在光刺激下,光氧化作用使RPE细胞积累了高水平的氧自由基。因此,RPE细胞中含有多种抗氧化剂,如超氧化物歧化酶、谷胱甘肽、黑素小体等,在视网膜抗氧化过程中有着重要作用[10]

高糖可诱导RPE细胞内脂质蓄积和脂质氧化,从而导致ROS的过度积累,随后应激诱导RPE细胞早衰[30]。在DR小鼠模型的RPE细胞中,衰老标志蛋白p16的表达显著上调,而PDZ结构域蛋白1 (PDZ domain protein 1, PDZK1)的表达下调,PDZK1通过与14-3-3ε相互作用调节mTOR通路缓解RPE细胞衰老,其下调加重RPE细胞早衰过程[31]。而RPE细胞损伤导致视网膜抗氧化能力降低,又会加重氧化应激。氧化应激机制的激活诱导内皮细胞线粒体产生超氧化物,诱导炎症介质,促进新生血管生成[32]。综上,高糖可加重氧化应激,损伤RPE细胞,而RPE细胞的损伤又使氧化应激加重,进一步导致视网膜损伤,DR进展。

近期有体外细胞实验显示,过氧化物酶体增殖物激活受体δ (peroxisome proliferator-activated receptor δ, PPAR δ)通过调节SIRT1的表达在RPE细胞中发挥抗衰老作用,从而减少ROS的积累,抑制高糖诱导的细胞衰老。因此,PPAR δ激动剂,如GW501516,可能是预防和治疗糖尿病视网膜病变的一种新的治疗策略[33]

综上所述,现有研究表明,关于高糖诱导的氧化应激及在DR中的作用涉及多条通路与生物过程,但缺乏通路之间相互作用的系统性认识;且部分证据来源于体外模型,其结论仍需进一步的体内验证。未来研究可致力于构建“氧化应激–RPE细胞衰老–微血管病变”的整合机制模型,明确关键控制节点及其在病程中的作用;对潜在的新靶点,如PDZK1、PPAR δ等,未来还需进行进一步研究与验证。

3.2. 炎症反应

视网膜炎症是DR的一个特征。许多报道表明,糖尿病增强了RPE中炎症因子的表达,如白细胞介素(IL)-6、IL-8、IL-1β、单核细胞趋化蛋白(monocyte chemotactic protein-1, MCP-1)、细胞间黏附分子-1 (intercellular adhesion molecule-1, ICAM-1)和VEGF等[8] [34]。这些旁分泌因子的上调通过诱导RPE细胞凋亡、过度炎症和视网膜新生血管形成诱导永久性视网膜损伤[35]。体外细胞实验表明高糖增加RPE细胞MCP-1的募集和ICAM-1的粘附,发挥趋化作用,有利于炎症细胞的迁移和粘附,促进白细胞淤滞,使用具有炎症抑制作用的P物质处理RPE细胞可降低ICAM-1,MCP-1和VEGF的表达,增强高糖条件下细胞活力、紧密连接蛋白表达和RPE功能,促进RPE恢复,该过程可能是通过激活Akt信号通路实现的[34]

另外,补体系统(complement system, CS)失调也被认为与DR密切相关。在DR中,视网膜神经细胞和血管受损,早期副炎症反应和持续的高血糖环境等多种因素可能使CS激活。在糖尿病患者中观察到补体蛋白和活化产物如C3、可溶性C5b-9和甘露聚糖结合凝集素(mannose-binding lectin, MBL)在血液中的水平升高,并与DR呈正相关;视网膜和周围组织的局部补体激活包括C3,C3d、膜攻击复合物(membrane attack complex, MAC)、C5a和补体因子I (complement factor I, CFI)沉积水平增加[36]

目前对DR中炎症反应的研究多集中于炎症因子的表达变化,对炎症信号网络内部相互作用、放大机制还需进一步探索。上述潜在干预靶点,如P物质、Akt通路、补体抑制剂等,其作用仍需进一步验证,以推动抗炎干预从实验研究向临床治疗的转化。

3.3. 高糖促进RPE细胞表达ECM蛋白

oBRB破坏可以激活RPE细胞,进而启动细胞增殖、迁移并分泌ECM分子[37]。细胞实验表明高血糖刺激被证明可以增加ECM蛋白,如纤连蛋白、Ⅳ型胶原和层粘连蛋白的表达,上述蛋白与细胞共同组成纤维化膜,参与DR中增殖膜形成,该过程可能由PI3K/Akt/mTOR信号通路介导[13]。另外有研究表明TGF-β和内皮素-1 (Endothelin-1, ET-1)的升高也可能促进ECM过度表达[38]

