|
[1]
|
Tan, T. and Wong, T.Y. (2023) Diabetic Retinopathy: Looking Forward to 2030. Frontiers in Endocrinology, 13, Article ID: 1077669. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hu, A., Schmidt, M.H.H. and Heinig, N. (2024) Microglia in Retinal Angiogenesis and Diabetic Retinopathy. Angiogenesis, 27, 311-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ban, C.R. and Twigg, S.M. (2008) Fibrosis in Diabetes Complications: Pathogenic Mechanisms and Circulating and Urinary Markers. Vascular Health and Risk Management, 4, 575-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Daley, R., Maddipatla, V., Ghosh, S., Chowdhury, O., Hose, S., Zigler, J.S., et al. (2023) Aberrant Akt2 Signaling in the RPE May Contribute to Retinal Fibrosis Process in Diabetic Retinopathy. Cell Death Discovery, 9, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yang, P., Shao, Z., Besley, N.A., Neal, S.E., Buehne, K.L., Park, J., et al. (2020) Risuteganib Protects against Hydroquinone-Induced Injury in Human RPE Cells. Investigative Opthalmology & Visual Science, 61, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hanna, J., David, L.A., Touahri, Y., Fleming, T., Screaton, R.A. and Schuurmans, C. (2022) Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Frontiers in Cell and Developmental Biology, 10, Article ID: 887764. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Andreazzoli, M., Longoni, B., Angeloni, D. and Demontis, G.C. (2024) Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells, 13, Article No. 871. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lee, D. and Hong, H.S. (2023) Substance P Alleviates Retinal Pigment Epithelium Dysfunction Caused by High Glucose-Induced Stress. Life, 13, Article No. 1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Basu, B., Karwatka, M., China, B., McKibbin, M., Khan, K., Inglehearn, C.F., et al. (2024) Glycogen Myophosphorylase Loss Causes Increased Dependence on Glucose in iPSC-Derived Retinal Pigment Epithelium. Journal of Biological Chemistry, 300, Article ID: 107569. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, S., Zhou, J. and Li, D. (2021) Functions and Diseases of the Retinal Pigment Epithelium. Frontiers in Pharmacology, 12, Article ID: 727870. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Farnoodian, M., Halbach, C., Slinger, C., Pattnaik, B.R., Sorenson, C.M. and Sheibani, N. (2016) High Glucose Promotes the Migration of Retinal Pigment Epithelial Cells through Increased Oxidative Stress and PEDF Expression. American Journal of Physiology-Cell Physiology, 311, C418-C436. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yaylaci, S., Dinç, E., Aydın, B., Tekinay, A.B. and Guler, M.O. (2023) Peptide Nanofiber System for Sustained Delivery of Anti-VEGF Proteins to the Eye Vitreous. Pharmaceutics, 15, Article No. 1264. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Qin, D., Zhang, G., Xu, X. and Wang, L. (2015) The PI3K/Akt Signaling Pathway Mediates the High Glucose-Induced Expression of Extracellular Matrix Molecules in Human Retinal Pigment Epithelial Cells. Journal of Diabetes Research, 2015, Article ID: 920280. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Che, D., Zhou, T., Lan, Y., Xie, J., Gong, H., Li, C., et al. (2016) High Glucose-Induced Epithelial-Mesenchymal Transition Contributes to the Upregulation of Fibrogenic Factors in Retinal Pigment Epithelial Cells. International Journal of Molecular Medicine, 38, 1815-1822. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