目前针对ECM蛋白作为DR治疗靶点的研究较少,未来可结合单细胞测序与空间转录组技术解析RPE细胞ECM表达谱动态;探索TGF-β、ET-1等相关的细胞因子与代谢通路以寻找更具特异性的干预靶点。

3.4. 高糖影响RPE细胞自噬能力

自噬是一种分解代谢途径,可降解受损的细胞器和异常蛋白并回收细胞成分,自噬能力的降低可能导致受损细胞器和蛋白质聚集体的积累,从而导致细胞毒性[39]。既往研究表明,自噬水平异常会促进DR的发生,包括促进血管内皮细胞损伤、VEGF释放、新生血管形成等[40] [41]

有体外研究表明,使用3-甲基腺嘌呤抑制RPE细胞自噬,将激活NLRP3炎症小体,引起IL-1b分泌,促进DR发生[42]

另有体外实验发现,高糖抑制了RPE细胞中的自噬–溶酶体途径,并由于溶酶体膜透化(lysosome membrane permeabilization, LMP)减弱了自噬能力。高迁移率族蛋白B1 (HMGB1, high mobility group protein)通过CTSB (cathepsin B)依赖途径参与了LMP,敲低HMGB1的表达可以抑制LMP,恢复细胞自噬的降解能力,降低炎症因子和VEGF的表达。激活RPE细胞自噬可能是预防DR发生发展的潜在治疗靶点[41]

在糖尿病小鼠中发现,高血糖增强糖酵解和乳酸积累,进而促进组蛋白的乳糖化并激活TXNIP/NLRP3信号通路。这一过程触发了PANoptosis——一种凋亡、焦亡和坏死性凋亡的联合细胞死亡模式。干扰TXNIP或抑制糖酵解可显著减少组蛋白乳酰化、阻断PANoptosis,并改善小鼠视网膜功能[43]。抑制糖酵解或靶向TXNIP可能成为治疗DR的新靶点。

现有工作主要依赖体外实验和小鼠模型,且自噬评价多停留在静态标志物层面,缺乏对自噬通量与溶酶体功能的动态观察。未来研究可尝试采用多层次方法量化自噬通量与溶酶体功能。另外,可探索恢复或增强自噬、抑制LMP或靶向TXNIP等干预在DR模型中的疗效与安全性,为DR治疗寻找新靶点。

3.5. 高糖促进RPE细胞发生EMT

EMT是上皮细胞失去上皮特性向间质细胞转化的过程。过去发现EMT在肾脏、肺和肝脏的器官纤维化中发挥作用,导致上皮损伤和纤维化紊乱[44]。近几年发现RPE细胞的EMT可导致多种视网膜病变,如增生性玻璃体视网膜病变、DR和年龄相关性黄斑变性。

在EMT过程中,上皮细胞获得间充质样特征,失去细胞间连接,与周围细胞解离,顶端基底极性、粘附或紧密连接以及桥粒都会丢失[45]。EMT的经典定义包括上皮标志物的丢失,包括ZO-1、E-cadherin和细胞角蛋白,以及间质驱动因子的表达,包括波形蛋白(vimentin)、N-cadherin和纤维连接蛋白(fibronectin, FN) [46]

成人RPE细胞处于静止、分化状态,处于细胞周期的G0期,不发生迁移[47],然而在EMT过程中,RPE细胞从具有屏障完整性和细胞极性的分化良好的RPE细胞开始向中间阶段转变,在中间阶段,RPE细胞去分化并失去功能,向具有增殖能力的间充质样细胞转变,表现出异常的迁移能力,并迁移到神经视网膜中[48] [49]

体外实验发现,高糖可诱导RPE细胞发生EMT。在RPE细胞中,高糖上调了EMT关键转录因子Snail和其他间质标志物如vimentin、N-cadherin和α-SMA的表达,并促进了细胞迁移。该过程可能由Akt和ERK信号通路介导[14]。另有实验发现糖尿病小鼠RPE细胞中异常的Akt2信号可能参与了糖尿病视网膜病变中的视网膜纤维化过程,对照组的糖尿病小鼠RPE细胞中ZO-1、occludin和E-cadherin的水平明显降低,而在Akt2敲除的糖尿病小鼠中,上述蛋白降低程度明显减少。Akt2的缺失也抑制了糖尿病诱导的RPE细胞中EMT标志物Snail/Slug和Twist1的RNA和蛋白水平的升高。此外,在Akt2敲除小鼠中,糖尿病诱导的纤维化标志物,包括胶原蛋白IV、结缔组织生长因子(Connective tissue growth factor, CTGF)、纤连蛋白和α-SMA的升高程度也显著降低[4]

AGEs也可能参与RPE细胞EMT过程。AGEs是还原糖与蛋白质、脂质和核酸的游离氨基反应形成的一组异质性分子,通过与AGEs受体相互作用,扰乱微血管稳态,在DR的发展中起重要作用[53]。体外实验表明,AGEs模拟物可诱导RPE功能破坏,推测AGEs在RPE中的致病作用可能与AGEs诱导间充质转化有关[51]

此外,在DR发展过程中,随着BRB破坏以及视网膜裂孔和脱离的形成,RPE细胞暴露于多种细胞因子、生长因子中,进一步促进EMT发生。TGF-β,FGF,HGF,EGF,Wnt,MMPs,ROS诱导的MIFs-缺氧和机械应力可能参与该过程[52]

未来研究可聚焦于构建RPE-EMT的动态调控图谱,解析EMT在DR中的分期特征及其是否具有可逆性;进一步研究高糖、AGEs及多种生长因子之间的信号交互与调控轴;并探索靶向Akt2、TGF-β/Wnt或AGEs通路的抑制剂,以期抑制RPE-EMT成为阻断DR进展的治疗策略。

3.6. 高糖使RPE细胞表达的血管生成因子与抗血管生成因子失衡

在DR期间,抑制病理性血管生成的促血管生成因子和抗血管生成因子之间的平衡被破坏。RPE细胞表达的VEGF上调,而抗血管生成因子色素上皮衍生因子(pigment epithelial-derived factor, PEDF)的下调[53]

VEGF家族的细胞因子对其功能的维持及其功能障碍至关重要。VEGF-A是一种直接作用于血管的细胞因子,它以生物活性形式分泌,其受体在血管生成部位被发现[54]。在视网膜中,RPE细胞可产生VEGF-A。正常情况下,VEGF-A从RPE基底侧以低浓度释放,维持内皮细胞功能。慢性高血糖可使RPE中VEGF-A分泌增加,促进新生血管形成[55]

PEDF已被证明是哺乳动物眼中最有效的血管生成抑制剂,它抑制内皮细胞的生长和迁移,并抑制缺血诱导的视网膜新生血管生成[56]。PEDF存在于发育中的人视网膜的视锥细胞、RPE颗粒、神经母细胞和神经节细胞层中[50]。有研究表明,在糖尿病小鼠视网膜和体外培养的人RPE细胞中,使用pEPito驱动持续的PEDF表达能够下调VEGF,抑制新生血管产生[57]

血管发生包括通过分化、扩张和融合内皮前体细胞或成血管成内皮细胞形成初始血管网络。一旦这些网络建立,新的毛细血管通过出芽血管生成或套叠式血管新生生长[58]。在正常成年人中,血管生成受到严格的调控。生理状态下这些血管生成刺激因子和抑制因子平衡,严格控制着正常静止的毛细血管系统。VEGF的增加和PEDF的降低使这种平衡被打破,刺激无血管视网膜区域的出芽血管生成,诱导新生血管产生[59]

目前抗VEGF药物已成为DR的常见治疗方案,但仍存在部分患者反应不佳等问题。未来可利用RPE特异性VEGF或PEDF敲除/过表达模型明确其在微血管闭塞、缺血再血管化及纤维血管增殖中的阶段性作用;进一步探索PEDF下调的表观遗传或代谢调控机制,并对提升PEDF或恢复VEGF/PEDF比例的药物开展研究。

3.7. RPE破坏促进糖尿病性黄斑水肿(Diabetic Macular Edema, DME)发生

正常视网膜内液体的平衡依赖BRB的完整性以及Müller细胞和RPE细胞的主动引流功能,以维持视网膜在相对脱水状态下的正常功能。当液体进入与排出的平衡被打破时,视网膜内液或视网膜下液会发生异常积聚,进而引起DME。因此,BRB的破坏及Müller细胞和RPE的引流功能降低均可导致DME [60] [61]