de Vries, V.A., Bassil, F.L. and Ramdas, W.D. (2020) The Effects of Intravitreal Injections on Intraocular Pressure and Retinal Nerve Fiber Layer: A Systematic Review and Meta-Analysis. Scientific Reports, 10, Article No. 13248. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Anderson, W.J., da Cruz, N.F.S., Lima, L.H., Emerson, G.G., Rodrigues, E.B. and Melo, G.B. (2021) Mechanisms of Sterile Inflammation after Intravitreal Injection of Antiangiogenic Drugs: A Narrative Review. International Journal of Retina and Vitreous, 7, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Raman, R., Ramasamy, K. and Shah, U. (2022) A Paradigm Shift in the Management Approaches of Proliferative Diabetic Retinopathy: Role of Anti-VEGF Therapy. Clinical Ophthalmology, 16, 3005-3017. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xu, H. and Le, Y. (2011) Significance of Outer Blood-Retina Barrier Breakdown in Diabetes and Ischemia. Investigative Opthalmology & Visual Science, 52, 2160-2164. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tonade, D. and Kern, T.S. (2021) Photoreceptor Cells and RPE Contribute to the Development of Diabetic Retinopathy. Progress in Retinal and Eye Research, 83, Article ID: 100919. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Amadoro, G., Latina, V., Balzamino, B.O., Squitti, R., Varano, M., Calissano, P., et al. (2021) Nerve Growth Factor-Based Therapy in Alzheimer’s Disease and Age-Related Macular Degeneration. Frontiers in Neuroscience, 15, Article ID: 735928. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
He, W., Tang, P. and Lv, H. (2025) Targeting Oxidative Stress in Diabetic Retinopathy: Mechanisms, Pathology, and Novel Treatment Approaches. Frontiers in Immunology, 16, Article ID: 1571576. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tonin, G., Dolžan, V. and Klen, J. (2024) Genetic and Transcriptomic Background of Oxidative Stress and Antioxidative Therapies in Late Complications of Type 2 Diabetes Mellitus: A Systematic Review. Antioxidants, 13, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lund, J., Ouwens, D., Wettergreen, M., Bakke, S., Thoresen, G. and Aas, V. (2019) Increased Glycolysis and Higher Lactate Production in Hyperglycemic Myotubes. Cells, 8, Article No. 1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Stitt, A.W. (2001) Advanced Glycation: An Important Pathological Event in Diabetic and Age Related Ocular Disease. British Journal of Ophthalmology, 85, 746-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kowluru, R.A. (2020) Retinopathy in a Diet-Induced Type 2 Diabetic Rat Model and Role of Epigenetic Modifications. Diabetes, 69, 689-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sui, A., Chen, X., Demetriades, A.M., Shen, J., Cai, Y., Yao, Y., et al. (2020) Inhibiting NF-κB Signaling Activation Reduces Retinal Neovascularization by Promoting a Polarization Shift in Macrophages. Investigative Opthalmology & Visual Science, 61, 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Miller, W.P., Sunilkumar, S., Giordano, J.F., Toro, A.L., Barber, A.J. and Dennis, M.D. (2020) The Stress Response Protein REDD1 Promotes Diabetes-Induced Oxidative Stress in the Retina by Keap1-Independent Nrf2 Degradation. Journal of Biological Chemistry, 295, 7350-7361. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Altomare, E., Grattagliano, I., Vendemaile, G., Micelli‐Ferrari, T., Signorile, A. and Cardia, L. (1997) Oxidative Protein Damage in Human Diabetic Eye: Evidence of a Retinal Participation. European Journal of Clinical Investigation, 27, 141-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, Q., Tang, L., Xin, G., Li, S., Ma, L., Xu, Y., et al. (2019) Oxidative Stress Mediated by Lipid Metabolism Contributes to High Glucose-Induced Senescence in Retinal Pigment Epithelium. Free Radical Biology and Medicine, 130, 48-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhao, J., Zhang, J., Liu, Y., Wang, L., Huang, C., Chi, W., et al. (2025) PDZK1 Protects against RPE Senescence by Targeting the 14-3-3ε-mTOR Axis to Attenuate Early Diabetic Retinopathy. Advanced Science, 12, e11288. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Giacco, F. and Brownlee, M. (2010) Oxidative Stress and Diabetic Complications. Circulation Research, 107, 1058-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lee, E.J., Won, J.P., Lee, H.G., Kim, E., Hur, J., Lee, W.J., et al. (2022) PPARδ Inhibits Hyperglycemia-Triggered Senescence of Retinal Pigment Epithelial Cells by Upregulating SIRT1. Antioxidants, 11, Article No. 1207. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xie, M., Hu, A., Luo, Y., et al. (2014) Interleukin-4 and Melatonin Ameliorate High Glucose and Interleukin-1β Stimulated Inflammatory Reaction in Human Retinal Endothelial Cells and Retinal Pigment Epithelial Cells. Molecular Vision, 20, 921-928. https://pubmed.ncbi.nlm.nih.gov/24991184/