视网膜下液是神经上皮层下方和RPE层上方的视网膜下间隙内积聚的液体,正常情况下,RPE通过主动运输将其清除至脉络膜。有研究报道,在高糖培养的牛RPE细胞中发现Na+-K+-ATP酶功能受损,破坏RPE细胞主动引流功能,进而导致DME [62]

另外,在糖尿病小鼠RPE中观察到,ZO-1、occludin和E-cadherin的水平降低[14],细胞间紧密连接破坏,oBRB失去完整性,也会导致DME发生。该过程可能由激活的缺氧诱导因子-1α (HIF-1α)和c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)通路引起[63]

目前针对DME的治疗仍以注射抗VEGF药物为主。未来探索针对HIF-1α与JNK的选择性抑制剂、增强RPE离子泵功能的药物、或恢复屏障完整性的基因/蛋白替代疗法,可能有助于将DME治疗从被动抗VEGF向主动修复BRB与恢复引流功能的机制性干预转变。

4. 挑战与未来方向

尽管已有大量研究表明了RPE损伤在DR发生与进展中的重要作用,但未来的研究仍面临诸多挑战。首先,此过程涉及的机制高度复杂,包括氧化应激、炎症、自噬障碍、EMT、ECM沉积及血管生成失衡等过程,目前对上述通路的调控机制以及通路之间的相互作用尚缺乏系统认识。其次,现有研究主要以细胞和动物实验为主,难以真实反映人类DR的慢性病程,直接影响了机制研究的深度与治疗策略的可推广性。同时,靶向RPE的治疗策略仍处于基础研究阶段,限制了机制研究的深化与临床转化。

未来的研究应致力于构建RPE主导的DR整合病理模型,系统解析各通路的相互作用及关键调控节点,以期寻找DR治疗的新靶点或生物标志物;发展更具代表性的DR模型和RPE特异性工具,揭示RPE在DR不同阶段的动态变化;针对目前发现的潜在靶点,如PPAR δ、Akt2、TXNIP、TGF-β/Wnt、PEDF/VEGF等,需进行更加深入的研究与验证,探索其作为生物标志物或治疗靶点的临床潜力;针对RPE细胞的治疗策略,如抗氧化剂、抗炎药物、自噬激活剂及靶向EMT的分子干预,有望为DR的治疗提供新方向,但仍需进一步研究以促进RPE靶向治疗策略真正走向临床。