|
|
[35]
|
Maugeri, G., Bucolo, C., Drago, F., Rossi, S., Di Rosa, M., Imbesi, R., et al. (2021) Attenuation of High Glucose-Induced Damage in RPE Cells through P38 MAPK Signaling Pathway Inhibition. Frontiers in Pharmacology, 12, Article ID: 684680. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Mohlin, C., Sandholm, K., Kvanta, A., Ekdahl, K.N. and Johansson, K. (2018) A Model to Study Complement Involvement in Experimental Retinal Degeneration. Upsala Journal of Medical Sciences, 123, 28-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Esser, P., Heimann, K., Bartz-Schmidt, K., Fontana, A., Schraermeyer, U., Thumann, G., et al. (1997) Apoptosis in Proliferative Vitreoretinal Disorders: Possible Involvement of TGF-β-Induced RPE Cell Apoptosis. Experimental Eye Research, 65, 365-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tsotridou, E., Loukovitis, E., Zapsalis, K., et al. (2020) A Review of Last Decade Developments on Epiretinal Membrane Pathogenesis. Medical Hypothesis Discovery and Innovation in Ophthalmology, 9, 91-110.
|
|
[39]
|
Pivtoraiko, V.N., Stone, S.L., Roth, K.A. and Shacka, J.J. (2009) Oxidative Stress and Autophagy in the Regulation of Lysosome-Dependent Neuron Death. Antioxidants & Redox Signaling, 11, 481-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sun, R. and Zuo, L. (2025) MAPK8 and HDAC6: Potential Biomarkers Related to Autophagy in Diabetic Retinopathy Based on Bioinformatics Analysis. Frontiers in Endocrinology, 16, Article ID: 1487007. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Feng, L., Liang, L., Zhang, S., Yang, J., Yue, Y. and Zhang, X. (2021) HMGB1 Downregulation in Retinal Pigment Epithelial Cells Protects against Diabetic Retinopathy through the Autophagy-Lysosome Pathway. Autophagy, 18, 320-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shi, H., Zhang, Z., Wang, X., Li, R., Hou, W., Bi, W., et al. (2015) Inhibition of Autophagy Induces Il-1β Release from ARPE-19 Cells via ROS Mediated NLRP3 Inflammasome Activation under High Glucose Stress. Biochemical and Biophysical Research Communications, 463, 1071-1076. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xi, X., Chen, Q., Ma, J., Wang, X., Zhang, Y., Xiong, Q., et al. (2025) Glycolysis‐Histone Lactylation Crosstalk Drives TXNIP-NLRP3-Mediated PANoptosome Assembly and Panoptosis Activation Underlying Diabetic Retinopathy Pathogenesis. MedComm, 6, e70351. [Google Scholar] [CrossRef]
|
|
[44]
|
Shu, D.Y., Butcher, E. and Saint-Geniez, M. (2020) EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. International Journal of Molecular Sciences, 21, Article No. 4271. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zou, H., Shan, C., Ma, L., Liu, J., Yang, N. and Zhao, J. (2020) Polarity and Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells in Proliferative Vitreoretinopathy. PeerJ, 8, e10136. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Shook, D. and Keller, R. (2003) Mechanisms, Mechanics and Function of Epithelial-Mesenchymal Transitions in Early Development. Mechanisms of Development, 120, 1351-1383. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhou, M., Geathers, J.S., Grillo, S.L., Weber, S.R., Wang, W., Zhao, Y., et al. (2020) Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Frontiers in Cell and Developmental Biology, 8, Article No. 501. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Higashijima, F., Hasegawa, M., Yoshimoto, T., Kobayashi, Y., Wakuta, M. and Kimura, K. (2023) Molecular Mechanisms of TGFβ-Mediated EMT of Retinal Pigment Epithelium in Subretinal Fibrosis of Age-Related Macular Degeneration. Frontiers in Ophthalmology, 2, Article ID: 1060087. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Feng, H., Zhao, X., Guo, Q., Feng, Y., Ma, M., Guo, W., et al. (2019) Autophagy Resists EMT Process to Maintain Retinal Pigment Epithelium Homeostasis. International Journal of Biological Sciences, 15, 507-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Fang, J., Luo, C., Zhang, D., He, Q. and Liu, L. (2023) Correlation between Diabetic Retinopathy and Diabetic Nephropathy: A Two-Sample Mendelian Randomization Study. Frontiers in Endocrinology, 14, Article ID: 1265711. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Gatta, M., Dovizio, M., Milillo, C., Ruggieri, A.G., Sallese, M., Antonucci, I., et al. (2025) The Antioxidant Tetrapeptide Epitalon Enhances Delayed Wound Healing in an in Vitro Model of Diabetic Retinopathy. Stem Cell Reviews and Reports, 21, 1822-1834. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gelat, B., Rathaur, P., Malaviya, P., Patel, B., Trivedi, K., Johar, K., et al. (2022) The Intervention of Epithelial-Mesenchymal Transition in Homeostasis of Human Retinal Pigment Epithelial Cells: A Review. Journal of Histotechnology, 45, 148-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Santos, D.F., Pais, M., Santos, C.N. and Silva, G.A. (2021) Polyphenol Metabolite Pyrogallol-O-Sulfate Decreases Microglial Activation and VEGF in Retinal Pigment Epithelium Cells and Diabetic Mouse Retina. International Journal of Molecular Sciences, 22, Article No. 11402. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Murata, M., Noda, K., Kase, S., Hase, K., Wu, D., Ando, R., et al. (2022) Placental Growth Factor Stabilizes VEGF Receptor-2 Protein in Retinal Pigment Epithelial Cells by Downregulating Glycogen Synthase Kinase 3 Activity. Journal of Biological Chemistry, 298, Article ID: 102378. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Puddu, A. and Maggi, D.C. (2023) Klotho: A New Therapeutic Target in Diabetic Retinopathy? World Journal of Diabetes, 14, 1027-1036. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Xu, M., Chen, X., Yu, Z. and Li, X. (2023) Receptors That Bind to PEDF and Their Therapeutic Roles in Retinal Diseases. Frontiers in Endocrinology, 14, Article ID: 1116136. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Calado, S.M., Diaz-Corrales, F. and Silva, G.A. (2016) Pepito-Driven pedf Expression Ameliorates Diabetic Retinopathy Hallmarks. Human Gene Therapy Methods, 27, 79-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Hough, R.F., Alvira, C.M., Bastarache, J.A., Erzurum, S.C., Kuebler, W.M., Schmidt, E.P., et al. (2024) Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 71, 388-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Lechner, J., O’Leary, O.E. and Stitt, A.W. (2017) The Pathology Associated with Diabetic Retinopathy. Vision Research, 139, 7-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Daruich, A., Matet, A., Moulin, A., Kowalczuk, L., Nicolas, M., Sellam, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, J., Zhang, J., Zhang, C., Zhang, J., Gu, L., Luo, D., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article No. 3362. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Crider, J.Y., Yorio, T., Sharif, N.A. and Griffin, B.W. (1997) The Effects of Elevated Glucose on Na+/k+-ATPase of Cultured Bovine Retinal Pigment Epithelial Cells Measured by a New Nonradioactive Rubidium Uptake Assay. Journal of Ocular Pharmacology and Therapeutics, 13, 337-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zhang, C., Xie, H., Yang, Q., Yang, Y., Li, W., Tian, H., et al. (2019) Erythropoietin Protects Outer Blood‐Retinal Barrier in Experimental Diabetic Retinopathy by Up‐Regulating ZO‐1 and Occludin. Clinical & Experimental Ophthalmology, 47, 1182-1197. [Google Scholar] [CrossRef] [PubMed]
|