NOTES

*通讯作者。

参考文献

[1] Tan, T. and Wong, T.Y. (2023) Diabetic Retinopathy: Looking Forward to 2030. Frontiers in Endocrinology, 13, Article ID: 1077669. [Google Scholar] [CrossRef] [PubMed]
[2] Hu, A., Schmidt, M.H.H. and Heinig, N. (2024) Microglia in Retinal Angiogenesis and Diabetic Retinopathy. Angiogenesis, 27, 311-331. [Google Scholar] [CrossRef] [PubMed]
[3] Ban, C.R. and Twigg, S.M. (2008) Fibrosis in Diabetes Complications: Pathogenic Mechanisms and Circulating and Urinary Markers. Vascular Health and Risk Management, 4, 575-596. [Google Scholar] [CrossRef] [PubMed]
[4] Daley, R., Maddipatla, V., Ghosh, S., Chowdhury, O., Hose, S., Zigler, J.S., et al. (2023) Aberrant Akt2 Signaling in the RPE May Contribute to Retinal Fibrosis Process in Diabetic Retinopathy. Cell Death Discovery, 9, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
[5] Yang, P., Shao, Z., Besley, N.A., Neal, S.E., Buehne, K.L., Park, J., et al. (2020) Risuteganib Protects against Hydroquinone-Induced Injury in Human RPE Cells. Investigative Opthalmology & Visual Science, 61, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
[6] Hanna, J., David, L.A., Touahri, Y., Fleming, T., Screaton, R.A. and Schuurmans, C. (2022) Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Frontiers in Cell and Developmental Biology, 10, Article ID: 887764. [Google Scholar] [CrossRef] [PubMed]
[7] Andreazzoli, M., Longoni, B., Angeloni, D. and Demontis, G.C. (2024) Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells, 13, Article No. 871. [Google Scholar] [CrossRef] [PubMed]
[8] Lee, D. and Hong, H.S. (2023) Substance P Alleviates Retinal Pigment Epithelium Dysfunction Caused by High Glucose-Induced Stress. Life, 13, Article No. 1070. [Google Scholar] [CrossRef] [PubMed]
[9] Basu, B., Karwatka, M., China, B., McKibbin, M., Khan, K., Inglehearn, C.F., et al. (2024) Glycogen Myophosphorylase Loss Causes Increased Dependence on Glucose in iPSC-Derived Retinal Pigment Epithelium. Journal of Biological Chemistry, 300, Article ID: 107569. [Google Scholar] [CrossRef] [PubMed]
[10] Yang, S., Zhou, J. and Li, D. (2021) Functions and Diseases of the Retinal Pigment Epithelium. Frontiers in Pharmacology, 12, Article ID: 727870. [Google Scholar] [CrossRef] [PubMed]
[11] Farnoodian, M., Halbach, C., Slinger, C., Pattnaik, B.R., Sorenson, C.M. and Sheibani, N. (2016) High Glucose Promotes the Migration of Retinal Pigment Epithelial Cells through Increased Oxidative Stress and PEDF Expression. American Journal of Physiology-Cell Physiology, 311, C418-C436. [Google Scholar] [CrossRef] [PubMed]
[12] Yaylaci, S., Dinç, E., Aydın, B., Tekinay, A.B. and Guler, M.O. (2023) Peptide Nanofiber System for Sustained Delivery of Anti-VEGF Proteins to the Eye Vitreous. Pharmaceutics, 15, Article No. 1264. [Google Scholar] [CrossRef] [PubMed]
[13] Qin, D., Zhang, G., Xu, X. and Wang, L. (2015) The PI3K/Akt Signaling Pathway Mediates the High Glucose-Induced Expression of Extracellular Matrix Molecules in Human Retinal Pigment Epithelial Cells. Journal of Diabetes Research, 2015, Article ID: 920280. [Google Scholar] [CrossRef] [PubMed]
[14] Che, D., Zhou, T., Lan, Y., Xie, J., Gong, H., Li, C., et al. (2016) High Glucose-Induced Epithelial-Mesenchymal Transition Contributes to the Upregulation of Fibrogenic Factors in Retinal Pigment Epithelial Cells. International Journal of Molecular Medicine, 38, 1815-1822. [Google Scholar] [CrossRef] [PubMed]
[15] de Vries, V.A., Bassil, F.L. and Ramdas, W.D. (2020) The Effects of Intravitreal Injections on Intraocular Pressure and Retinal Nerve Fiber Layer: A Systematic Review and Meta-Analysis. Scientific Reports, 10, Article No. 13248. [Google Scholar] [CrossRef] [PubMed]
[16] Anderson, W.J., da Cruz, N.F.S., Lima, L.H., Emerson, G.G., Rodrigues, E.B. and Melo, G.B. (2021) Mechanisms of Sterile Inflammation after Intravitreal Injection of Antiangiogenic Drugs: A Narrative Review. International Journal of Retina and Vitreous, 7, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
[17] Raman, R., Ramasamy, K. and Shah, U. (2022) A Paradigm Shift in the Management Approaches of Proliferative Diabetic Retinopathy: Role of Anti-VEGF Therapy. Clinical Ophthalmology, 16, 3005-3017. [Google Scholar] [CrossRef] [PubMed]
[18] Xu, H. and Le, Y. (2011) Significance of Outer Blood-Retina Barrier Breakdown in Diabetes and Ischemia. Investigative Opthalmology & Visual Science, 52, 2160-2164. [Google Scholar] [CrossRef] [PubMed]
[19] Tonade, D. and Kern, T.S. (2021) Photoreceptor Cells and RPE Contribute to the Development of Diabetic Retinopathy. Progress in Retinal and Eye Research, 83, Article ID: 100919. [Google Scholar] [CrossRef] [PubMed]
[20] Amadoro, G., Latina, V., Balzamino, B.O., Squitti, R., Varano, M., Calissano, P., et al. (2021) Nerve Growth Factor-Based Therapy in Alzheimer’s Disease and Age-Related Macular Degeneration. Frontiers in Neuroscience, 15, Article ID: 735928. [Google Scholar] [CrossRef] [PubMed]
[21] He, W., Tang, P. and Lv, H. (2025) Targeting Oxidative Stress in Diabetic Retinopathy: Mechanisms, Pathology, and Novel Treatment Approaches. Frontiers in Immunology, 16, Article ID: 1571576. [Google Scholar] [CrossRef] [PubMed]
[22] Tonin, G., Dolžan, V. and Klen, J. (2024) Genetic and Transcriptomic Background of Oxidative Stress and Antioxidative Therapies in Late Complications of Type 2 Diabetes Mellitus: A Systematic Review. Antioxidants, 13, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
[23] Lund, J., Ouwens, D., Wettergreen, M., Bakke, S., Thoresen, G. and Aas, V. (2019) Increased Glycolysis and Higher Lactate Production in Hyperglycemic Myotubes. Cells, 8, Article No. 1101. [Google Scholar] [CrossRef] [PubMed]
[24] Stitt, A.W. (2001) Advanced Glycation: An Important Pathological Event in Diabetic and Age Related Ocular Disease. British Journal of Ophthalmology, 85, 746-753. [Google Scholar] [CrossRef] [PubMed]
[25] Kowluru, R.A. (2020) Retinopathy in a Diet-Induced Type 2 Diabetic Rat Model and Role of Epigenetic Modifications. Diabetes, 69, 689-698. [Google Scholar] [CrossRef] [PubMed]
[26] Sui, A., Chen, X., Demetriades, A.M., Shen, J., Cai, Y., Yao, Y., et al. (2020) Inhibiting NF-κB Signaling Activation Reduces Retinal Neovascularization by Promoting a Polarization Shift in Macrophages. Investigative Opthalmology & Visual Science, 61, 4. [Google Scholar] [CrossRef] [PubMed]
[27] Miller, W.P., Sunilkumar, S., Giordano, J.F., Toro, A.L., Barber, A.J. and Dennis, M.D. (2020) The Stress Response Protein REDD1 Promotes Diabetes-Induced Oxidative Stress in the Retina by Keap1-Independent Nrf2 Degradation. Journal of Biological Chemistry, 295, 7350-7361. [Google Scholar] [CrossRef] [PubMed]
[28] Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820. [Google Scholar] [CrossRef] [PubMed]
[29] Altomare, E., Grattagliano, I., Vendemaile, G., Micelli‐Ferrari, T., Signorile, A. and Cardia, L. (1997) Oxidative Protein Damage in Human Diabetic Eye: Evidence of a Retinal Participation. European Journal of Clinical Investigation, 27, 141-147. [Google Scholar] [CrossRef] [PubMed]
[30] Chen, Q., Tang, L., Xin, G., Li, S., Ma, L., Xu, Y., et al. (2019) Oxidative Stress Mediated by Lipid Metabolism Contributes to High Glucose-Induced Senescence in Retinal Pigment Epithelium. Free Radical Biology and Medicine, 130, 48-58. [Google Scholar] [CrossRef] [PubMed]
[31] Zhao, J., Zhang, J., Liu, Y., Wang, L., Huang, C., Chi, W., et al. (2025) PDZK1 Protects against RPE Senescence by Targeting the 14-3-3ε-mTOR Axis to Attenuate Early Diabetic Retinopathy. Advanced Science, 12, e11288. [Google Scholar] [CrossRef] [PubMed]
[32] Giacco, F. and Brownlee, M. (2010) Oxidative Stress and Diabetic Complications. Circulation Research, 107, 1058-1070. [Google Scholar] [CrossRef] [PubMed]
[33] Lee, E.J., Won, J.P., Lee, H.G., Kim, E., Hur, J., Lee, W.J., et al. (2022) PPARδ Inhibits Hyperglycemia-Triggered Senescence of Retinal Pigment Epithelial Cells by Upregulating SIRT1. Antioxidants, 11, Article No. 1207. [Google Scholar] [CrossRef] [PubMed]
[34] Xie, M., Hu, A., Luo, Y., et al. (2014) Interleukin-4 and Melatonin Ameliorate High Glucose and Interleukin-1β Stimulated Inflammatory Reaction in Human Retinal Endothelial Cells and Retinal Pigment Epithelial Cells. Molecular Vision, 20, 921-928.
https://pubmed.ncbi.nlm.nih.gov/24991184/
[35] Maugeri, G., Bucolo, C., Drago, F., Rossi, S., Di Rosa, M., Imbesi, R., et al. (2021) Attenuation of High Glucose-Induced Damage in RPE Cells through P38 MAPK Signaling Pathway Inhibition. Frontiers in Pharmacology, 12, Article ID: 684680. [Google Scholar] [CrossRef] [PubMed]
[36] Mohlin, C., Sandholm, K., Kvanta, A., Ekdahl, K.N. and Johansson, K. (2018) A Model to Study Complement Involvement in Experimental Retinal Degeneration. Upsala Journal of Medical Sciences, 123, 28-42. [Google Scholar] [CrossRef] [PubMed]
[37] Esser, P., Heimann, K., Bartz-Schmidt, K., Fontana, A., Schraermeyer, U., Thumann, G., et al. (1997) Apoptosis in Proliferative Vitreoretinal Disorders: Possible Involvement of TGF-β-Induced RPE Cell Apoptosis. Experimental Eye Research, 65, 365-378. [Google Scholar] [CrossRef] [PubMed]
[38] Tsotridou, E., Loukovitis, E., Zapsalis, K., et al. (2020) A Review of Last Decade Developments on Epiretinal Membrane Pathogenesis. Medical Hypothesis Discovery and Innovation in Ophthalmology, 9, 91-110.
[39] Pivtoraiko, V.N., Stone, S.L., Roth, K.A. and Shacka, J.J. (2009) Oxidative Stress and Autophagy in the Regulation of Lysosome-Dependent Neuron Death. Antioxidants & Redox Signaling, 11, 481-496. [Google Scholar] [CrossRef] [PubMed]
[40] Sun, R. and Zuo, L. (2025) MAPK8 and HDAC6: Potential Biomarkers Related to Autophagy in Diabetic Retinopathy Based on Bioinformatics Analysis. Frontiers in Endocrinology, 16, Article ID: 1487007. [Google Scholar] [CrossRef] [PubMed]
[41] Feng, L., Liang, L., Zhang, S., Yang, J., Yue, Y. and Zhang, X. (2021) HMGB1 Downregulation in Retinal Pigment Epithelial Cells Protects against Diabetic Retinopathy through the Autophagy-Lysosome Pathway. Autophagy, 18, 320-339. [Google Scholar] [CrossRef] [PubMed]
[42] Shi, H., Zhang, Z., Wang, X., Li, R., Hou, W., Bi, W., et al. (2015) Inhibition of Autophagy Induces Il-1β Release from ARPE-19 Cells via ROS Mediated NLRP3 Inflammasome Activation under High Glucose Stress. Biochemical and Biophysical Research Communications, 463, 1071-1076. [Google Scholar] [CrossRef] [PubMed]
[43] Xi, X., Chen, Q., Ma, J., Wang, X., Zhang, Y., Xiong, Q., et al. (2025) Glycolysis‐Histone Lactylation Crosstalk Drives TXNIP-NLRP3-Mediated PANoptosome Assembly and Panoptosis Activation Underlying Diabetic Retinopathy Pathogenesis. MedComm, 6, e70351. [Google Scholar] [CrossRef
[44] Shu, D.Y., Butcher, E. and Saint-Geniez, M. (2020) EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. International Journal of Molecular Sciences, 21, Article No. 4271. [Google Scholar] [CrossRef] [PubMed]
[45] Zou, H., Shan, C., Ma, L., Liu, J., Yang, N. and Zhao, J. (2020) Polarity and Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells in Proliferative Vitreoretinopathy. PeerJ, 8, e10136. [Google Scholar] [CrossRef] [PubMed]
[46] Shook, D. and Keller, R. (2003) Mechanisms, Mechanics and Function of Epithelial-Mesenchymal Transitions in Early Development. Mechanisms of Development, 120, 1351-1383. [Google Scholar] [CrossRef] [PubMed]
[47] Zhou, M., Geathers, J.S., Grillo, S.L., Weber, S.R., Wang, W., Zhao, Y., et al. (2020) Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Frontiers in Cell and Developmental Biology, 8, Article No. 501. [Google Scholar] [CrossRef] [PubMed]
[48] Higashijima, F., Hasegawa, M., Yoshimoto, T., Kobayashi, Y., Wakuta, M. and Kimura, K. (2023) Molecular Mechanisms of TGFβ-Mediated EMT of Retinal Pigment Epithelium in Subretinal Fibrosis of Age-Related Macular Degeneration. Frontiers in Ophthalmology, 2, Article ID: 1060087. [Google Scholar] [CrossRef] [PubMed]
[49] Feng, H., Zhao, X., Guo, Q., Feng, Y., Ma, M., Guo, W., et al. (2019) Autophagy Resists EMT Process to Maintain Retinal Pigment Epithelium Homeostasis. International Journal of Biological Sciences, 15, 507-521. [Google Scholar] [CrossRef] [PubMed]
[50] Fang, J., Luo, C., Zhang, D., He, Q. and Liu, L. (2023) Correlation between Diabetic Retinopathy and Diabetic Nephropathy: A Two-Sample Mendelian Randomization Study. Frontiers in Endocrinology, 14, Article ID: 1265711. [Google Scholar] [CrossRef] [PubMed]
[51] Gatta, M., Dovizio, M., Milillo, C., Ruggieri, A.G., Sallese, M., Antonucci, I., et al. (2025) The Antioxidant Tetrapeptide Epitalon Enhances Delayed Wound Healing in an in Vitro Model of Diabetic Retinopathy. Stem Cell Reviews and Reports, 21, 1822-1834. [Google Scholar] [CrossRef] [PubMed]
[52] Gelat, B., Rathaur, P., Malaviya, P., Patel, B., Trivedi, K., Johar, K., et al. (2022) The Intervention of Epithelial-Mesenchymal Transition in Homeostasis of Human Retinal Pigment Epithelial Cells: A Review. Journal of Histotechnology, 45, 148-160. [Google Scholar] [CrossRef] [PubMed]
[53] Santos, D.F., Pais, M., Santos, C.N. and Silva, G.A. (2021) Polyphenol Metabolite Pyrogallol-O-Sulfate Decreases Microglial Activation and VEGF in Retinal Pigment Epithelium Cells and Diabetic Mouse Retina. International Journal of Molecular Sciences, 22, Article No. 11402. [Google Scholar] [CrossRef] [PubMed]
[54] Murata, M., Noda, K., Kase, S., Hase, K., Wu, D., Ando, R., et al. (2022) Placental Growth Factor Stabilizes VEGF Receptor-2 Protein in Retinal Pigment Epithelial Cells by Downregulating Glycogen Synthase Kinase 3 Activity. Journal of Biological Chemistry, 298, Article ID: 102378. [Google Scholar] [CrossRef] [PubMed]
[55] Puddu, A. and Maggi, D.C. (2023) Klotho: A New Therapeutic Target in Diabetic Retinopathy? World Journal of Diabetes, 14, 1027-1036. [Google Scholar] [CrossRef] [PubMed]
[56] Xu, M., Chen, X., Yu, Z. and Li, X. (2023) Receptors That Bind to PEDF and Their Therapeutic Roles in Retinal Diseases. Frontiers in Endocrinology, 14, Article ID: 1116136. [Google Scholar] [CrossRef] [PubMed]
[57] Calado, S.M., Diaz-Corrales, F. and Silva, G.A. (2016) Pepito-Driven pedf Expression Ameliorates Diabetic Retinopathy Hallmarks. Human Gene Therapy Methods, 27, 79-86. [Google Scholar] [CrossRef] [PubMed]
[58] Hough, R.F., Alvira, C.M., Bastarache, J.A., Erzurum, S.C., Kuebler, W.M., Schmidt, E.P., et al. (2024) Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 71, 388-406. [Google Scholar] [CrossRef] [PubMed]
[59] Lechner, J., O’Leary, O.E. and Stitt, A.W. (2017) The Pathology Associated with Diabetic Retinopathy. Vision Research, 139, 7-14. [Google Scholar] [CrossRef] [PubMed]
[60] Daruich, A., Matet, A., Moulin, A., Kowalczuk, L., Nicolas, M., Sellam, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. [Google Scholar] [CrossRef] [PubMed]
[61] Zhang, J., Zhang, J., Zhang, C., Zhang, J., Gu, L., Luo, D., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article No. 3362. [Google Scholar] [CrossRef] [PubMed]
[62] Crider, J.Y., Yorio, T., Sharif, N.A. and Griffin, B.W. (1997) The Effects of Elevated Glucose on Na+/k+-ATPase of Cultured Bovine Retinal Pigment Epithelial Cells Measured by a New Nonradioactive Rubidium Uptake Assay. Journal of Ocular Pharmacology and Therapeutics, 13, 337-352. [Google Scholar] [CrossRef] [PubMed]
[63] Zhang, C., Xie, H., Yang, Q., Yang, Y., Li, W., Tian, H., et al. (2019) Erythropoietin Protects Outer Blood‐Retinal Barrier in Experimental Diabetic Retinopathy by Up‐Regulating ZO‐1 and Occludin. Clinical & Experimental Ophthalmology, 47, 1182-1197. [Google Scholar] [CrossRef] [PubMed]